Beispiel #1
0
    def eval(cls, n, z):
        n, z = list(map(sympify, (n, z)))
        from sympy import unpolarify

        if n.is_integer:
            if n.is_nonnegative:
                nz = unpolarify(z)
                if z != nz:
                    return polygamma(n, nz)

            if n == -1:
                return loggamma(z)
            else:
                if z.is_Number:
                    if z is S.NaN:
                        return S.NaN
                    elif z is S.Infinity:
                        if n.is_Number:
                            if n is S.Zero:
                                return S.Infinity
                            else:
                                return S.Zero
                    elif z.is_Integer:
                        if z.is_nonpositive:
                            return S.ComplexInfinity
                        else:
                            if n is S.Zero:
                                return -S.EulerGamma + C.harmonic(z - 1, 1)
                            elif n.is_odd:
                                return (-1) ** (n + 1) * C.factorial(n) * zeta(n + 1, z)

        if n == 0:
            if z is S.NaN:
                return S.NaN
            elif z.is_Rational:
                # TODO actually *any* n/m can be done, but that is messy
                lookup = {
                    S(1) / 2: -2 * log(2) - S.EulerGamma,
                    S(1) / 3: -S.Pi / 2 / sqrt(3) - 3 * log(3) / 2 - S.EulerGamma,
                    S(1) / 4: -S.Pi / 2 - 3 * log(2) - S.EulerGamma,
                    S(3) / 4: -3 * log(2) - S.EulerGamma + S.Pi / 2,
                    S(2) / 3: -3 * log(3) / 2 + S.Pi / 2 / sqrt(3) - S.EulerGamma,
                }
                if z > 0:
                    n = floor(z)
                    z0 = z - n
                    if z0 in lookup:
                        return lookup[z0] + Add(*[1 / (z0 + k) for k in range(n)])
                elif z < 0:
                    n = floor(1 - z)
                    z0 = z + n
                    if z0 in lookup:
                        return lookup[z0] - Add(*[1 / (z0 - 1 - k) for k in range(n)])
            elif z in (S.Infinity, S.NegativeInfinity):
                return S.Infinity
            else:
                t = z.extract_multiplicatively(S.ImaginaryUnit)
                if t in (S.Infinity, S.NegativeInfinity):
                    return S.Infinity
def test_issue_8413():
    x = Symbol('x', real=True)
    # we can't evaluate in general because non-reals are not
    # comparable: Min(floor(3.2 + I), 3.2 + I) -> ValueError
    assert Min(floor(x), x) == floor(x)
    assert Min(ceiling(x), x) == x
    assert Max(floor(x), x) == x
    assert Max(ceiling(x), x) == ceiling(x)
Beispiel #3
0
def test_slicing():
    assert X[1:5, 2:4] == MatrixSlice(X, (1, 5), (2, 4))
    assert X[1, 2:4] == MatrixSlice(X, 1, (2, 4))
    assert X[1:5, :].shape == (4, X.shape[1])
    assert X[:, 1:5].shape == (X.shape[0], 4)

    assert X[::2, ::2].shape == (floor(n/2), floor(m/2))
    assert X[2, :] == MatrixSlice(X, 2, (0, m))
Beispiel #4
0
 def as_relational(self, x):
     """Rewrite a Range in terms of equalities and logic operators. """
     from sympy.functions.elementary.integers import floor
     return And(
         Eq(x, floor(x)),
         x >= self.inf if self.inf in self else x > self.inf,
         x <= self.sup if self.sup in self else x < self.sup)
Beispiel #5
0
def real_root(arg, n=None):
    """Return the real nth-root of arg if possible. If n is omitted then
    all instances of (-n)**(1/odd) will be changed to -n**(1/odd); this
    will only create a real root of a principle root -- the presence of
    other factors may cause the result to not be real.

    Examples
    ========

    >>> from sympy import root, real_root, Rational
    >>> from sympy.abc import x, n

    >>> real_root(-8, 3)
    -2
    >>> root(-8, 3)
    2*(-1)**(1/3)
    >>> real_root(_)
    -2

    If one creates a non-principle root and applies real_root, the
    result will not be real (so use with caution):

    >>> root(-8, 3, 2)
    -2*(-1)**(2/3)
    >>> real_root(_)
    -2*(-1)**(2/3)


    See Also
    ========

    sympy.polys.rootoftools.rootof
    sympy.core.power.integer_nthroot
    root, sqrt
    """
    from sympy import im, Piecewise
    if n is not None:
        try:
            n = as_int(n)
            arg = sympify(arg)
            if arg.is_positive or arg.is_negative:
                rv = root(arg, n)
            else:
                raise ValueError
        except ValueError:
            return root(arg, n)*Piecewise(
                (S.One, ~Equality(im(arg), 0)),
                (Pow(S.NegativeOne, S.One/n)**(2*floor(n/2)), And(
                    Equality(n % 2, 1),
                    arg < 0)),
                (S.One, True))
    else:
        rv = sympify(arg)
    n1pow = Transform(lambda x: -(-x.base)**x.exp,
                      lambda x:
                      x.is_Pow and
                      x.base.is_negative and
                      x.exp.is_Rational and
                      x.exp.p == 1 and x.exp.q % 2)
    return rv.xreplace(n1pow)
Beispiel #6
0
 def _eval_rewrite_as_polynomial(self, n, m, x, **kwargs):
     from sympy import Sum
     k = Dummy("k")
     kern = factorial(2 * n - 2 * k) / (
         2**n * factorial(n - k) * factorial(k) *
         factorial(n - 2 * k - m)) * (-1)**k * x**(n - m - 2 * k)
     return (1 - x**2)**(m / 2) * Sum(kern, (k, 0, floor((n - m) * S.Half)))
Beispiel #7
0
def test_tribonacci():
    assert [tribonacci(n) for n in range(8)] == [0, 1, 1, 2, 4, 7, 13, 24]
    assert tribonacci(100) == 98079530178586034536500564

    assert tribonacci(0, x) == 0
    assert tribonacci(1, x) == 1
    assert tribonacci(2, x) == x**2
    assert tribonacci(3, x) == x**4 + x
    assert tribonacci(4, x) == x**6 + 2 * x**3 + 1
    assert tribonacci(5, x) == x**8 + 3 * x**5 + 3 * x**2

    n = Dummy('n')
    assert tribonacci(n).limit(n, S.Infinity) is S.Infinity

    w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2
    a = (1 + cbrt(19 + 3 * sqrt(33)) + cbrt(19 - 3 * sqrt(33))) / 3
    b = (1 + w * cbrt(19 + 3 * sqrt(33)) + w**2 * cbrt(19 - 3 * sqrt(33))) / 3
    c = (1 + w**2 * cbrt(19 + 3 * sqrt(33)) + w * cbrt(19 - 3 * sqrt(33))) / 3
    assert tribonacci(n).rewrite(sqrt) == \
      (a**(n + 1)/((a - b)*(a - c))
      + b**(n + 1)/((b - a)*(b - c))
      + c**(n + 1)/((c - a)*(c - b)))
    assert tribonacci(n).rewrite(sqrt).subs(n, 4).simplify() == tribonacci(4)
    assert tribonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \
        tribonacci(10)
    assert tribonacci(n).rewrite(TribonacciConstant) == floor(
        3 * TribonacciConstant**n * (102 * sqrt(33) + 586)**Rational(1, 3) /
        (-2 * (102 * sqrt(33) + 586)**Rational(1, 3) + 4 +
         (102 * sqrt(33) + 586)**Rational(2, 3)) + S.Half)
    raises(ValueError, lambda: tribonacci(-1, x))
Beispiel #8
0
    def _eval_expand_func(self, **hints):
        from sympy import Sum
        n = self.args[0]
        m = self.args[1] if len(self.args) == 2 else 1

        if m == S.One:
            if n.is_Add:
                off = n.args[0]
                nnew = n - off
                if off.is_Integer and off.is_positive:
                    result = [S.One/(nnew + i) for i in range(off, 0, -1)] + [harmonic(nnew)]
                    return Add(*result)
                elif off.is_Integer and off.is_negative:
                    result = [-S.One/(nnew + i) for i in range(0, off, -1)] + [harmonic(nnew)]
                    return Add(*result)

            if n.is_Rational:
                # Expansions for harmonic numbers at general rational arguments (u + p/q)
                # Split n as u + p/q with p < q
                p, q = n.as_numer_denom()
                u = p // q
                p = p - u * q
                if u.is_nonnegative and p.is_positive and q.is_positive and p < q:
                    k = Dummy("k")
                    t1 = q * Sum(1 / (q * k + p), (k, 0, u))
                    t2 = 2 * Sum(cos((2 * pi * p * k) / S(q)) *
                                   log(sin((pi * k) / S(q))),
                                   (k, 1, floor((q - 1) / S(2))))
                    t3 = (pi / 2) * cot((pi * p) / q) + log(2 * q)
                    return t1 + t2 - t3

        return self
Beispiel #9
0
    def _eval_expand_func(self, **hints):
        from sympy import Sum
        n = self.args[0]
        m = self.args[1] if len(self.args) == 2 else 1

        if m == S.One:
            if n.is_Add:
                off = n.args[0]
                nnew = n - off
                if off.is_Integer and off.is_positive:
                    result = [S.One / (nnew + i)
                              for i in range(off, 0, -1)] + [harmonic(nnew)]
                    return Add(*result)
                elif off.is_Integer and off.is_negative:
                    result = [-S.One / (nnew + i)
                              for i in range(0, off, -1)] + [harmonic(nnew)]
                    return Add(*result)

            if n.is_Rational:
                # Expansions for harmonic numbers at general rational arguments (u + p/q)
                # Split n as u + p/q with p < q
                p, q = n.as_numer_denom()
                u = p // q
                p = p - u * q
                if u.is_nonnegative and p.is_positive and q.is_positive and p < q:
                    k = Dummy("k")
                    t1 = q * Sum(1 / (q * k + p), (k, 0, u))
                    t2 = 2 * Sum(
                        cos((2 * pi * p * k) / S(q)) * log(sin(
                            (pi * k) / S(q))), (k, 1, floor((q - 1) / S(2))))
                    t3 = (pi / 2) * cot((pi * p) / q) + log(2 * q)
                    return t1 + t2 - t3

        return self
Beispiel #10
0
def real_root(arg, n=None):
    """Return the real nth-root of arg if possible. If n is omitted then
    all instances of (-n)**(1/odd) will be changed to -n**(1/odd); this
    will only create a real root of a principle root -- the presence of
    other factors may cause the result to not be real.

    Examples
    ========

    >>> from sympy import root, real_root, Rational
    >>> from sympy.abc import x, n

    >>> real_root(-8, 3)
    -2
    >>> root(-8, 3)
    2*(-1)**(1/3)
    >>> real_root(_)
    -2

    If one creates a non-principle root and applies real_root, the
    result will not be real (so use with caution):

    >>> root(-8, 3, 2)
    -2*(-1)**(2/3)
    >>> real_root(_)
    -2*(-1)**(2/3)


    See Also
    ========

    sympy.polys.rootoftools.RootOf
    sympy.core.power.integer_nthroot
    root, sqrt
    """
    from sympy import im, Piecewise
    if n is not None:
        try:
            n = as_int(n)
            arg = sympify(arg)
            if arg.is_positive or arg.is_negative:
                rv = root(arg, n)
            else:
                raise ValueError
        except ValueError:
            return root(arg, n)*Piecewise(
                (S.One, ~Equality(im(arg), 0)),
                (Pow(S.NegativeOne, S.One/n)**(2*floor(n/2)), And(
                    Equality(n % 2, 1),
                    arg < 0)),
                (S.One, True))
    else:
        rv = sympify(arg)
    n1pow = Transform(lambda x: -(-x.base)**x.exp,
                      lambda x:
                      x.is_Pow and
                      x.base.is_negative and
                      x.exp.is_Rational and
                      x.exp.p == 1 and x.exp.q % 2)
    return rv.xreplace(n1pow)
Beispiel #11
0
    def _intersect(self, other):
        from sympy.functions.elementary.integers import floor, ceiling
        from sympy.functions.elementary.miscellaneous import Min, Max
        if other.is_Interval:
            osup = other.sup
            oinf = other.inf
            # if other is [0, 10) we can only go up to 9
            if osup.is_integer and other.right_open:
                osup -= 1
            if oinf.is_integer and other.left_open:
                oinf += 1

            # Take the most restrictive of the bounds set by the two sets
            # round inwards
            inf = ceiling(Max(self.inf, oinf))
            sup = floor(Min(self.sup, osup))
            # if we are off the sequence, get back on
            if inf.is_finite and self.inf.is_finite:
                off = (inf - self.inf) % self.step
            else:
                off = S.Zero
            if off:
                inf += self.step - off

            return Range(inf, sup + 1, self.step)

        if other == S.Naturals:
            return self._intersect(Interval(1, S.Infinity))

        if other == S.Integers:
            return self

        return None
Beispiel #12
0
 def sample(self):
     """ A random realization from the distribution """
     icdf = self._inverse_cdf_expression()
     while True:
         sample_ = floor(list(icdf(random.uniform(0, 1)))[0])
         if sample_ >= self.set.inf:
             return sample_
Beispiel #13
0
 def sample(self):
     """ A random realization from the distribution """
     icdf = self._inverse_cdf_expression()
     while True:
         sample_ = floor(list(icdf(random.uniform(0, 1)))[0])
         if sample_ >= self.set.inf:
             return sample_
Beispiel #14
0
def test_issue_17681():
    class identity_func(Function):
        def _eval_evalf(self, *args, **kwargs):
            return self.args[0].evalf(*args, **kwargs)

    assert floor(identity_func(S(0))) == 0
    assert get_integer_part(S(0), 1, {}, True) == (0, 0)
Beispiel #15
0
    def _intersect(self, other):
        from sympy.functions.elementary.integers import floor, ceiling
        from sympy.functions.elementary.miscellaneous import Min, Max
        if other.is_Interval:
            osup = other.sup
            oinf = other.inf
            # if other is [0, 10) we can only go up to 9
            if osup.is_integer and other.right_open:
                osup -= 1
            if oinf.is_integer and other.left_open:
                oinf += 1

            # Take the most restrictive of the bounds set by the two sets
            # round inwards
            inf = ceiling(Max(self.inf, oinf))
            sup = floor(Min(self.sup, osup))
            # if we are off the sequence, get back on
            off = (inf - self.inf) % self.step
            if off:
                inf += self.step - off

            return Range(inf, sup + 1, self.step)

        if other == S.Naturals:
            return self._intersect(Interval(1, S.Infinity))

        if other == S.Integers:
            return self

        return None
Beispiel #16
0
    def _intersect(self, other):
        if other.is_Interval:
            osup = other.sup
            oinf = other.inf
            # if other is [0, 10) we can only go up to 9
            if osup.is_integer and other.right_open:
                osup -= 1
            if oinf.is_integer and other.left_open:
                oinf += 1

            # Take the most restrictive of the bounds set by the two sets
            # round inwards
            inf = ceiling(Max(self.inf, oinf))
            sup = floor(Min(self.sup, osup))
            # if we are off the sequence, get back on
            off = (inf - self.inf) % self.step
            if off:
                inf += self.step - off

            return Range(inf, sup + 1, self.step)

        if other == S.Naturals:
            return self._intersect(Interval(1, oo))

        if other == S.Integers:
            return self

        return None
Beispiel #17
0
def test_floor_requires_robust_assumptions():
    assert limit(floor(sin(x)), x, 0, "+") == 0
    assert limit(floor(sin(x)), x, 0, "-") == -1
    assert limit(floor(cos(x)), x, 0, "+") == 0
    assert limit(floor(cos(x)), x, 0, "-") == 0
    assert limit(floor(5 + sin(x)), x, 0, "+") == 5
    assert limit(floor(5 + sin(x)), x, 0, "-") == 4
    assert limit(floor(5 + cos(x)), x, 0, "+") == 5
    assert limit(floor(5 + cos(x)), x, 0, "-") == 5
Beispiel #18
0
 def _intersect(self, other):
     from sympy.functions.elementary.integers import floor, ceiling
     if other is Interval(S.NegativeInfinity, S.Infinity) or other is S.Reals:
         return self
     elif other.is_Interval:
         s = Range(ceiling(other.left), floor(other.right) + 1)
         return s.intersect(other)  # take out endpoints if open interval
     return None
Beispiel #19
0
    def _eval_rewrite_as_polynomial(self, n, x, **kwargs):
        from sympy import Sum

        k = Dummy("k")
        kern = (
            (-1) ** k / (factorial(k) * factorial(n - 2 * k)) * (2 * x) ** (n - 2 * k)
        )
        return factorial(n) * Sum(kern, (k, 0, floor(n / 2)))
Beispiel #20
0
def _intlike_interval(a, b):
    try:
        if b._inf is S.NegativeInfinity and b._sup is S.Infinity:
            return a
        s = Range(max(a.inf, ceiling(b.left)), floor(b.right) + 1)
        return intersection_sets(s, b)  # take out endpoints if open interval
    except ValueError:
        return None
Beispiel #21
0
 def _intersect(self, other):
     from sympy.functions.elementary.integers import floor, ceiling
     if other is Interval(S.NegativeInfinity, S.Infinity) or other is S.Reals:
         return self
     elif other.is_Interval:
         s = Range(ceiling(other.left), floor(other.right) + 1)
         return s.intersect(other)  # take out endpoints if open interval
     return None
Beispiel #22
0
    def _eval_expand_func(self, **hints):
        n, z = self.args

        if n.is_Integer and n.is_nonnegative:
            if z.is_Add:
                coeff = z.args[0]
                if coeff.is_Integer:
                    e = -(n + 1)
                    if coeff > 0:
                        tail = Add(*[Pow(
                            z - i, e) for i in range(1, int(coeff) + 1)])
                    else:
                        tail = -Add(*[Pow(
                            z + i, e) for i in range(0, int(-coeff))])
                    return polygamma(n, z - coeff) + (-1)**n*factorial(n)*tail

            elif z.is_Mul:
                coeff, z = z.as_two_terms()
                if coeff.is_Integer and coeff.is_positive:
                    tail = [ polygamma(n, z + Rational(
                        i, coeff)) for i in range(0, int(coeff)) ]
                    if n == 0:
                        return Add(*tail)/coeff + log(coeff)
                    else:
                        return Add(*tail)/coeff**(n + 1)
                z *= coeff

        if n == 0 and z.is_Rational:
            p, q = z.as_numer_denom()

            # Reference:
            #   Values of the polygamma functions at rational arguments, J. Choi, 2007
            part_1 = -S.EulerGamma - pi * cot(p * pi / q) / 2 - log(q) + Add(
                *[cos(2 * k * pi * p / q) * log(2 * sin(k * pi / q)) for k in range(1, q)])

            if z > 0:
                n = floor(z)
                z0 = z - n
                return part_1 + Add(*[1 / (z0 + k) for k in range(n)])
            elif z < 0:
                n = floor(1 - z)
                z0 = z + n
                return part_1 - Add(*[1 / (z0 - 1 - k) for k in range(n)])

        return polygamma(n, z)
Beispiel #23
0
    def _eval_expand_func(self, **hints):
        n, z = self.args

        if n.is_Integer and n.is_nonnegative:
            if z.is_Add:
                coeff = z.args[0]
                if coeff.is_Integer:
                    e = -(n + 1)
                    if coeff > 0:
                        tail = Add(*[Pow(
                            z - i, e) for i in range(1, int(coeff) + 1)])
                    else:
                        tail = -Add(*[Pow(
                            z + i, e) for i in range(0, int(-coeff))])
                    return polygamma(n, z - coeff) + (-1)**n*factorial(n)*tail

            elif z.is_Mul:
                coeff, z = z.as_two_terms()
                if coeff.is_Integer and coeff.is_positive:
                    tail = [ polygamma(n, z + Rational(
                        i, coeff)) for i in range(0, int(coeff)) ]
                    if n == 0:
                        return Add(*tail)/coeff + log(coeff)
                    else:
                        return Add(*tail)/coeff**(n + 1)
                z *= coeff

        if n == 0 and z.is_Rational:
            p, q = z.as_numer_denom()

            # Reference:
            #   Values of the polygamma functions at rational arguments, J. Choi, 2007
            part_1 = -S.EulerGamma - pi * cot(p * pi / q) / 2 - log(q) + Add(
                *[cos(2 * k * pi * p / q) * log(2 * sin(k * pi / q)) for k in range(1, q)])

            if z > 0:
                n = floor(z)
                z0 = z - n
                return part_1 + Add(*[1 / (z0 + k) for k in range(n)])
            elif z < 0:
                n = floor(1 - z)
                z0 = z + n
                return part_1 - Add(*[1 / (z0 - 1 - k) for k in range(n)])

        return polygamma(n, z)
Beispiel #24
0
def intersection_sets(a, b):
    try:
        from sympy.functions.elementary.integers import floor, ceiling
        if b._inf is S.NegativeInfinity and b._sup is S.Infinity:
            return a
        s = Range(ceiling(b.left), floor(b.right) + 1)
        return intersection_sets(s, b)  # take out endpoints if open interval
    except ValueError:
        return None
Beispiel #25
0
 def size(self):
     if self.start == self.stop:
         return S.Zero
     dif = self.stop - self.start
     n = dif / self.step
     if n.is_infinite:
         return S.Infinity
     if n.is_extended_nonnegative and all(i.is_integer for i in self.args):
         return abs(floor(n))
     raise ValueError('Invalid method for symbolic Range')
Beispiel #26
0
def apply(n):
    X = Symbol.X(integer=True, random=True)
    if n.is_even:
        return Equality(Expectation[X:DieDistribution(n)](X | (X > n / 2)),
                        (3 * n + 2) / 4)
    elif n.is_odd:
        return Equality(Expectation[X:DieDistribution(n)](X | (X > n / 2)),
                        (3 * n + 1) / 4)
    else:
        return Equality(Expectation[X:DieDistribution(n)](X | (X > n / 2)),
                        n / 2 + floor(n / 2) / 2)
Beispiel #27
0
    def _eval_rewrite_as_polynomial(self, n, x, **kwargs):
        from sympy import Sum

        k = Dummy("k")
        kern = (
            S.NegativeOne ** k
            * factorial(n - k)
            * (2 * x) ** (n - 2 * k)
            / (factorial(k) * factorial(n - 2 * k))
        )
        return Sum(kern, (k, 0, floor(n / 2)))
Beispiel #28
0
 def sample(self, size=(1, ), library='scipy'):
     """ A random realization from the distribution"""
     if hasattr(self, '_sample_scipy') and import_module('scipy'):
         return self._sample_scipy(size=size)
     icdf = self._inverse_cdf_expression()
     samp_list = []
     while True:
         sample_ = floor(list(icdf(random.uniform(0, 1)))[0])
         if sample_ >= self.set.inf:
             samp_list.append(sample_)
         if len(samp_list) == size:
             return samp_list
Beispiel #29
0
def test_gegenbauer():
    n = Symbol("n")
    a = Symbol("a")

    assert gegenbauer(0, a, x) == 1
    assert gegenbauer(1, a, x) == 2 * a * x
    assert gegenbauer(2, a, x) == -a + x**2 * (2 * a**2 + 2 * a)
    assert gegenbauer(3, a, x) == \
        x**3*(4*a**3/3 + 4*a**2 + a*Rational(8, 3)) + x*(-2*a**2 - 2*a)

    assert gegenbauer(-1, a, x) == 0
    assert gegenbauer(n, S.Half, x) == legendre(n, x)
    assert gegenbauer(n, 1, x) == chebyshevu(n, x)
    assert gegenbauer(n, -1, x) == 0

    X = gegenbauer(n, a, x)
    assert isinstance(X, gegenbauer)

    assert gegenbauer(n, a, -x) == (-1)**n * gegenbauer(n, a, x)
    assert gegenbauer(n, a, 0) == 2**n*sqrt(pi) * \
        gamma(a + n/2)/(gamma(a)*gamma(-n/2 + S.Half)*gamma(n + 1))
    assert gegenbauer(n, a,
                      1) == gamma(2 * a + n) / (gamma(2 * a) * gamma(n + 1))

    assert gegenbauer(n, Rational(3, 4), -1) is zoo
    assert gegenbauer(n, Rational(1, 4),
                      -1) == (sqrt(2) * cos(pi * (n + S.One / 4)) *
                              gamma(n + S.Half) / (sqrt(pi) * gamma(n + 1)))

    m = Symbol("m", positive=True)
    assert gegenbauer(m, a, oo) == oo * RisingFactorial(a, m)
    assert unchanged(gegenbauer, n, a, oo)

    assert conjugate(gegenbauer(n,
                                a, x)) == gegenbauer(n, conjugate(a),
                                                     conjugate(x))

    _k = Dummy('k')

    assert diff(gegenbauer(n, a, x), n) == Derivative(gegenbauer(n, a, x), n)
    assert diff(gegenbauer(n, a, x), a).dummy_eq(
        Sum((2 * (-1)**(-_k + n) + 2) * (_k + a) * gegenbauer(_k, a, x) /
            ((-_k + n) * (_k + 2 * a + n)) +
            ((2 * _k + 2) / ((_k + 2 * a) * (2 * _k + 2 * a + 1)) + 2 /
             (_k + 2 * a + n)) * gegenbauer(n, a, x), (_k, 0, n - 1)))
    assert diff(gegenbauer(n, a, x), x) == 2 * a * gegenbauer(n - 1, a + 1, x)

    assert gegenbauer(n, a, x).rewrite('polynomial').dummy_eq(
        Sum((-1)**_k * (2 * x)**(-2 * _k + n) * RisingFactorial(a, -_k + n) /
            (factorial(_k) * factorial(-2 * _k + n)), (_k, 0, floor(n / 2))))

    raises(ArgumentIndexError, lambda: gegenbauer(n, a, x).fdiff(4))
Beispiel #30
0
def _compute_slice_size(idx: Any, axis_size: Any) -> Any:  # noqa: R701
    if idx is None:
        return axis_size
    if not isinstance(idx, sp.Tuple):
        return 1
    start, stop, step = idx
    if stop is None and axis_size is None:
        return None
    size = stop - start
    size = size if step == 1 or step is None else floor(size / step)
    if axis_size is not None and (size > axis_size) == True:  # noqa: E712
        return axis_size
    return size
Beispiel #31
0
def test_assoc_legendre():
    Plm = assoc_legendre
    Q = sqrt(1 - x**2)

    assert Plm(0, 0, x) == 1
    assert Plm(1, 0, x) == x
    assert Plm(1, 1, x) == -Q
    assert Plm(2, 0, x) == (3 * x**2 - 1) / 2
    assert Plm(2, 1, x) == -3 * x * Q
    assert Plm(2, 2, x) == 3 * Q**2
    assert Plm(3, 0, x) == (5 * x**3 - 3 * x) / 2
    assert Plm(3, 1,
               x).expand() == ((3 * (1 - 5 * x**2) / 2).expand() * Q).expand()
    assert Plm(3, 2, x) == 15 * x * Q**2
    assert Plm(3, 3, x) == -15 * Q**3

    # negative m
    assert Plm(1, -1, x) == -Plm(1, 1, x) / 2
    assert Plm(2, -2, x) == Plm(2, 2, x) / 24
    assert Plm(2, -1, x) == -Plm(2, 1, x) / 6
    assert Plm(3, -3, x) == -Plm(3, 3, x) / 720
    assert Plm(3, -2, x) == Plm(3, 2, x) / 120
    assert Plm(3, -1, x) == -Plm(3, 1, x) / 12

    n = Symbol("n")
    m = Symbol("m")
    X = Plm(n, m, x)
    assert isinstance(X, assoc_legendre)

    assert Plm(n, 0, x) == legendre(n, x)
    assert Plm(n, m, 0) == 2**m * sqrt(pi) / (gamma(-m / 2 - n / 2 + S.Half) *
                                              gamma(-m / 2 + n / 2 + 1))

    assert diff(Plm(m, n, x),
                x) == (m * x * assoc_legendre(m, n, x) -
                       (m + n) * assoc_legendre(m - 1, n, x)) / (x**2 - 1)

    _k = Dummy('k')
    assert Plm(m, n, x).rewrite("polynomial").dummy_eq(
        (1 - x**2)**(n / 2) * Sum(
            (-1)**_k * 2**(-m) * x**(-2 * _k + m - n) *
            factorial(-2 * _k + 2 * m) /
            (factorial(_k) * factorial(-_k + m) * factorial(-2 * _k + m - n)),
            (_k, 0, floor(m / 2 - n / 2))))
    assert conjugate(assoc_legendre(n, m, x)) == \
        assoc_legendre(n, conjugate(m), conjugate(x))
    raises(ValueError, lambda: Plm(0, 1, x))
    raises(ValueError, lambda: Plm(-1, 1, x))
    raises(ArgumentIndexError, lambda: Plm(n, m, x).fdiff(1))
    raises(ArgumentIndexError, lambda: Plm(n, m, x).fdiff(2))
    raises(ArgumentIndexError, lambda: Plm(n, m, x).fdiff(4))
Beispiel #32
0
    def eval(cls, arg):
        from sympy import atan

        arg = sympify(arg)

        if arg.is_Number:
            if arg is S.NaN:
                return S.NaN
            elif arg.is_zero:
                return S.Zero
            elif arg is S.One:
                return S.Infinity
            elif arg is S.NegativeOne:
                return S.NegativeInfinity
            elif arg is S.Infinity:
                return -S.ImaginaryUnit * atan(arg)
            elif arg is S.NegativeInfinity:
                return S.ImaginaryUnit * atan(-arg)
            elif arg.is_negative:
                return -cls(-arg)
        else:
            if arg is S.ComplexInfinity:
                from sympy.calculus.util import AccumBounds

                return S.ImaginaryUnit * AccumBounds(-S.Pi / 2, S.Pi / 2)

            i_coeff = arg.as_coefficient(S.ImaginaryUnit)

            if i_coeff is not None:
                return S.ImaginaryUnit * atan(i_coeff)
            else:
                if _coeff_isneg(arg):
                    return -cls(-arg)

        if arg.is_zero:
            return S.Zero

        if isinstance(arg, tanh) and arg.args[0].is_number:
            z = arg.args[0]
            if z.is_real:
                return z
            r, i = match_real_imag(z)
            if r is not None and i is not None:
                f = floor(2 * i / pi)
                even = f.is_even
                m = z - I * f * pi / 2
                if even is True:
                    return m
                elif even is False:
                    return m - I * pi / 2
Beispiel #33
0
 def eval_prob(self, _domain):
     if isinstance(_domain, Range):
         n = symbols('n')
         inf, sup, step = (r for r in _domain.args)
         summand = ((self.pdf).replace(self.symbol, inf + n * step))
         rv = summation(summand,
                        (n, 0, floor((sup - inf) / step - 1))).doit()
         return rv
     elif isinstance(_domain, FiniteSet):
         pdf = Lambda(self.symbol, self.pdf)
         rv = sum(pdf(x) for x in _domain)
         return rv
     elif isinstance(_domain, Union):
         rv = sum(self.eval_prob(x) for x in _domain.args)
         return rv
Beispiel #34
0
    def _eval_expand_func(self, deep=True, **hints):
        if deep:
            arg = self.args[0].expand(deep, **hints)
        else:
            arg = self.args[0]

        if arg.is_Add:
            coeff, tail = arg.as_coeff_add()
            if coeff and coeff.q != 1:
                tail = (C.Rational(1, coeff.q), ) + tail
                coeff = floor(coeff)
            tail = arg._new_rawargs(*tail, **dict(reeval=False))
            return gamma(tail) * C.RisingFactorial(tail, coeff)

        return self.func(*self.args)
Beispiel #35
0
    def compute_cdf(self, **kwargs):
        """ Compute the CDF from the PDF.

        Returns a Lambda.
        """
        x = symbols('x', integer=True, cls=Dummy)
        z = symbols('z', real=True, cls=Dummy)
        left_bound = self.set.inf

        # CDF is integral of PDF from left bound to z
        pdf = self.pdf(x)
        cdf = summation(pdf, (x, left_bound, floor(z)), **kwargs)
        # CDF Ensure that CDF left of left_bound is zero
        cdf = Piecewise((cdf, z >= left_bound), (0, True))
        return Lambda(z, cdf)
Beispiel #36
0
    def _eval_expand_func(self, deep=True, **hints):
        if deep:
            arg = self.args[0].expand(deep, **hints)
        else:
            arg = self.args[0]

        if arg.is_Add:
            coeff, tail = arg.as_coeff_add()
            if coeff and coeff.q != 1:
                tail = (C.Rational(1, coeff.q),) + tail
                coeff = floor(coeff)
            tail = arg._new_rawargs(*tail, **dict(reeval=False))
            return gamma(tail)*C.RisingFactorial(tail, coeff)

        return self.func(*self.args)
Beispiel #37
0
def test_evalf_integer_parts():
    a = floor(log(8) / log(2) - exp(-1000), evaluate=False)
    b = floor(log(8) / log(2), evaluate=False)
    assert a.evalf() == 3
    assert b.evalf() == 3
    # equals, as a fallback, can still fail but it might succeed as here
    assert ceiling(10 * (sin(1)**2 + cos(1)**2)) == 10

    assert int(floor(factorial(50)/E, evaluate=False).evalf(70)) == \
        int(11188719610782480504630258070757734324011354208865721592720336800)
    assert int(ceiling(factorial(50)/E, evaluate=False).evalf(70)) == \
        int(11188719610782480504630258070757734324011354208865721592720336801)
    assert int(floor(GoldenRatio**999 / sqrt(5) +
                     S.Half).evalf(1000)) == fibonacci(999)
    assert int(floor(GoldenRatio**1000 / sqrt(5) +
                     S.Half).evalf(1000)) == fibonacci(1000)

    assert ceiling(x).evalf(subs={x: 3}) == 3
    assert ceiling(x).evalf(subs={x: 3 * I}) == 3.0 * I
    assert ceiling(x).evalf(subs={x: 2 + 3 * I}) == 2.0 + 3.0 * I
    assert ceiling(x).evalf(subs={x: 3.}) == 3
    assert ceiling(x).evalf(subs={x: 3. * I}) == 3.0 * I
    assert ceiling(x).evalf(subs={x: 2. + 3 * I}) == 2.0 + 3.0 * I

    assert float((floor(1.5, evaluate=False) + 1 / 9).evalf()) == 1 + 1 / 9
    assert float((floor(0.5, evaluate=False) + 20).evalf()) == 20

    # issue 19991
    n = 1169809367327212570704813632106852886389036911
    r = 744723773141314414542111064094745678855643068

    assert floor(n / (pi / 2)) == r
    assert floor(80782 * sqrt(2)) == 114242

    # issue 20076
    assert 260515 - floor(260515 / pi + 1 / 2) * pi == atan(tan(260515))
Beispiel #38
0
    def eval(cls, arg):
        from sympy import asin

        arg = sympify(arg)

        if arg.is_Number:
            if arg is S.NaN:
                return S.NaN
            elif arg is S.Infinity:
                return S.Infinity
            elif arg is S.NegativeInfinity:
                return S.NegativeInfinity
            elif arg.is_zero:
                return S.Zero
            elif arg is S.One:
                return log(sqrt(2) + 1)
            elif arg is S.NegativeOne:
                return log(sqrt(2) - 1)
            elif arg.is_negative:
                return -cls(-arg)
        else:
            if arg is S.ComplexInfinity:
                return S.ComplexInfinity

            if arg.is_zero:
                return S.Zero

            i_coeff = arg.as_coefficient(S.ImaginaryUnit)

            if i_coeff is not None:
                return S.ImaginaryUnit * asin(i_coeff)
            else:
                if _coeff_isneg(arg):
                    return -cls(-arg)

        if isinstance(arg, sinh) and arg.args[0].is_number:
            z = arg.args[0]
            if z.is_real:
                return z
            r, i = match_real_imag(z)
            if r is not None and i is not None:
                f = floor((i + pi / 2) / pi)
                m = z - I * pi * f
                even = f.is_even
                if even is True:
                    return m
                elif even is False:
                    return -m
Beispiel #39
0
 def eval_prob(self, _domain):
     if isinstance(_domain, Range):
         n = symbols('n')
         inf, sup, step = (r for r in _domain.args)
         summand = ((self.pdf).replace(
             self.symbol, inf + n*step))
         rv = summation(summand,
             (n, 0, floor((sup - inf)/step - 1))).doit()
         return rv
     elif isinstance(_domain, FiniteSet):
         pdf = Lambda(self.symbol, self.pdf)
         rv = sum(pdf(x) for x in _domain)
         return rv
     elif isinstance(_domain, Union):
         rv = sum(self.eval_prob(x) for x in _domain.args)
         return rv
Beispiel #40
0
def test_issue9474():
    mods = [None, 'math']
    if numpy:
        mods.append('numpy')
    if mpmath:
        mods.append('mpmath')
    for mod in mods:
        f = lambdify(x, S.One / x, modules=mod)
        assert f(2) == 0.5
        f = lambdify(x, floor(S.One / x), modules=mod)
        assert f(2) == 0

    for absfunc, modules in product([Abs, abs], mods):
        f = lambdify(x, absfunc(x), modules=modules)
        assert f(-1) == 1
        assert f(1) == 1
        assert f(3 + 4j) == 5
Beispiel #41
0
def intersection_sets(a, b):  # noqa:F811
    from sympy.functions.elementary.integers import floor, ceiling
    if not all(i.is_number for i in b.args[:2]):
        return

    # In case of null Range, return an EmptySet.
    if a.size == 0:
        return S.EmptySet

    # trim down to self's size, and represent
    # as a Range with step 1.
    start = ceiling(max(b.inf, a.inf))
    if start not in b:
        start += 1
    end = floor(min(b.sup, a.sup))
    if end not in b:
        end -= 1
    return intersection_sets(a, Range(start, end + 1))
Beispiel #42
0
 def eval_prob(self, _domain):
     if isinstance(_domain, Range):
         n = symbols('n')
         inf, sup, step = (r for r in _domain.args)
         summand = ((self.pdf).replace(
             self.symbol, inf + n*step))
         rv = summation(summand,
             (n, 0, floor((sup - inf)/step - 1))).doit()
         return rv
     elif isinstance(_domain, FiniteSet):
         pdf = Lambda(self.symbol, self.pdf)
         rv = sum(pdf(x) for x in _domain)
         return rv
     elif isinstance(_domain, Union):
         rv = sum(self.eval_prob(x) for x in _domain.args)
         return rv
     else:
         raise NotImplementedError(filldedent('''Probability for
             the domain %s cannot be calculated.'''%(_domain)))
Beispiel #43
0
    def _eval_expand_func(self, **hints):
        arg = self.args[0]
        if arg.is_Rational:
            if abs(arg.p) > arg.q:
                x = Dummy("x")
                n = arg.p // arg.q
                p = arg.p - n * arg.q
                return gamma(x + n)._eval_expand_func().subs(x, Rational(p, arg.q))

        if arg.is_Add:
            coeff, tail = arg.as_coeff_add()
            if coeff and coeff.q != 1:
                intpart = floor(coeff)
                tail = (coeff - intpart,) + tail
                coeff = intpart
            tail = arg._new_rawargs(*tail, reeval=False)
            return gamma(tail) * C.RisingFactorial(tail, coeff)

        return self.func(*self.args)
Beispiel #44
0
def intersection_sets(a, b):
    from sympy.functions.elementary.integers import floor, ceiling
    from sympy.functions.elementary.miscellaneous import Min, Max
    if not all(i.is_number for i in b.args[:2]):
        return

    # In case of null Range, return an EmptySet.
    if a.size == 0:
        return S.EmptySet

    # trim down to self's size, and represent
    # as a Range with step 1.
    start = ceiling(max(b.inf, a.inf))
    if start not in b:
        start += 1
    end = floor(min(b.sup, a.sup))
    if end not in b:
        end -= 1
    return intersection_sets(a, Range(start, end + 1))
Beispiel #45
0
	def update(self):
		filled_length = round(self.width * self.progress, self.tenths)
		filled_length_int = floor(self.width * self.progress)
		_int = round(filled_length - filled_length_int, self.tenths)
		phase = self.nphases[_int]
		#print(filled_length)
		#print(filled_length_int)
		#print(_int)
		#print(phase)
		percent = "{:.0%} ".format(self.progress)
		empty_length = round(self.width - filled_length, 1)
		message = self.message
		if filled_length == 0:
			bar = ' '
		else:
			bar = self.COLOR.format('█'* int(filled_length)+ phase)
		empty = ' ' * int(empty_length)
		#suffix = self.suffix
		line = ''.join([message, percent, self.bar_prefix, bar, empty, self.bar_prefix])
		self.file.writelines(line)
		self.file.flush()
Beispiel #46
0
 def _eval_is_positive(self):
     x = self.args[0]
     if x.is_positive:
         return True
     elif x.is_noninteger:
         return floor(x).is_even
Beispiel #47
0
 def _eval_rewrite_as_polynomial(self, n, x):
     from sympy import Sum
     k = Dummy("k")
     kern = (-1)**k / (factorial(k)*factorial(n - 2*k)) * (2*x)**(n - 2*k)
     return factorial(n)*Sum(kern, (k, 0, floor(n/2)))
Beispiel #48
0
def test_issue_8623():
    assert integrate((1 + cos(2*x)) / (3 - 2*cos(2*x)), (x, 0, pi)) == -pi/2 + sqrt(5)*pi/2
    assert integrate((1 + cos(2*x))/(3 - 2*cos(2*x))) == -x/2 + sqrt(5)*(atan(sqrt(5)*tan(x)) + \
        pi*floor((x - pi/2)/pi))/2
Beispiel #49
0
 def _intersect(self, other):
     if other.is_Interval:
         s = FiniteSet(range(ceiling(other.left), floor(other.right) + 1))
         return s.intersect(other) # take out endpoints if open interval
     return None
Beispiel #50
0
 def _eval_rewrite_as_polynomial(self, n, x):
     from sympy import Sum
     k = Dummy("k")
     kern = S.NegativeOne**k * factorial(
         n - k) * (2*x)**(n - 2*k) / (factorial(k) * factorial(n - 2*k))
     return Sum(kern, (k, 0, floor(n/2)))
Beispiel #51
0
 def _eval_rewrite_as_polynomial(self, n, m, x):
     from sympy import Sum
     k = Dummy("k")
     kern = factorial(2*n - 2*k)/(2**n*factorial(n - k)*factorial(
         k)*factorial(n - 2*k - m))*(-1)**k*x**(n - m - 2*k)
     return (1 - x**2)**(m/2) * Sum(kern, (k, 0, floor((n - m)*S.Half)))
Beispiel #52
0
 def shape(self):
     rows = self.rowslice[1] - self.rowslice[0]
     rows = rows if self.rowslice[2] == 1 else floor(rows/self.rowslice[2])
     cols = self.colslice[1] - self.colslice[0]
     cols = cols if self.colslice[2] == 1 else floor(cols/self.colslice[2])
     return rows, cols
Beispiel #53
0
 def _eval_rewrite_as_polynomial(self, n, x):
     from sympy import Sum
     k = Dummy("k")
     kern = binomial(n, 2*k) * (x**2 - 1)**k * x**(n - 2*k)
     return Sum(kern, (k, 0, floor(n/2)))
Beispiel #54
0
def rsolve_hypergeometric(f, x, P, Q, k, m):
    """Solves RE of hypergeometric type.

    Attempts to solve RE of the form

    Q(k)*a(k + m) - P(k)*a(k)

    Transformations that preserve Hypergeometric type:

        a. x**n*f(x): b(k + m) = R(k - n)*b(k)
        b. f(A*x): b(k + m) = A**m*R(k)*b(k)
        c. f(x**n): b(k + n*m) = R(k/n)*b(k)
        d. f(x**(1/m)): b(k + 1) = R(k*m)*b(k)
        e. f'(x): b(k + m) = ((k + m + 1)/(k + 1))*R(k + 1)*b(k)

    Some of these transformations have been used to solve the RE.

    Returns
    =======

    formula : Expr
    ind : Expr
        Independent terms.
    order : int

    Examples
    ========

    >>> from sympy import exp, ln, S
    >>> from sympy.series.formal import rsolve_hypergeometric as rh
    >>> from sympy.abc import x, k

    >>> rh(exp(x), x, -S.One, (k + 1), k, 1)
    (Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1)

    >>> rh(ln(1 + x), x, k**2, k*(k + 1), k, 1)
    (Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1),
     Eq(Mod(k, 1), 0)), (0, True)), x, 2)

    References
    ==========

    .. [1] Formal Power Series - Dominik Gruntz, Wolfram Koepf
    .. [2] Power Series in Computer Algebra - Wolfram Koepf
    """
    result = _rsolve_hypergeometric(f, x, P, Q, k, m)

    if result is None:
        return None

    sol_list, ind, mp = result

    sol_dict = defaultdict(lambda: S.Zero)
    for res, cond in sol_list:
        j, mk = cond.as_coeff_Add()
        c = mk.coeff(k)

        if j.is_integer is False:
            res *= x**frac(j)
            j = floor(j)

        res = res.subs(k, (k - j) / c)
        cond = Eq(k % c, j % c)
        sol_dict[cond] += res  # Group together formula for same conditions

    sol = []
    for cond, res in sol_dict.items():
        sol.append((res, cond))
    sol.append((S.Zero, True))
    sol = Piecewise(*sol)

    if mp is -oo:
        s = S.Zero
    elif mp.is_integer is False:
        s = ceiling(mp)
    else:
        s = mp + 1

    #  save all the terms of
    #  form 1/x**k in ind
    if s < 0:
        ind += sum(sequence(sol * x**k, (k, s, -1)))
        s = S.Zero

    return (sol, ind, s)
Beispiel #55
0
 def _intersect(self, other):
     if other.is_Interval and other.measure < oo:
         s = Range(ceiling(other.left), floor(other.right) + 1)
         return s.intersect(other)  # take out endpoints if open interval
     return None
Beispiel #56
0
 def _intersect(self, other):
     from sympy.functions.elementary.integers import floor, ceiling
     if other.is_Interval and other.measure < S.Infinity:
         s = Range(ceiling(other.left), floor(other.right) + 1)
         return s.intersect(other)  # take out endpoints if open interval
     return None
Beispiel #57
0
def test_sympy__functions__elementary__integers__floor():
    from sympy.functions.elementary.integers import floor
    assert _test_args(floor(x))
Beispiel #58
0
def test_issue_13749():
    assert integrate(1 / (2 + cos(x)), (x, 0, pi)) == pi/sqrt(3)
    assert integrate(1/(2 + cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)/3) + pi*floor((x/2 - pi/2)/pi))/3
Beispiel #59
0
    def _intersect(self, other):
        from sympy.functions.elementary.integers import ceiling, floor
        from sympy.functions.elementary.complexes import sign

        if other is S.Naturals:
            return self._intersect(Interval(1, S.Infinity))

        if other is S.Integers:
            return self

        if other.is_Interval:
            if not all(i.is_number for i in other.args[:2]):
                return

            # In case of null Range, return an EmptySet.
            if self.size == 0:
                return S.EmptySet

            # trim down to self's size, and represent
            # as a Range with step 1.
            start = ceiling(max(other.inf, self.inf))
            if start not in other:
                start += 1
            end = floor(min(other.sup, self.sup))
            if end not in other:
                end -= 1
            return self.intersect(Range(start, end + 1))

        if isinstance(other, Range):
            from sympy.solvers.diophantine import diop_linear
            from sympy.core.numbers import ilcm

            # non-overlap quick exits
            if not other:
                return S.EmptySet
            if not self:
                return S.EmptySet
            if other.sup < self.inf:
                return S.EmptySet
            if other.inf > self.sup:
                return S.EmptySet

            # work with finite end at the start
            r1 = self
            if r1.start.is_infinite:
                r1 = r1.reversed
            r2 = other
            if r2.start.is_infinite:
                r2 = r2.reversed

            # this equation represents the values of the Range;
            # it's a linear equation
            eq = lambda r, i: r.start + i*r.step

            # we want to know when the two equations might
            # have integer solutions so we use the diophantine
            # solver
            a, b = diop_linear(eq(r1, Dummy()) - eq(r2, Dummy()))

            # check for no solution
            no_solution = a is None and b is None
            if no_solution:
                return S.EmptySet

            # there is a solution
            # -------------------

            # find the coincident point, c
            a0 = a.as_coeff_Add()[0]
            c = eq(r1, a0)

            # find the first point, if possible, in each range
            # since c may not be that point
            def _first_finite_point(r1, c):
                if c == r1.start:
                    return c
                # st is the signed step we need to take to
                # get from c to r1.start
                st = sign(r1.start - c)*step
                # use Range to calculate the first point:
                # we want to get as close as possible to
                # r1.start; the Range will not be null since
                # it will at least contain c
                s1 = Range(c, r1.start + st, st)[-1]
                if s1 == r1.start:
                    pass
                else:
                    # if we didn't hit r1.start then, if the
                    # sign of st didn't match the sign of r1.step
                    # we are off by one and s1 is not in r1
                    if sign(r1.step) != sign(st):
                        s1 -= st
                if s1 not in r1:
                    return
                return s1

            # calculate the step size of the new Range
            step = abs(ilcm(r1.step, r2.step))
            s1 = _first_finite_point(r1, c)
            if s1 is None:
                return S.EmptySet
            s2 = _first_finite_point(r2, c)
            if s2 is None:
                return S.EmptySet

            # replace the corresponding start or stop in
            # the original Ranges with these points; the
            # result must have at least one point since
            # we know that s1 and s2 are in the Ranges
            def _updated_range(r, first):
                st = sign(r.step)*step
                if r.start.is_finite:
                    rv = Range(first, r.stop, st)
                else:
                    rv = Range(r.start, first + st, st)
                return rv
            r1 = _updated_range(self, s1)
            r2 = _updated_range(other, s2)

            # work with them both in the increasing direction
            if sign(r1.step) < 0:
                r1 = r1.reversed
            if sign(r2.step) < 0:
                r2 = r2.reversed

            # return clipped Range with positive step; it
            # can't be empty at this point
            start = max(r1.start, r2.start)
            stop = min(r1.stop, r2.stop)
            return Range(start, stop, step)
        else:
            return
Beispiel #60
0
 def _eval_rewrite_as_polynomial(self, n, a, x):
     from sympy import Sum
     k = Dummy("k")
     kern = ((-1)**k * RisingFactorial(a, n - k) * (2*x)**(n - 2*k) /
             (factorial(k) * factorial(n - 2*k)))
     return Sum(kern, (k, 0, floor(n/2)))