def test_functional_diffgeom_ch2():
    x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', real=True)
    x, y = symbols('x, y', real=True)
    f = Function('f')

    assert (R2_p.point_to_coords(R2_r.point([x0, y0])) ==
           Matrix([sqrt(x0**2 + y0**2), atan2(y0, x0)]))
    assert (R2_r.point_to_coords(R2_p.point([r0, theta0])) ==
           Matrix([r0*cos(theta0), r0*sin(theta0)]))

    assert R2_p.jacobian(R2_r, [r0, theta0]) == Matrix(
        [[cos(theta0), -r0*sin(theta0)], [sin(theta0), r0*cos(theta0)]])

    field = f(R2.x, R2.y)
    p1_in_rect = R2_r.point([x0, y0])
    p1_in_polar = R2_p.point([sqrt(x0**2 + y0**2), atan2(y0, x0)])
    assert field.rcall(p1_in_rect) == f(x0, y0)
    assert field.rcall(p1_in_polar) == f(x0, y0)

    p_r = R2_r.point([x0, y0])
    p_p = R2_p.point([r0, theta0])
    assert R2.x(p_r) == x0
    assert R2.x(p_p) == r0*cos(theta0)
    assert R2.r(p_p) == r0
    assert R2.r(p_r) == sqrt(x0**2 + y0**2)
    assert R2.theta(p_r) == atan2(y0, x0)

    h = R2.x*R2.r**2 + R2.y**3
    assert h.rcall(p_r) == x0*(x0**2 + y0**2) + y0**3
    assert h.rcall(p_p) == r0**3*sin(theta0)**3 + r0**3*cos(theta0)
Beispiel #2
0
def test_correct_arguments():
    raises(ValueError, lambda: R2.e_x(R2.e_x))
    raises(ValueError, lambda: R2.e_x(R2.dx))

    raises(ValueError, lambda: Commutator(R2.e_x, R2.x))
    raises(ValueError, lambda: Commutator(R2.dx, R2.e_x))

    raises(ValueError, lambda: Differential(Differential(R2.e_x)))

    raises(ValueError, lambda: R2.dx(R2.x))

    raises(ValueError, lambda: LieDerivative(R2.dx, R2.dx))
    raises(ValueError, lambda: LieDerivative(R2.x, R2.dx))

    raises(ValueError, lambda: CovarDerivativeOp(R2.dx, []))
    raises(ValueError, lambda: CovarDerivativeOp(R2.x, []))

    a = Symbol('a')
    raises(ValueError, lambda: intcurve_series(R2.dx, a, R2_r.point([1, 2])))
    raises(ValueError, lambda: intcurve_series(R2.x, a, R2_r.point([1, 2])))

    raises(ValueError, lambda: intcurve_diffequ(R2.dx, a, R2_r.point([1, 2])))
    raises(ValueError, lambda: intcurve_diffequ(R2.x, a, R2_r.point([1, 2])))

    raises(ValueError, lambda: contravariant_order(R2.e_x + R2.dx))
    raises(ValueError, lambda: covariant_order(R2.e_x + R2.dx))

    raises(ValueError, lambda: contravariant_order(R2.e_x * R2.e_y))
    raises(ValueError, lambda: covariant_order(R2.dx * R2.dy))
Beispiel #3
0
def test_correct_arguments():
    raises(ValueError, lambda : R2.e_x(R2.e_x))
    raises(ValueError, lambda : R2.e_x(R2.dx))

    raises(ValueError, lambda : Commutator(R2.e_x, R2.x))
    raises(ValueError, lambda : Commutator(R2.dx, R2.e_x))

    raises(ValueError, lambda : Differential(Differential(R2.e_x)))

    raises(ValueError, lambda : R2.dx(R2.x))

    raises(ValueError, lambda : TensorProduct(R2.e_x, R2.dx))

    raises(ValueError, lambda : LieDerivative(R2.dx, R2.dx))
    raises(ValueError, lambda : LieDerivative(R2.x, R2.dx))

    raises(ValueError, lambda : CovarDerivativeOp(R2.dx, []))
    raises(ValueError, lambda : CovarDerivativeOp(R2.x, []))

    a = Symbol('a')
    raises(ValueError, lambda : intcurve_series(R2.dx, a, R2_r.point([1,2])))
    raises(ValueError, lambda : intcurve_series(R2.x, a, R2_r.point([1,2])))

    raises(ValueError, lambda : intcurve_diffequ(R2.dx, a, R2_r.point([1,2])))
    raises(ValueError, lambda : intcurve_diffequ(R2.x, a, R2_r.point([1,2])))

    raises(ValueError, lambda : contravariant_order(R2.e_x + R2.dx))
    raises(ValueError, lambda : covariant_order(R2.e_x + R2.dx))

    raises(ValueError, lambda : contravariant_order(R2.e_x*R2.e_y))
    raises(ValueError, lambda : covariant_order(R2.dx*R2.dy))
def test_functional_diffgeom_ch2():
    x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', real=True)
    x, y = symbols('x, y', real=True)
    f = Function('f')

    assert (R2_p.point_to_coords(R2_r.point([x0, y0])) ==
           Matrix([sqrt(x0**2 + y0**2), atan2(y0, x0)]))
    assert (R2_r.point_to_coords(R2_p.point([r0, theta0])) ==
           Matrix([r0*cos(theta0), r0*sin(theta0)]))

    assert R2_p.jacobian(R2_r, [r0, theta0]) == Matrix(
        [[cos(theta0), -r0*sin(theta0)], [sin(theta0), r0*cos(theta0)]])

    field = f(R2.x, R2.y)
    p1_in_rect = R2_r.point([x0, y0])
    p1_in_polar = R2_p.point([sqrt(x0**2 + y0**2), atan2(y0, x0)])
    assert field.rcall(p1_in_rect) == f(x0, y0)
    assert field.rcall(p1_in_polar) == f(x0, y0)

    p_r = R2_r.point([x0, y0])
    p_p = R2_p.point([r0, theta0])
    assert R2.x(p_r) == x0
    assert R2.x(p_p) == r0*cos(theta0)
    assert R2.r(p_p) == r0
    assert R2.r(p_r) == sqrt(x0**2 + y0**2)
    assert R2.theta(p_r) == atan2(y0, x0)

    h = R2.x*R2.r**2 + R2.y**3
    assert h.rcall(p_r) == x0*(x0**2 + y0**2) + y0**3
    assert h.rcall(p_p) == r0**3*sin(theta0)**3 + r0**3*cos(theta0)
def test_functional_diffgeom_ch3():
    x0, y0 = symbols('x0, y0', real=True)
    x, y, t = symbols('x, y, t', real=True)
    f = Function('f')
    b1 = Function('b1')
    b2 = Function('b2')
    p_r = R2_r.point([x0, y0])

    s_field = f(R2.x, R2.y)
    v_field = b1(R2.x)*R2.e_x + b2(R2.y)*R2.e_y
    assert v_field.rcall(s_field).rcall(p_r).doit() == b1(
        x0)*Derivative(f(x0, y0), x0) + b2(y0)*Derivative(f(x0, y0), y0)

    assert R2.e_x(R2.r**2).rcall(p_r) == 2*x0
    v = R2.e_x + 2*R2.e_y
    s = R2.r**2 + 3*R2.x
    assert v.rcall(s).rcall(p_r).doit() == 2*x0 + 4*y0 + 3

    circ = -R2.y*R2.e_x + R2.x*R2.e_y
    series = intcurve_series(circ, t, R2_r.point([1, 0]), coeffs=True)
    series_x, series_y = zip(*series)
    assert all(
        [term == cos(t).taylor_term(i, t) for i, term in enumerate(series_x)])
    assert all(
        [term == sin(t).taylor_term(i, t) for i, term in enumerate(series_y)])
def test_functional_diffgeom_ch3():
    x0, y0 = symbols('x0, y0', real=True)
    x, y, t = symbols('x, y, t', real=True)
    f = Function('f')
    b1 = Function('b1')
    b2 = Function('b2')
    p_r = R2_r.point([x0, y0])

    s_field = f(R2.x, R2.y)
    v_field = b1(R2.x)*R2.e_x + b2(R2.y)*R2.e_y
    assert v_field.rcall(s_field).rcall(p_r).doit() == b1(
        x0)*Derivative(f(x0, y0), x0) + b2(y0)*Derivative(f(x0, y0), y0)

    assert R2.e_x(R2.r**2).rcall(p_r) == 2*x0
    v = R2.e_x + 2*R2.e_y
    s = R2.r**2 + 3*R2.x
    assert v.rcall(s).rcall(p_r).doit() == 2*x0 + 4*y0 + 3

    circ = -R2.y*R2.e_x + R2.x*R2.e_y
    series = intcurve_series(circ, t, R2_r.point([1, 0]), coeffs=True)
    series_x, series_y = zip(*series)
    assert all(
        [term == cos(t).taylor_term(i, t) for i, term in enumerate(series_x)])
    assert all(
        [term == sin(t).taylor_term(i, t) for i, term in enumerate(series_y)])
Beispiel #7
0
def test_simplify():
    x, y = R2_r.coord_functions()
    dx, dy = R2_r.base_oneforms()
    ex, ey = R2_r.base_vectors()
    assert simplify(x) == x
    assert simplify(x*y) == x*y
    assert simplify(dx*dy) == dx*dy
    assert simplify(ex*ey) == ex*ey
    assert ((1-x)*dx)/(1-x)**2 == dx/(1-x)
Beispiel #8
0
def test_simplify():
    x, y = R2_r.coord_functions()
    dx, dy = R2_r.base_oneforms()
    ex, ey = R2_r.base_vectors()
    assert simplify(x) == x
    assert simplify(x * y) == x * y
    assert simplify(dx * dy) == dx * dy
    assert simplify(ex * ey) == ex * ey
    assert ((1 - x) * dx) / (1 - x)**2 == dx / (1 - x)
Beispiel #9
0
def test_R2():
    x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', real=True)
    point_r = R2_r.point([x0, y0])
    point_p = R2_p.point([r0, theta0])

    # r**2 = x**2 + y**2
    assert (R2.r**2 - R2.x**2 - R2.y**2)(point_r) == 0
    assert trigsimp( (R2.r**2 - R2.x**2 - R2.y**2)(point_p) ) == 0
    assert trigsimp(R2.e_r(R2.x**2+R2.y**2)(point_p).doit()) == 2*r0

    # polar->rect->polar == Id
    a, b = symbols('a b', positive=True)
    m = Matrix([[a], [b]])
    #TODO assert m == R2_r.coord_tuple_transform_to(R2_p, R2_p.coord_tuple_transform_to(R2_r, [a, b])).applyfunc(simplify)
    assert m == R2_p.coord_tuple_transform_to(R2_r, R2_r.coord_tuple_transform_to(R2_p, m)).applyfunc(simplify)
def test_functional_diffgeom_ch4():
    x0, y0, theta0 = symbols('x0, y0, theta0', real=True)
    x, y, r, theta = symbols('x, y, r, theta', real=True)
    r0 = symbols('r0', positive=True)
    f = Function('f')
    b1 = Function('b1')
    b2 = Function('b2')
    p_r = R2_r.point([x0, y0])
    p_p = R2_p.point([r0, theta0])

    f_field = b1(R2.x,R2.y)*R2.dx + b2(R2.x,R2.y)*R2.dy
    assert f_field(R2.e_x)(p_r) == b1(x0, y0)
    assert f_field(R2.e_y)(p_r) == b2(x0, y0)

    s_field_r = f(R2.x,R2.y)
    df = Differential(s_field_r)
    assert df(R2.e_x)(p_r).doit() == Derivative(f(x0, y0), x0)
    assert df(R2.e_y)(p_r).doit() == Derivative(f(x0, y0), y0)

    s_field_p = f(R2.r,R2.theta)
    df = Differential(s_field_p)
    assert trigsimp(df(R2.e_x)(p_p).doit()) == cos(theta0)*Derivative(f(r0, theta0), r0) - sin(theta0)*Derivative(f(r0, theta0), theta0)/r0
    assert trigsimp(df(R2.e_y)(p_p).doit()) == sin(theta0)*Derivative(f(r0, theta0), r0) + cos(theta0)*Derivative(f(r0, theta0), theta0)/r0

    assert R2.dx(R2.e_x)(p_r) == 1
    assert R2.dx(R2.e_y)(p_r) == 0

    circ = -R2.y*R2.e_x + R2.x*R2.e_y
    assert R2.dx(circ)(p_r).doit() == -y0
    assert R2.dy(circ)(p_r) == x0
    assert R2.dr(circ)(p_r) == 0
    assert simplify(R2.dtheta(circ)(p_r)) == 1

    assert (circ - R2.e_theta)(s_field_r)(p_r) == 0
Beispiel #11
0
def test_intcurve_diffequ():
    t = symbols('t')
    start_point = R2_r.point([1, 0])
    vector_field = -R2.y*R2.e_x + R2.x*R2.e_y
    equations, init_cond = intcurve_diffequ(vector_field, t, start_point)
    assert str(equations) == '[f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)]'
    assert str(init_cond) == '[f_0(0) - 1, f_1(0)]'
    equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p)
    assert str(equations) == '[Derivative(f_0(t), t), Derivative(f_1(t), t) - 1]'
    assert str(init_cond) == '[f_0(0) - 1, f_1(0)]'
def test_functional_diffgeom_ch4():
    x0, y0, theta0 = symbols('x0, y0, theta0', real=True)
    x, y, r, theta = symbols('x, y, r, theta', real=True)
    r0 = symbols('r0', positive=True)
    f = Function('f')
    b1 = Function('b1')
    b2 = Function('b2')
    p_r = R2_r.point([x0, y0])
    p_p = R2_p.point([r0, theta0])

    f_field = b1(R2.x, R2.y)*R2.dx + b2(R2.x, R2.y)*R2.dy
    assert f_field.rcall(R2.e_x).rcall(p_r) == b1(x0, y0)
    assert f_field.rcall(R2.e_y).rcall(p_r) == b2(x0, y0)

    s_field_r = f(R2.x, R2.y)
    df = Differential(s_field_r)
    assert df(R2.e_x).rcall(p_r).doit() == Derivative(f(x0, y0), x0)
    assert df(R2.e_y).rcall(p_r).doit() == Derivative(f(x0, y0), y0)

    s_field_p = f(R2.r, R2.theta)
    df = Differential(s_field_p)
    assert trigsimp(df(R2.e_x).rcall(p_p).doit()) == (
        cos(theta0)*Derivative(f(r0, theta0), r0) -
        sin(theta0)*Derivative(f(r0, theta0), theta0)/r0)
    assert trigsimp(df(R2.e_y).rcall(p_p).doit()) == (
        sin(theta0)*Derivative(f(r0, theta0), r0) +
        cos(theta0)*Derivative(f(r0, theta0), theta0)/r0)

    assert R2.dx(R2.e_x).rcall(p_r) == 1
    assert R2.dx(R2.e_x) == 1
    assert R2.dx(R2.e_y).rcall(p_r) == 0
    assert R2.dx(R2.e_y) == 0

    circ = -R2.y*R2.e_x + R2.x*R2.e_y
    assert R2.dx(circ).rcall(p_r).doit() == -y0
    assert R2.dy(circ).rcall(p_r) == x0
    assert R2.dr(circ).rcall(p_r) == 0
    assert simplify(R2.dtheta(circ).rcall(p_r)) == 1

    assert (circ - R2.e_theta).rcall(s_field_r).rcall(p_r) == 0
rect = CoordSystem('rect', p)
polar = CoordSystem('polar', p)
polar.connect_to(rect, [r, theta], [r*cos(theta), r*sin(theta)])
# Define a point using coordinates from one of the coordinate systems:
p = Point(polar, [r, 3*pi/4])
p.coords()
p.coords(rect)
# Use the predefined R2 manifold, setup some boilerplate.
from sympy import symbols, pi, Function
from sympy.diffgeom.rn import R2, R2_p, R2_r
from sympy.diffgeom import BaseVectorField
from sympy import pprint
x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0')
# Points to be used as arguments for the field:
point_p = R2_p.point([r0, theta0])
point_r = R2_r.point([x0, y0])
#Scalar field to operate on:
g = Function('g')
s_field = g(R2.x, R2.y)
s_field.rcall(point_r)
s_field.rcall(point_p)
#Vector field:
v = BaseVectorField(R2_r, 1)
pprint(v(s_field))
pprint(v(s_field).rcall(point_r).doit())
pprint(v(s_field).rcall(point_p).doit())
# Differential Examples
# scalar 0 forms
from sympy import Function
from sympy.diffgeom.rn import R2
from sympy.diffgeom import Differential
Beispiel #14
0
def test_point():
    x, y = symbols("x, y")
    p = R2_r.point([x, y])
    # TODO assert p.free_symbols() == set([x, y])
    assert p.coords(R2_r) == p.coords() == Matrix([x, y])
    assert p.coords(R2_p) == Matrix([sqrt(x**2 + y**2), atan2(y, x)])
Beispiel #15
0
from printing import print_coeffs, print_matrix, matrix_row_strings
Rat = sym.Rational
Mat = sym.Matrix
Sym = sym.symbols
Half = Rat(1, 2)
Third = Rat(1, 3)
Quarter = Rat(1, 4)


def Rec(n):
    return Rat(1, n)


from sympy.diffgeom.rn import R2_r
from sympy.diffgeom import WedgeProduct
ex, ey = R2_r.base_vectors()
dx, dy = R2_r.base_oneforms()
print(WedgeProduct(dx, dy))
print(WedgeProduct(dx, dy)(ex, ey))

J = Mat([[Sym("J_{}{}".format(i, j)) for j in range(1, 3)]
         for i in range(1, 4)])
print_matrix(J)
print_matrix(J.T * J)


class k_vector:
    def __init__(self, n):
        self.n = n

Beispiel #16
0
def test_point():
    x, y = symbols('x, y')
    p = R2_r.point([x, y])
    #TODO assert p.free_symbols() == set([x, y])
    assert p.coords(R2_r) == p.coords() == Matrix([x, y])
    assert p.coords(R2_p) == Matrix([sqrt(x**2+y**2), atan2(y,x)])
Beispiel #17
0
def test_point():
    x, y = symbols('x, y')
    p = R2_r.point([x, y])
    assert p.free_symbols == {x, y}
    assert p.coords(R2_r) == p.coords() == Matrix([x, y])
    assert p.coords(R2_p) == Matrix([sqrt(x**2 + y**2), atan2(y, x)])