def test_functional_diffgeom_ch2(): x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', real=True) x, y = symbols('x, y', real=True) f = Function('f') assert (R2_p.point_to_coords(R2_r.point([x0, y0])) == Matrix([sqrt(x0**2 + y0**2), atan2(y0, x0)])) assert (R2_r.point_to_coords(R2_p.point([r0, theta0])) == Matrix([r0*cos(theta0), r0*sin(theta0)])) assert R2_p.jacobian(R2_r, [r0, theta0]) == Matrix( [[cos(theta0), -r0*sin(theta0)], [sin(theta0), r0*cos(theta0)]]) field = f(R2.x, R2.y) p1_in_rect = R2_r.point([x0, y0]) p1_in_polar = R2_p.point([sqrt(x0**2 + y0**2), atan2(y0, x0)]) assert field.rcall(p1_in_rect) == f(x0, y0) assert field.rcall(p1_in_polar) == f(x0, y0) p_r = R2_r.point([x0, y0]) p_p = R2_p.point([r0, theta0]) assert R2.x(p_r) == x0 assert R2.x(p_p) == r0*cos(theta0) assert R2.r(p_p) == r0 assert R2.r(p_r) == sqrt(x0**2 + y0**2) assert R2.theta(p_r) == atan2(y0, x0) h = R2.x*R2.r**2 + R2.y**3 assert h.rcall(p_r) == x0*(x0**2 + y0**2) + y0**3 assert h.rcall(p_p) == r0**3*sin(theta0)**3 + r0**3*cos(theta0)
def test_correct_arguments(): raises(ValueError, lambda: R2.e_x(R2.e_x)) raises(ValueError, lambda: R2.e_x(R2.dx)) raises(ValueError, lambda: Commutator(R2.e_x, R2.x)) raises(ValueError, lambda: Commutator(R2.dx, R2.e_x)) raises(ValueError, lambda: Differential(Differential(R2.e_x))) raises(ValueError, lambda: R2.dx(R2.x)) raises(ValueError, lambda: LieDerivative(R2.dx, R2.dx)) raises(ValueError, lambda: LieDerivative(R2.x, R2.dx)) raises(ValueError, lambda: CovarDerivativeOp(R2.dx, [])) raises(ValueError, lambda: CovarDerivativeOp(R2.x, [])) a = Symbol('a') raises(ValueError, lambda: intcurve_series(R2.dx, a, R2_r.point([1, 2]))) raises(ValueError, lambda: intcurve_series(R2.x, a, R2_r.point([1, 2]))) raises(ValueError, lambda: intcurve_diffequ(R2.dx, a, R2_r.point([1, 2]))) raises(ValueError, lambda: intcurve_diffequ(R2.x, a, R2_r.point([1, 2]))) raises(ValueError, lambda: contravariant_order(R2.e_x + R2.dx)) raises(ValueError, lambda: covariant_order(R2.e_x + R2.dx)) raises(ValueError, lambda: contravariant_order(R2.e_x * R2.e_y)) raises(ValueError, lambda: covariant_order(R2.dx * R2.dy))
def test_correct_arguments(): raises(ValueError, lambda : R2.e_x(R2.e_x)) raises(ValueError, lambda : R2.e_x(R2.dx)) raises(ValueError, lambda : Commutator(R2.e_x, R2.x)) raises(ValueError, lambda : Commutator(R2.dx, R2.e_x)) raises(ValueError, lambda : Differential(Differential(R2.e_x))) raises(ValueError, lambda : R2.dx(R2.x)) raises(ValueError, lambda : TensorProduct(R2.e_x, R2.dx)) raises(ValueError, lambda : LieDerivative(R2.dx, R2.dx)) raises(ValueError, lambda : LieDerivative(R2.x, R2.dx)) raises(ValueError, lambda : CovarDerivativeOp(R2.dx, [])) raises(ValueError, lambda : CovarDerivativeOp(R2.x, [])) a = Symbol('a') raises(ValueError, lambda : intcurve_series(R2.dx, a, R2_r.point([1,2]))) raises(ValueError, lambda : intcurve_series(R2.x, a, R2_r.point([1,2]))) raises(ValueError, lambda : intcurve_diffequ(R2.dx, a, R2_r.point([1,2]))) raises(ValueError, lambda : intcurve_diffequ(R2.x, a, R2_r.point([1,2]))) raises(ValueError, lambda : contravariant_order(R2.e_x + R2.dx)) raises(ValueError, lambda : covariant_order(R2.e_x + R2.dx)) raises(ValueError, lambda : contravariant_order(R2.e_x*R2.e_y)) raises(ValueError, lambda : covariant_order(R2.dx*R2.dy))
def test_functional_diffgeom_ch3(): x0, y0 = symbols('x0, y0', real=True) x, y, t = symbols('x, y, t', real=True) f = Function('f') b1 = Function('b1') b2 = Function('b2') p_r = R2_r.point([x0, y0]) s_field = f(R2.x, R2.y) v_field = b1(R2.x)*R2.e_x + b2(R2.y)*R2.e_y assert v_field.rcall(s_field).rcall(p_r).doit() == b1( x0)*Derivative(f(x0, y0), x0) + b2(y0)*Derivative(f(x0, y0), y0) assert R2.e_x(R2.r**2).rcall(p_r) == 2*x0 v = R2.e_x + 2*R2.e_y s = R2.r**2 + 3*R2.x assert v.rcall(s).rcall(p_r).doit() == 2*x0 + 4*y0 + 3 circ = -R2.y*R2.e_x + R2.x*R2.e_y series = intcurve_series(circ, t, R2_r.point([1, 0]), coeffs=True) series_x, series_y = zip(*series) assert all( [term == cos(t).taylor_term(i, t) for i, term in enumerate(series_x)]) assert all( [term == sin(t).taylor_term(i, t) for i, term in enumerate(series_y)])
def test_simplify(): x, y = R2_r.coord_functions() dx, dy = R2_r.base_oneforms() ex, ey = R2_r.base_vectors() assert simplify(x) == x assert simplify(x*y) == x*y assert simplify(dx*dy) == dx*dy assert simplify(ex*ey) == ex*ey assert ((1-x)*dx)/(1-x)**2 == dx/(1-x)
def test_simplify(): x, y = R2_r.coord_functions() dx, dy = R2_r.base_oneforms() ex, ey = R2_r.base_vectors() assert simplify(x) == x assert simplify(x * y) == x * y assert simplify(dx * dy) == dx * dy assert simplify(ex * ey) == ex * ey assert ((1 - x) * dx) / (1 - x)**2 == dx / (1 - x)
def test_R2(): x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', real=True) point_r = R2_r.point([x0, y0]) point_p = R2_p.point([r0, theta0]) # r**2 = x**2 + y**2 assert (R2.r**2 - R2.x**2 - R2.y**2)(point_r) == 0 assert trigsimp( (R2.r**2 - R2.x**2 - R2.y**2)(point_p) ) == 0 assert trigsimp(R2.e_r(R2.x**2+R2.y**2)(point_p).doit()) == 2*r0 # polar->rect->polar == Id a, b = symbols('a b', positive=True) m = Matrix([[a], [b]]) #TODO assert m == R2_r.coord_tuple_transform_to(R2_p, R2_p.coord_tuple_transform_to(R2_r, [a, b])).applyfunc(simplify) assert m == R2_p.coord_tuple_transform_to(R2_r, R2_r.coord_tuple_transform_to(R2_p, m)).applyfunc(simplify)
def test_functional_diffgeom_ch4(): x0, y0, theta0 = symbols('x0, y0, theta0', real=True) x, y, r, theta = symbols('x, y, r, theta', real=True) r0 = symbols('r0', positive=True) f = Function('f') b1 = Function('b1') b2 = Function('b2') p_r = R2_r.point([x0, y0]) p_p = R2_p.point([r0, theta0]) f_field = b1(R2.x,R2.y)*R2.dx + b2(R2.x,R2.y)*R2.dy assert f_field(R2.e_x)(p_r) == b1(x0, y0) assert f_field(R2.e_y)(p_r) == b2(x0, y0) s_field_r = f(R2.x,R2.y) df = Differential(s_field_r) assert df(R2.e_x)(p_r).doit() == Derivative(f(x0, y0), x0) assert df(R2.e_y)(p_r).doit() == Derivative(f(x0, y0), y0) s_field_p = f(R2.r,R2.theta) df = Differential(s_field_p) assert trigsimp(df(R2.e_x)(p_p).doit()) == cos(theta0)*Derivative(f(r0, theta0), r0) - sin(theta0)*Derivative(f(r0, theta0), theta0)/r0 assert trigsimp(df(R2.e_y)(p_p).doit()) == sin(theta0)*Derivative(f(r0, theta0), r0) + cos(theta0)*Derivative(f(r0, theta0), theta0)/r0 assert R2.dx(R2.e_x)(p_r) == 1 assert R2.dx(R2.e_y)(p_r) == 0 circ = -R2.y*R2.e_x + R2.x*R2.e_y assert R2.dx(circ)(p_r).doit() == -y0 assert R2.dy(circ)(p_r) == x0 assert R2.dr(circ)(p_r) == 0 assert simplify(R2.dtheta(circ)(p_r)) == 1 assert (circ - R2.e_theta)(s_field_r)(p_r) == 0
def test_intcurve_diffequ(): t = symbols('t') start_point = R2_r.point([1, 0]) vector_field = -R2.y*R2.e_x + R2.x*R2.e_y equations, init_cond = intcurve_diffequ(vector_field, t, start_point) assert str(equations) == '[f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)]' assert str(init_cond) == '[f_0(0) - 1, f_1(0)]' equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p) assert str(equations) == '[Derivative(f_0(t), t), Derivative(f_1(t), t) - 1]' assert str(init_cond) == '[f_0(0) - 1, f_1(0)]'
def test_functional_diffgeom_ch4(): x0, y0, theta0 = symbols('x0, y0, theta0', real=True) x, y, r, theta = symbols('x, y, r, theta', real=True) r0 = symbols('r0', positive=True) f = Function('f') b1 = Function('b1') b2 = Function('b2') p_r = R2_r.point([x0, y0]) p_p = R2_p.point([r0, theta0]) f_field = b1(R2.x, R2.y)*R2.dx + b2(R2.x, R2.y)*R2.dy assert f_field.rcall(R2.e_x).rcall(p_r) == b1(x0, y0) assert f_field.rcall(R2.e_y).rcall(p_r) == b2(x0, y0) s_field_r = f(R2.x, R2.y) df = Differential(s_field_r) assert df(R2.e_x).rcall(p_r).doit() == Derivative(f(x0, y0), x0) assert df(R2.e_y).rcall(p_r).doit() == Derivative(f(x0, y0), y0) s_field_p = f(R2.r, R2.theta) df = Differential(s_field_p) assert trigsimp(df(R2.e_x).rcall(p_p).doit()) == ( cos(theta0)*Derivative(f(r0, theta0), r0) - sin(theta0)*Derivative(f(r0, theta0), theta0)/r0) assert trigsimp(df(R2.e_y).rcall(p_p).doit()) == ( sin(theta0)*Derivative(f(r0, theta0), r0) + cos(theta0)*Derivative(f(r0, theta0), theta0)/r0) assert R2.dx(R2.e_x).rcall(p_r) == 1 assert R2.dx(R2.e_x) == 1 assert R2.dx(R2.e_y).rcall(p_r) == 0 assert R2.dx(R2.e_y) == 0 circ = -R2.y*R2.e_x + R2.x*R2.e_y assert R2.dx(circ).rcall(p_r).doit() == -y0 assert R2.dy(circ).rcall(p_r) == x0 assert R2.dr(circ).rcall(p_r) == 0 assert simplify(R2.dtheta(circ).rcall(p_r)) == 1 assert (circ - R2.e_theta).rcall(s_field_r).rcall(p_r) == 0
rect = CoordSystem('rect', p) polar = CoordSystem('polar', p) polar.connect_to(rect, [r, theta], [r*cos(theta), r*sin(theta)]) # Define a point using coordinates from one of the coordinate systems: p = Point(polar, [r, 3*pi/4]) p.coords() p.coords(rect) # Use the predefined R2 manifold, setup some boilerplate. from sympy import symbols, pi, Function from sympy.diffgeom.rn import R2, R2_p, R2_r from sympy.diffgeom import BaseVectorField from sympy import pprint x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0') # Points to be used as arguments for the field: point_p = R2_p.point([r0, theta0]) point_r = R2_r.point([x0, y0]) #Scalar field to operate on: g = Function('g') s_field = g(R2.x, R2.y) s_field.rcall(point_r) s_field.rcall(point_p) #Vector field: v = BaseVectorField(R2_r, 1) pprint(v(s_field)) pprint(v(s_field).rcall(point_r).doit()) pprint(v(s_field).rcall(point_p).doit()) # Differential Examples # scalar 0 forms from sympy import Function from sympy.diffgeom.rn import R2 from sympy.diffgeom import Differential
def test_point(): x, y = symbols("x, y") p = R2_r.point([x, y]) # TODO assert p.free_symbols() == set([x, y]) assert p.coords(R2_r) == p.coords() == Matrix([x, y]) assert p.coords(R2_p) == Matrix([sqrt(x**2 + y**2), atan2(y, x)])
from printing import print_coeffs, print_matrix, matrix_row_strings Rat = sym.Rational Mat = sym.Matrix Sym = sym.symbols Half = Rat(1, 2) Third = Rat(1, 3) Quarter = Rat(1, 4) def Rec(n): return Rat(1, n) from sympy.diffgeom.rn import R2_r from sympy.diffgeom import WedgeProduct ex, ey = R2_r.base_vectors() dx, dy = R2_r.base_oneforms() print(WedgeProduct(dx, dy)) print(WedgeProduct(dx, dy)(ex, ey)) J = Mat([[Sym("J_{}{}".format(i, j)) for j in range(1, 3)] for i in range(1, 4)]) print_matrix(J) print_matrix(J.T * J) class k_vector: def __init__(self, n): self.n = n
def test_point(): x, y = symbols('x, y') p = R2_r.point([x, y]) #TODO assert p.free_symbols() == set([x, y]) assert p.coords(R2_r) == p.coords() == Matrix([x, y]) assert p.coords(R2_p) == Matrix([sqrt(x**2+y**2), atan2(y,x)])
def test_point(): x, y = symbols('x, y') p = R2_r.point([x, y]) assert p.free_symbols == {x, y} assert p.coords(R2_r) == p.coords() == Matrix([x, y]) assert p.coords(R2_p) == Matrix([sqrt(x**2 + y**2), atan2(y, x)])