Beispiel #1
0
class LengthNode(with_metaclass(Singleton, Basic)):
    """Base class representing one length of an iterator"""
    pass
Beispiel #2
0
class Grid(with_metaclass(_BackendSelector, grid.Grid)):
    pass
Beispiel #3
0
class CacheManager(with_metaclass(_BackendSelector, caching.CacheManager)):
    pass
Beispiel #4
0
class Constant(with_metaclass(_BackendSelector, constant.Constant)):
    pass
Beispiel #5
0
class SparseTimeFunction(
        with_metaclass(_BackendSelector, sparse.SparseTimeFunction)):
    pass
Beispiel #6
0
class NativeOp(with_metaclass(Singleton, Basic)):
    """Base type for native operands."""
    pass
Beispiel #7
0
class Scalar(with_metaclass(_BackendSelector, basic.Scalar)):
    pass
Beispiel #8
0
class ElementDomain(with_metaclass(Singleton, Basic)):
    pass
class Domain(with_metaclass(OptionType, Option)):
    """``domain`` option to polynomial manipulation functions. """

    option = 'domain'

    requires = []
    excludes = ['field', 'greedy', 'split', 'gaussian', 'extension']

    after = ['gens']

    _re_realfield = re.compile(r"^(R|RR)(_(\d+))?$")
    _re_complexfield = re.compile(r"^(C|CC)(_(\d+))?$")
    _re_finitefield = re.compile(r"^(FF|GF)\((\d+)\)$")
    _re_polynomial = re.compile(r"^(Z|ZZ|Q|QQ)\[(.+)\]$")
    _re_fraction = re.compile(r"^(Z|ZZ|Q|QQ)\((.+)\)$")
    _re_algebraic = re.compile(r"^(Q|QQ)\<(.+)\>$")

    @classmethod
    def preprocess(cls, domain):
        if isinstance(domain, sympy.polys.domains.Domain):
            return domain
        elif hasattr(domain, 'to_domain'):
            return domain.to_domain()
        elif isinstance(domain, string_types):
            if domain in ['Z', 'ZZ']:
                return sympy.polys.domains.ZZ

            if domain in ['Q', 'QQ']:
                return sympy.polys.domains.QQ

            if domain == 'EX':
                return sympy.polys.domains.EX

            r = cls._re_realfield.match(domain)

            if r is not None:
                _, _, prec = r.groups()

                if prec is None:
                    return sympy.polys.domains.RR
                else:
                    return sympy.polys.domains.RealField(int(prec))

            r = cls._re_complexfield.match(domain)

            if r is not None:
                _, _, prec = r.groups()

                if prec is None:
                    return sympy.polys.domains.CC
                else:
                    return sympy.polys.domains.ComplexField(int(prec))

            r = cls._re_finitefield.match(domain)

            if r is not None:
                return sympy.polys.domains.FF(int(r.groups()[1]))

            r = cls._re_polynomial.match(domain)

            if r is not None:
                ground, gens = r.groups()

                gens = list(map(sympify, gens.split(',')))

                if ground in ['Z', 'ZZ']:
                    return sympy.polys.domains.ZZ.poly_ring(*gens)
                else:
                    return sympy.polys.domains.QQ.poly_ring(*gens)

            r = cls._re_fraction.match(domain)

            if r is not None:
                ground, gens = r.groups()

                gens = list(map(sympify, gens.split(',')))

                if ground in ['Z', 'ZZ']:
                    return sympy.polys.domains.ZZ.frac_field(*gens)
                else:
                    return sympy.polys.domains.QQ.frac_field(*gens)

            r = cls._re_algebraic.match(domain)

            if r is not None:
                gens = list(map(sympify, r.groups()[1].split(',')))
                return sympy.polys.domains.QQ.algebraic_field(*gens)

        raise OptionError('expected a valid domain specification, got %s' % domain)

    @classmethod
    def postprocess(cls, options):
        if 'gens' in options and 'domain' in options and options['domain'].is_Composite and \
                (set(options['domain'].symbols) & set(options['gens'])):
            raise GeneratorsError(
                "ground domain and generators interfere together")
        elif ('gens' not in options or not options['gens']) and \
                'domain' in options and options['domain'] == sympy.polys.domains.EX:
            raise GeneratorsError("you have to provide generators because EX domain was requested")
Beispiel #10
0
class Integers(with_metaclass(Singleton, Set)):
    """
    Represents all integers: positive, negative and zero. This set is also
    available as the Singleton, S.Integers.

    Examples
    ========

    >>> from sympy import S, Interval, pprint
    >>> 5 in S.Naturals
    True
    >>> iterable = iter(S.Integers)
    >>> next(iterable)
    0
    >>> next(iterable)
    1
    >>> next(iterable)
    -1
    >>> next(iterable)
    2

    >>> pprint(S.Integers.intersect(Interval(-4, 4)))
    {-4, -3, ..., 4}

    See Also
    ========

    Naturals0 : non-negative integers
    Integers : positive and negative integers and zero
    """

    is_iterable = True
    is_empty = False
    is_finite_set = False

    def _contains(self, other):
        if not isinstance(other, Expr):
            return S.false
        return other.is_integer

    def __iter__(self):
        yield S.Zero
        i = S.One
        while True:
            yield i
            yield -i
            i = i + 1

    @property
    def _inf(self):
        return S.NegativeInfinity

    @property
    def _sup(self):
        return S.Infinity

    @property
    def _boundary(self):
        return self

    def as_relational(self, x):
        from sympy.functions.elementary.integers import floor
        return And(Eq(floor(x), x), -oo < x, x < oo)

    def _eval_is_subset(self, other):
        return Range(-oo, oo).is_subset(other)

    def _eval_is_superset(self, other):
        return Range(-oo, oo).is_superset(other)
Beispiel #11
0
class Naturals(with_metaclass(Singleton, Set)):
    """
    Represents the natural numbers (or counting numbers) which are all
    positive integers starting from 1. This set is also available as
    the Singleton, S.Naturals.

    Examples
    ========

    >>> from sympy import S, Interval, pprint
    >>> 5 in S.Naturals
    True
    >>> iterable = iter(S.Naturals)
    >>> next(iterable)
    1
    >>> next(iterable)
    2
    >>> next(iterable)
    3
    >>> pprint(S.Naturals.intersect(Interval(0, 10)))
    {1, 2, ..., 10}

    See Also
    ========

    Naturals0 : non-negative integers (i.e. includes 0, too)
    Integers : also includes negative integers
    """

    is_iterable = True
    _inf = S.One
    _sup = S.Infinity
    is_empty = False
    is_finite_set = False

    def _contains(self, other):
        if not isinstance(other, Expr):
            return False
        elif other.is_positive and other.is_integer:
            return True
        elif other.is_integer is False or other.is_positive is False:
            return False

    def _eval_is_subset(self, other):
        return Range(1, oo).is_subset(other)

    def _eval_is_superset(self, other):
        return Range(1, oo).is_superset(other)

    def __iter__(self):
        i = self._inf
        while True:
            yield i
            i = i + 1

    @property
    def _boundary(self):
        return self

    def as_relational(self, x):
        from sympy.functions.elementary.integers import floor
        return And(Eq(floor(x), x), x >= self.inf, x < oo)
Beispiel #12
0
class Reals(with_metaclass(Singleton, Interval)):
    def __new__(cls):
        return Interval.__new__(cls, -S.Infinity, S.Infinity)
Beispiel #13
0
class Integers(with_metaclass(Singleton, Set)):
    """
    Represents all integers: positive, negative and zero. This set is also
    available as the Singleton, S.Integers.

    Examples
    ========

    >>> from sympy import S, Interval, pprint
    >>> 5 in S.Naturals
    True
    >>> iterable = iter(S.Integers)
    >>> next(iterable)
    0
    >>> next(iterable)
    1
    >>> next(iterable)
    -1
    >>> next(iterable)
    2

    >>> pprint(S.Integers.intersect(Interval(-4, 4)))
    {-4, -3, ..., 4}

    See Also
    ========
    Naturals0 : non-negative integers
    Integers : positive and negative integers and zero
    """

    is_iterable = True

    def _intersect(self, other):
        from sympy.functions.elementary.integers import floor, ceiling
        if other.is_Interval and other.measure < S.Infinity:
            s = Range(ceiling(other.left), floor(other.right) + 1)
            return s.intersect(other)  # take out endpoints if open interval
        return None

    def _contains(self, other):
        from sympy.assumptions.ask import ask, Q
        if ask(Q.integer(other)):
            return True
        return False

    def __iter__(self):
        yield S.Zero
        i = S(1)
        while True:
            yield i
            yield -i
            i = i + 1

    @property
    def _inf(self):
        return -S.Infinity

    @property
    def _sup(self):
        return S.Infinity

    @property
    def _boundary(self):
        return self
Beispiel #14
0
class SpaceType(with_metaclass(Singleton, Basic)):
    """Base class representing function space types"""
    pass
Beispiel #15
0
class CacheManager(with_metaclass(_BackendSelector, types.CacheManager)):
    pass
class Polys(with_metaclass(OptionType, BooleanOption, Flag)):
    """``polys`` flag to polynomial manipulation functions. """

    option = 'polys'
Beispiel #17
0
class Integers(with_metaclass(Singleton, Set)):
    """
    Represents all integers: positive, negative and zero. This set is also
    available as the Singleton, S.Integers.

    Examples
    ========

    >>> from sympy import S, Interval, pprint
    >>> 5 in S.Naturals
    True
    >>> iterable = iter(S.Integers)
    >>> next(iterable)
    0
    >>> next(iterable)
    1
    >>> next(iterable)
    -1
    >>> next(iterable)
    2

    >>> pprint(S.Integers.intersect(Interval(-4, 4)))
    {-4, -3, ..., 4}

    See Also
    ========
    Naturals0 : non-negative integers
    Integers : positive and negative integers and zero
    """

    is_iterable = True

    def _intersect(self, other):
        from sympy.functions.elementary.integers import floor, ceiling
        if other is Interval(S.NegativeInfinity,
                             S.Infinity) or other is S.Reals:
            return self
        elif other.is_Interval:
            s = Range(ceiling(other.left), floor(other.right) + 1)
            return s.intersect(other)  # take out endpoints if open interval
        return None

    def _contains(self, other):
        if other.is_integer:
            return S.true
        elif other.is_integer is False:
            return S.false

    def __iter__(self):
        yield S.Zero
        i = S.One
        while True:
            yield i
            yield -i
            i = i + 1

    @property
    def _inf(self):
        return -S.Infinity

    @property
    def _sup(self):
        return S.Infinity

    @property
    def _boundary(self):
        return self

    def _eval_imageset(self, f):
        from sympy import Wild
        expr = f.expr
        if len(f.variables) > 1:
            return
        n = f.variables[0]

        a = Wild('a')
        b = Wild('b')

        match = expr.match(a * n + b)
        if match[a].is_negative:
            expr = -expr

        match = expr.match(a * n + b)
        if match[a] is S.One and match[b].is_integer:
            expr = expr - match[b]

        return ImageSet(Lambda(n, expr), S.Integers)
Beispiel #18
0
 class MySingleton(with_metaclass(Singleton, Basic)):
     def __new__(cls):
         global instantiated
         instantiated += 1
         return Basic.__new__(cls)
Beispiel #19
0
class DataType(with_metaclass(Singleton, Basic)):
    """Base class representing native datatypes"""
    pass
Beispiel #20
0
class Scalar(with_metaclass(_BackendSelector, types.Scalar)):
    pass
Beispiel #21
0
class Array(with_metaclass(_BackendSelector, array.Array)):
    pass
Beispiel #22
0
class Array(with_metaclass(_BackendSelector, types.Array)):
    pass
Beispiel #23
0
class TimeFunction(with_metaclass(_BackendSelector, dense.TimeFunction)):
    pass
Beispiel #24
0
class Constant(with_metaclass(_BackendSelector, function.Constant)):
    pass
Beispiel #25
0
class PrecomputedSparseTimeFunction(
        with_metaclass(_BackendSelector,
                       sparse.PrecomputedSparseTimeFunction)):  # noqa
    pass
Beispiel #26
0
class Function(with_metaclass(_BackendSelector, function.Function)):
    pass
Beispiel #27
0
class Operator(with_metaclass(_BackendSelector, operator.Operator)):
    pass
Beispiel #28
0
class SparseFunction(with_metaclass(_BackendSelector, function.SparseFunction)):
    pass
Beispiel #29
0
class Integers(with_metaclass(Singleton, Set)):
    """
    Represents all integers: positive, negative and zero. This set is also
    available as the Singleton, S.Integers.

    Examples
    ========

    >>> from sympy import S, Interval, pprint
    >>> 5 in S.Naturals
    True
    >>> iterable = iter(S.Integers)
    >>> next(iterable)
    0
    >>> next(iterable)
    1
    >>> next(iterable)
    -1
    >>> next(iterable)
    2

    >>> pprint(S.Integers.intersect(Interval(-4, 4)))
    {-4, -3, ..., 4}

    See Also
    ========
    Naturals0 : non-negative integers
    Integers : positive and negative integers and zero
    """

    is_iterable = True

    def _intersect(self, other):
        from sympy.functions.elementary.integers import floor, ceiling
        if other is Interval(S.NegativeInfinity, S.Infinity) or other is S.Reals:
            return self
        elif other.is_Interval:
            s = Range(ceiling(other.left), floor(other.right) + 1)
            return s.intersect(other)  # take out endpoints if open interval
        return None

    def _contains(self, other):
        if other.is_integer:
            return S.true
        elif other.is_integer is False:
            return S.false

    def _union(self, other):
        intersect = Intersection(self, other)
        if intersect == self:
            return other
        elif intersect == other:
            return self

    def __iter__(self):
        yield S.Zero
        i = S.One
        while True:
            yield i
            yield -i
            i = i + 1

    @property
    def _inf(self):
        return -S.Infinity

    @property
    def _sup(self):
        return S.Infinity

    @property
    def _boundary(self):
        return self

    def _eval_imageset(self, f):
        expr = f.expr
        if not isinstance(expr, Expr):
            return

        if len(f.variables) > 1:
            return

        n = f.variables[0]

        # f(x) + c and f(-x) + c cover the same integers
        # so choose the form that has the fewest negatives
        c = f(0)
        fx = f(n) - c
        f_x = f(-n) - c
        neg_count = lambda e: sum(_coeff_isneg(_) for _ in Add.make_args(e))
        if neg_count(f_x) < neg_count(fx):
            expr = f_x + c

        a = Wild('a', exclude=[n])
        b = Wild('b', exclude=[n])
        match = expr.match(a*n + b)
        if match and match[a]:
            # canonical shift
            expr = match[a]*n + match[b] % match[a]

        if expr != f.expr:
            return ImageSet(Lambda(n, expr), S.Integers)
Beispiel #30
0
class IndexNode(with_metaclass(Singleton, Basic)):
    """Base class representing one index of an iterator"""
    pass