def _separatevars(expr, force):
    if len(expr.free_symbols) == 1:
        return expr
    # don't destroy a Mul since much of the work may already be done
    if expr.is_Mul:
        args = list(expr.args)
        changed = False
        for i, a in enumerate(args):
            args[i] = separatevars(a, force)
            changed = changed or args[i] != a
        if changed:
            expr = expr.func(*args)
        return expr

    # get a Pow ready for expansion
    if expr.is_Pow:
        expr = Pow(separatevars(expr.base, force=force), expr.exp)

    # First try other expansion methods
    expr = expr.expand(mul=False, multinomial=False, force=force)

    _expr, reps = posify(expr) if force else (expr, {})
    expr = factor(_expr).subs(reps)

    if not expr.is_Add:
        return expr

    # Find any common coefficients to pull out
    args = list(expr.args)
    commonc = args[0].args_cnc(cset=True, warn=False)[0]
    for i in args[1:]:
        commonc &= i.args_cnc(cset=True, warn=False)[0]
    commonc = Mul(*commonc)
    commonc = commonc.as_coeff_Mul()[1]  # ignore constants
    commonc_set = commonc.args_cnc(cset=True, warn=False)[0]

    # remove them
    for i, a in enumerate(args):
        c, nc = a.args_cnc(cset=True, warn=False)
        c = c - commonc_set
        args[i] = Mul(*c)*Mul(*nc)
    nonsepar = Add(*args)

    if len(nonsepar.free_symbols) > 1:
        _expr = nonsepar
        _expr, reps = posify(_expr) if force else (_expr, {})
        _expr = (factor(_expr)).subs(reps)

        if not _expr.is_Add:
            nonsepar = _expr

    return commonc*nonsepar
Beispiel #2
0
def _separatevars(expr, force):
    if len(expr.free_symbols) == 1:
        return expr
    # don't destroy a Mul since much of the work may already be done
    if expr.is_Mul:
        args = list(expr.args)
        changed = False
        for i, a in enumerate(args):
            args[i] = separatevars(a, force)
            changed = changed or args[i] != a
        if changed:
            expr = expr.func(*args)
        return expr

    # get a Pow ready for expansion
    if expr.is_Pow:
        expr = Pow(separatevars(expr.base, force=force), expr.exp)

    # First try other expansion methods
    expr = expr.expand(mul=False, multinomial=False, force=force)

    _expr, reps = posify(expr) if force else (expr, {})
    expr = factor(_expr).subs(reps)

    if not expr.is_Add:
        return expr

    # Find any common coefficients to pull out
    args = list(expr.args)
    commonc = args[0].args_cnc(cset=True, warn=False)[0]
    for i in args[1:]:
        commonc &= i.args_cnc(cset=True, warn=False)[0]
    commonc = Mul(*commonc)
    commonc = commonc.as_coeff_Mul()[1]  # ignore constants
    commonc_set = commonc.args_cnc(cset=True, warn=False)[0]

    # remove them
    for i, a in enumerate(args):
        c, nc = a.args_cnc(cset=True, warn=False)
        c = c - commonc_set
        args[i] = Mul(*c)*Mul(*nc)
    nonsepar = Add(*args)

    if len(nonsepar.free_symbols) > 1:
        _expr = nonsepar
        _expr, reps = posify(_expr) if force else (_expr, {})
        _expr = (factor(_expr)).subs(reps)

        if not _expr.is_Add:
            nonsepar = _expr

    return commonc*nonsepar
Beispiel #3
0
def futrig(e, **kwargs):
    """Return simplified ``e`` using Fu-like transformations.
    This is not the "Fu" algorithm. This is called by default
    from ``trigsimp``. By default, hyperbolics subexpressions
    will be simplified, but this can be disabled by setting
    ``hyper=False``.

    Examples
    ========

    >>> from sympy import trigsimp, tan, sinh, tanh
    >>> from sympy.simplify.trigsimp import futrig
    >>> from sympy.abc import x
    >>> trigsimp(1/tan(x)**2)
    tan(x)**(-2)

    >>> futrig(sinh(x)/tanh(x))
    cosh(x)

    """
    from sympy.simplify.fu import hyper_as_trig
    from sympy.simplify.simplify import bottom_up

    e = sympify(e)

    if not isinstance(e, Basic):
        return e

    if not e.args:
        return e

    old = e
    e = bottom_up(e, lambda x: _futrig(x, **kwargs))

    if kwargs.pop('hyper', True) and e.has(HyperbolicFunction):
        e, f = hyper_as_trig(e)
        e = f(_futrig(e))

    if e != old and e.is_Mul and e.args[0].is_Rational:
        # redistribute leading coeff on 2-arg Add
        e = Mul(*e.as_coeff_Mul())
    return e
Beispiel #4
0
def futrig(e, **kwargs):
    """Return simplified ``e`` using Fu-like transformations.
    This is not the "Fu" algorithm. This is called by default
    from ``trigsimp``. By default, hyperbolics subexpressions
    will be simplified, but this can be disabled by setting
    ``hyper=False``.

    Examples
    ========

    >>> from sympy import trigsimp, tan, sinh, tanh
    >>> from sympy.simplify.trigsimp import futrig
    >>> from sympy.abc import x
    >>> trigsimp(1/tan(x)**2)
    tan(x)**(-2)

    >>> futrig(sinh(x)/tanh(x))
    cosh(x)

    """
    from sympy.simplify.fu import hyper_as_trig
    from sympy.simplify.simplify import bottom_up

    e = sympify(e)

    if not isinstance(e, Basic):
        return e

    if not e.args:
        return e

    old = e
    e = bottom_up(e, lambda x: _futrig(x, **kwargs))

    if kwargs.pop('hyper', True) and e.has(HyperbolicFunction):
        e, f = hyper_as_trig(e)
        e = f(_futrig(e))

    if e != old and e.is_Mul and e.args[0].is_Rational:
        # redistribute leading coeff on 2-arg Add
        e = Mul(*e.as_coeff_Mul())
    return e