Beispiel #1
0
def generate_initial_beliefs():
    """Example premises is from exercises from lecture 9"""
    p, q, s, r = symbols("p q s r")
    return [Implies(Not(p), q), Implies(q, p), Implies(p, And(r, s))]
Beispiel #2
0
def get_known_facts(x=None):
    """
    Facts between unary predicates.

    Parameters
    ==========

    x : Symbol, optional
        Placeholder symbol for unary facts. Default is ``Symbol('x')``.

    Returns
    =======

    fact : Known facts in conjugated normal form.

    """
    if x is None:
        x = Symbol('x')

    fact = And(
        # primitive predicates for extended real exclude each other.
        Exclusive(Q.negative_infinite(x), Q.negative(x), Q.zero(x),
                  Q.positive(x), Q.positive_infinite(x)),

        # build complex plane
        Exclusive(Q.real(x), Q.imaginary(x)),
        Implies(Q.real(x) | Q.imaginary(x), Q.complex(x)),

        # other subsets of complex
        Exclusive(Q.transcendental(x), Q.algebraic(x)),
        Equivalent(Q.real(x),
                   Q.rational(x) | Q.irrational(x)),
        Exclusive(Q.irrational(x), Q.rational(x)),
        Implies(Q.rational(x), Q.algebraic(x)),

        # integers
        Exclusive(Q.even(x), Q.odd(x)),
        Implies(Q.integer(x), Q.rational(x)),
        Implies(Q.zero(x), Q.even(x)),
        Exclusive(Q.composite(x), Q.prime(x)),
        Implies(Q.composite(x) | Q.prime(x),
                Q.integer(x) & Q.positive(x)),
        Implies(Q.even(x) & Q.positive(x) & ~Q.prime(x), Q.composite(x)),

        # hermitian and antihermitian
        Implies(Q.real(x), Q.hermitian(x)),
        Implies(Q.imaginary(x), Q.antihermitian(x)),
        Implies(Q.zero(x),
                Q.hermitian(x) | Q.antihermitian(x)),

        # define finity and infinity, and build extended real line
        Exclusive(Q.infinite(x), Q.finite(x)),
        Implies(Q.complex(x), Q.finite(x)),
        Implies(
            Q.negative_infinite(x) | Q.positive_infinite(x), Q.infinite(x)),

        # commutativity
        Implies(Q.finite(x) | Q.infinite(x), Q.commutative(x)),

        # matrices
        Implies(Q.orthogonal(x), Q.positive_definite(x)),
        Implies(Q.orthogonal(x), Q.unitary(x)),
        Implies(Q.unitary(x) & Q.real_elements(x), Q.orthogonal(x)),
        Implies(Q.unitary(x), Q.normal(x)),
        Implies(Q.unitary(x), Q.invertible(x)),
        Implies(Q.normal(x), Q.square(x)),
        Implies(Q.diagonal(x), Q.normal(x)),
        Implies(Q.positive_definite(x), Q.invertible(x)),
        Implies(Q.diagonal(x), Q.upper_triangular(x)),
        Implies(Q.diagonal(x), Q.lower_triangular(x)),
        Implies(Q.lower_triangular(x), Q.triangular(x)),
        Implies(Q.upper_triangular(x), Q.triangular(x)),
        Implies(Q.triangular(x),
                Q.upper_triangular(x) | Q.lower_triangular(x)),
        Implies(Q.upper_triangular(x) & Q.lower_triangular(x), Q.diagonal(x)),
        Implies(Q.diagonal(x), Q.symmetric(x)),
        Implies(Q.unit_triangular(x), Q.triangular(x)),
        Implies(Q.invertible(x), Q.fullrank(x)),
        Implies(Q.invertible(x), Q.square(x)),
        Implies(Q.symmetric(x), Q.square(x)),
        Implies(Q.fullrank(x) & Q.square(x), Q.invertible(x)),
        Equivalent(Q.invertible(x), ~Q.singular(x)),
        Implies(Q.integer_elements(x), Q.real_elements(x)),
        Implies(Q.real_elements(x), Q.complex_elements(x)),
    )
    return fact
Beispiel #3
0
def test_eliminate_implications():
    assert eliminate_implications(Implies(A, B, evaluate=False)) == (~A) | B
    assert eliminate_implications(
        A >> (C >> Not(B))) == Or(Or(Not(B), Not(C)), Not(A))
    assert eliminate_implications(Equivalent(A, B, C, D)) == \
        (~A | B) & (~B | C) & (~C | D) & (~D | A)
Beispiel #4
0
def get_known_facts():
    return And(
        Implies(Q.infinite, ~Q.finite),
        Implies(Q.real, Q.complex),
        Implies(Q.real, Q.hermitian),
        Equivalent(Q.extended_real, Q.real | Q.infinite),
        Equivalent(Q.even | Q.odd, Q.integer),
        Implies(Q.even, ~Q.odd),
        Equivalent(Q.prime, Q.integer & Q.positive & ~Q.composite),
        Implies(Q.integer, Q.rational),
        Implies(Q.rational, Q.algebraic),
        Implies(Q.algebraic, Q.complex),
        Implies(Q.algebraic, Q.finite),
        Equivalent(Q.transcendental | Q.algebraic, Q.complex & Q.finite),
        Implies(Q.transcendental, ~Q.algebraic),
        Implies(Q.transcendental, Q.finite),
        Implies(Q.imaginary, Q.complex & ~Q.real),
        Implies(Q.imaginary, Q.antihermitian),
        Implies(Q.antihermitian, ~Q.hermitian),
        Equivalent(Q.irrational | Q.rational, Q.real & Q.finite),
        Implies(Q.irrational, ~Q.rational),
        Implies(Q.zero, Q.even),

        Equivalent(Q.real, Q.negative | Q.zero | Q.positive),
        Implies(Q.zero, ~Q.negative & ~Q.positive),
        Implies(Q.negative, ~Q.positive),
        Equivalent(Q.nonnegative, Q.zero | Q.positive),
        Equivalent(Q.nonpositive, Q.zero | Q.negative),
        Equivalent(Q.nonzero, Q.negative | Q.positive),

        Implies(Q.orthogonal, Q.positive_definite),
        Implies(Q.orthogonal, Q.unitary),
        Implies(Q.unitary & Q.real, Q.orthogonal),
        Implies(Q.unitary, Q.normal),
        Implies(Q.unitary, Q.invertible),
        Implies(Q.normal, Q.square),
        Implies(Q.diagonal, Q.normal),
        Implies(Q.positive_definite, Q.invertible),
        Implies(Q.diagonal, Q.upper_triangular),
        Implies(Q.diagonal, Q.lower_triangular),
        Implies(Q.lower_triangular, Q.triangular),
        Implies(Q.upper_triangular, Q.triangular),
        Implies(Q.triangular, Q.upper_triangular | Q.lower_triangular),
        Implies(Q.upper_triangular & Q.lower_triangular, Q.diagonal),
        Implies(Q.diagonal, Q.symmetric),
        Implies(Q.unit_triangular, Q.triangular),
        Implies(Q.invertible, Q.fullrank),
        Implies(Q.invertible, Q.square),
        Implies(Q.symmetric, Q.square),
        Implies(Q.fullrank & Q.square, Q.invertible),
        Equivalent(Q.invertible, ~Q.singular),
        Implies(Q.integer_elements, Q.real_elements),
        Implies(Q.real_elements, Q.complex_elements),
    )
Beispiel #5
0
    ("diagonal", "matrices.AskDiagonalHandler"),
    ("fullrank", "matrices.AskFullRankHandler"),
    ("square", "matrices.AskSquareHandler"),
    ("integer_elements", "matrices.AskIntegerElementsHandler"),
    ("real_elements", "matrices.AskRealElementsHandler"),
    ("complex_elements", "matrices.AskComplexElementsHandler"),
]

for name, value in _handlers:
    register_handler(name, _val_template % value)

known_facts_keys = [
    getattr(Q, attr) for attr in Q.__dict__ if not attr.startswith('__')
]
known_facts = And(
    Implies(Q.real, Q.complex),
    Implies(Q.real, Q.hermitian),
    Equivalent(Q.even, Q.integer & ~Q.odd),
    Equivalent(Q.extended_real, Q.real | Q.infinity),
    Equivalent(Q.odd, Q.integer & ~Q.even),
    Equivalent(Q.prime, Q.integer & Q.positive & ~Q.composite),
    Implies(Q.integer, Q.rational),
    Implies(Q.rational, Q.algebraic),
    Implies(Q.algebraic, Q.complex),
    Implies(Q.imaginary, Q.complex & ~Q.real),
    Implies(Q.imaginary, Q.antihermitian),
    Implies(Q.antihermitian, ~Q.hermitian),
    Equivalent(Q.negative, Q.nonzero & ~Q.positive),
    Equivalent(Q.positive, Q.nonzero & ~Q.negative),
    Equivalent(Q.rational, Q.real & ~Q.irrational),
    Equivalent(Q.real, Q.rational | Q.irrational),
Beispiel #6
0
    'nonzero'        : ['sympy.assumptions.handlers.order.AskNonZeroHandler'],
    'positive'       : ['sympy.assumptions.handlers.order.AskPositiveHandler'],
    'prime'          : ['sympy.assumptions.handlers.ntheory.AskPrimeHandler'],
    'real'           : ['sympy.assumptions.handlers.sets.AskRealHandler'],
    'odd'            : ['sympy.assumptions.handlers.ntheory.AskOddHandler'],
    'algebraic'      : ['sympy.assumptions.handlers.sets.AskAlgebraicHandler'],
    'is_true'        : ['sympy.assumptions.handlers.TautologicalHandler']
}
for name, value in _handlers_dict.iteritems():
    register_handler(name, value[0])


known_facts_keys = [getattr(Q, attr) for attr in Q.__dict__ \
                                                if not attr.startswith('__')]
known_facts = And(
    Implies   (Q.real, Q.complex),
    Equivalent(Q.even, Q.integer & ~Q.odd),
    Equivalent(Q.extended_real, Q.real | Q.infinity),
    Equivalent(Q.odd, Q.integer & ~Q.even),
    Equivalent(Q.prime, Q.integer & Q.positive & ~Q.composite),
    Implies   (Q.integer, Q.rational),
    Implies   (Q.imaginary, Q.complex & ~Q.real),
    Equivalent(Q.negative, Q.nonzero & ~Q.positive),
    Equivalent(Q.positive, Q.nonzero & ~Q.negative),
    Equivalent(Q.rational, Q.real & ~Q.irrational),
    Equivalent(Q.real, Q.rational | Q.irrational),
    Implies   (Q.nonzero, Q.real),
    Equivalent(Q.nonzero, Q.positive | Q.negative)
)

################################################################################
Beispiel #7
0
    'negative': ['sympy.assumptions.handlers.order.AskNegativeHandler'],
    'nonzero': ['sympy.assumptions.handlers.order.AskNonZeroHandler'],
    'positive': ['sympy.assumptions.handlers.order.AskPositiveHandler'],
    'prime': ['sympy.assumptions.handlers.ntheory.AskPrimeHandler'],
    'real': ['sympy.assumptions.handlers.sets.AskRealHandler'],
    'odd': ['sympy.assumptions.handlers.ntheory.AskOddHandler'],
    'algebraic': ['sympy.assumptions.handlers.sets.AskAlgebraicHandler'],
    'is_true': ['sympy.assumptions.handlers.TautologicalHandler']
}
for name, value in _handlers_dict.iteritems():
    register_handler(name, value[0])


known_facts_keys = [getattr(Q, attr) for attr in Q.__dict__ \
                                                if not attr.startswith('__')]
known_facts = And(Implies(Q.real, Q.complex), Implies(Q.real, Q.hermitian),
                  Equivalent(Q.even, Q.integer & ~Q.odd),
                  Equivalent(Q.extended_real, Q.real | Q.infinity),
                  Equivalent(Q.odd, Q.integer & ~Q.even),
                  Equivalent(Q.prime, Q.integer & Q.positive & ~Q.composite),
                  Implies(Q.integer, Q.rational),
                  Implies(Q.imaginary, Q.complex & ~Q.real),
                  Implies(Q.imaginary, Q.antihermitian),
                  Implies(Q.antihermitian, ~Q.hermitian),
                  Equivalent(Q.negative, Q.nonzero & ~Q.positive),
                  Equivalent(Q.positive, Q.nonzero & ~Q.negative),
                  Equivalent(Q.rational, Q.real & ~Q.irrational),
                  Equivalent(Q.real, Q.rational | Q.irrational),
                  Implies(Q.nonzero, Q.real),
                  Equivalent(Q.nonzero, Q.positive | Q.negative))
Beispiel #8
0
    def test_Implies(self):

        assert Implies(true, false) is false
Beispiel #9
0
def test_Implies():
    A, B, C = symbols('ABC')
    Implies(True, True) == True
    Implies(False, False) == False
    assert A >> B == B << A
Beispiel #10
0
def Biconditional(a, b):
    """
    rewrite biconditional as a new premise consisting of two implies according to formula in Peter Norvig & Stuart Russel Chapter 7
    replacing alpha <=> beta with (alpha => beta) and (beta => alpha)
    """
    return And(Implies(a, b), Implies(b, a))
Beispiel #11
0
def test_simplification():
    """
    Test working of simplification methods.
    """
    set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]]
    set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]]
    assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x))
    assert Not(SOPform([x, y, z],
                       set2)) == Not(Or(And(Not(x), Not(z)), And(x, z)))
    assert POSform([x, y, z], set1 + set2) is true
    assert SOPform([x, y, z], set1 + set2) is true
    assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true

    minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
                [1, 1, 1, 1]]
    dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    assert (SOPform([w, x, y, z], minterms,
                    dontcares) == Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, 3, 7, 11, 15]
    dontcares = [0, 2, 5]
    assert (SOPform([w, x, y, z], minterms,
                    dontcares) == Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, [0, 0, 1, 1], 7, [1, 0, 1, 1], [1, 1, 1, 1]]
    dontcares = [0, [0, 0, 1, 0], 5]
    assert (SOPform([w, x, y, z], minterms,
                    dontcares) == Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [{y: 1, z: 1}, 1]
    dontcares = [[0, 0, 0, 0]]

    minterms = [[0, 0, 0]]
    raises(ValueError, lambda: SOPform([w, x, y, z], minterms))
    raises(ValueError, lambda: POSform([w, x, y, z], minterms))

    raises(TypeError, lambda: POSform([w, x, y, z], ["abcdefg"]))

    # test simplification
    ans = And(A, Or(B, C))
    assert simplify_logic(A & (B | C)) == ans
    assert simplify_logic((A & B) | (A & C)) == ans
    assert simplify_logic(Implies(A, B)) == Or(Not(A), B)
    assert simplify_logic(Equivalent(A, B)) == \
           Or(And(A, B), And(Not(A), Not(B)))
    assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C)
    assert simplify_logic(And(Equality(A, 2), A)) is S.false
    assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A)
    assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C)
    assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \
           == And(Equality(A, 3), Or(B, C))
    b = (~x & ~y & ~z) | (~x & ~y & z)
    e = And(A, b)
    assert simplify_logic(e) == A & ~x & ~y

    # check input
    ans = SOPform([x, y], [[1, 0]])
    assert SOPform([x, y], [[1, 0]]) == ans
    assert POSform([x, y], [[1, 0]]) == ans

    raises(ValueError, lambda: SOPform([x], [[1]], [[1]]))
    assert SOPform([x], [[1]], [[0]]) is true
    assert SOPform([x], [[0]], [[1]]) is true
    assert SOPform([x], [], []) is false

    raises(ValueError, lambda: POSform([x], [[1]], [[1]]))
    assert POSform([x], [[1]], [[0]]) is true
    assert POSform([x], [[0]], [[1]]) is true
    assert POSform([x], [], []) is false

    # check working of simplify
    assert simplify((A & B) | (A & C)) == And(A, Or(B, C))
    assert simplify(And(x, Not(x))) == False
    assert simplify(Or(x, Not(x))) == True
    assert simplify(And(Eq(x, 0), Eq(x, y))) == And(Eq(x, 0), Eq(y, 0))
    assert And(Eq(x - 1, 0), Eq(x, y)).simplify() == And(Eq(x, 1), Eq(y, 1))
    assert And(Ne(x - 1, 0), Ne(x, y)).simplify() == And(Ne(x, 1), Ne(x, y))
    assert And(Eq(x - 1, 0), Ne(x, y)).simplify() == And(Eq(x, 1), Ne(y, 1))
    assert And(Eq(x - 1, 0), Eq(x, z + y),
               Eq(y + x, 0)).simplify() == And(Eq(x, 1), Eq(y, -1), Eq(z, 2))
    assert And(Eq(x - 1, 0), Eq(x + 2, 3)).simplify() == Eq(x, 1)
    assert And(Ne(x - 1, 0), Ne(x + 2, 3)).simplify() == Ne(x, 1)
    assert And(Eq(x - 1, 0), Eq(x + 2, 2)).simplify() == False
    assert And(Ne(x - 1, 0), Ne(x + 2,
                                2)).simplify() == And(Ne(x, 1), Ne(x, 0))
Beispiel #12
0
Xor(True, True)
Xor(True, False, True)
Xor(True, False, True, False)
Xor(True, False, True, False, True)
a, b = symbols('a b')
a ^ b

from sympy.logic.boolalg import Nand
Nand(True, False)
Nand(True, True)
Nand(a, b)

from sympy.logic.boolalg import Nor
Nor(True, False)
Nor(True, True)
Nor(False, True)
Nor(False, False)
Nor(a, b)

from sympy.logic.boolalg import Equivalent, And
Equivalent(False, False, False)
Equivalent(True, False, False)
Equivalent(a, And(a, True))

from sympy.logic.boolalg import Implies
Implies(False, True)
Implies(True, False)
Implies(False, False)
Implies(True, True)
a >> b
b << a
Beispiel #13
0
    def __repr__(self):
        return repr(self.d)


fact_registry = ClassFactRegistry()


def register_fact(klass, fact, registry=fact_registry):
    registry[klass] |= set([fact])


for klass, fact in [
    (Mul, Equivalent(Q.zero, AnyArgs(Q.zero))),
    (MatMul,
     Implies(AllArgs(Q.square), Equivalent(Q.invertible,
                                           AllArgs(Q.invertible)))),
    (Add, Implies(AllArgs(Q.positive), Q.positive)),
    (Add, Implies(AllArgs(Q.negative), Q.negative)),
    (Mul, Implies(AllArgs(Q.positive), Q.positive)),
    (Mul, Implies(AllArgs(Q.commutative), Q.commutative)),
    (Mul, Implies(AllArgs(Q.real), Q.commutative)),
        # This one can still be made easier to read. I think we need basic pattern
        # matching, so that we can just write Equivalent(Q.zero(x**y), Q.zero(x) & Q.positive(y))
    (Pow,
     CustomLambda(
         lambda power: Equivalent(Q.zero(power),
                                  Q.zero(power.base) & Q.positive(power.exp)))
     ),
    (Integer, CheckIsPrime(Q.prime)),
        # Implicitly assumes Mul has more than one arg
        # Would be AllArgs(Q.prime | Q.composite) except 1 is composite
Beispiel #14
0
    ("is_true", "TautologicalHandler"),
    ("symmetric", "matrices.AskSymmetricHandler"),
    ("invertible", "matrices.AskInvertibleHandler"),
    ("orthogonal", "matrices.AskOrthogonalHandler"),
    ("positive_definite", "matrices.AskPositiveDefiniteHandler"),
    ("upper_triangular", "matrices.AskUpperTriangularHandler"),
    ("lower_triangular", "matrices.AskLowerTriangularHandler"),
    ("diagonal", "matrices.AskDiagonalHandler"),
]
for name, value in _handlers:
    register_handler(name, _val_template % value)

known_facts_keys = [
    getattr(Q, attr) for attr in Q.__dict__ if not attr.startswith('__')
]
known_facts = And(Implies(Q.real, Q.complex), Implies(Q.real, Q.hermitian),
                  Equivalent(Q.even, Q.integer & ~Q.odd),
                  Equivalent(Q.extended_real, Q.real | Q.infinity),
                  Equivalent(Q.odd, Q.integer & ~Q.even),
                  Equivalent(Q.prime, Q.integer & Q.positive & ~Q.composite),
                  Implies(Q.integer, Q.rational),
                  Implies(Q.imaginary, Q.complex & ~Q.real),
                  Implies(Q.imaginary, Q.antihermitian),
                  Implies(Q.antihermitian, ~Q.hermitian),
                  Equivalent(Q.negative, Q.nonzero & ~Q.positive),
                  Equivalent(Q.positive, Q.nonzero & ~Q.negative),
                  Equivalent(Q.rational, Q.real & ~Q.irrational),
                  Equivalent(Q.real, Q.rational | Q.irrational),
                  Implies(Q.nonzero, Q.real),
                  Equivalent(Q.nonzero, Q.positive | Q.negative),
                  Implies(Q.orthogonal, Q.positive_definite),
Beispiel #15
0
def test_count_ops_visual():
    ADD, MUL, POW, SIN, COS, EXP, AND, D, G, M = symbols(
        'Add Mul Pow sin cos exp And Derivative Integral Sum'.upper())
    DIV, SUB, NEG = symbols('DIV SUB NEG')
    LT, LE, GT, GE, EQ, NE = symbols('LT LE GT GE EQ NE')
    NOT, OR, AND, XOR, IMPLIES, EQUIVALENT, _ITE, BASIC, TUPLE = symbols(
        'Not Or And Xor Implies Equivalent ITE Basic Tuple'.upper())

    def count(val):
        return count_ops(val, visual=True)

    assert count(7) is S.Zero
    assert count(S(7)) is S.Zero
    assert count(-1) == NEG
    assert count(-2) == NEG
    assert count(S(2) / 3) == DIV
    assert count(Rational(2, 3)) == DIV
    assert count(pi / 3) == DIV
    assert count(-pi / 3) == DIV + NEG
    assert count(I - 1) == SUB
    assert count(1 - I) == SUB
    assert count(1 - 2 * I) == SUB + MUL

    assert count(x) is S.Zero
    assert count(-x) == NEG
    assert count(-2 * x / 3) == NEG + DIV + MUL
    assert count(Rational(-2, 3) * x) == NEG + DIV + MUL
    assert count(1 / x) == DIV
    assert count(1 / (x * y)) == DIV + MUL
    assert count(-1 / x) == NEG + DIV
    assert count(-2 / x) == NEG + DIV
    assert count(x / y) == DIV
    assert count(-x / y) == NEG + DIV

    assert count(x**2) == POW
    assert count(-x**2) == POW + NEG
    assert count(-2 * x**2) == POW + MUL + NEG

    assert count(x + pi / 3) == ADD + DIV
    assert count(x + S.One / 3) == ADD + DIV
    assert count(x + Rational(1, 3)) == ADD + DIV
    assert count(x + y) == ADD
    assert count(x - y) == SUB
    assert count(y - x) == SUB
    assert count(-1 / (x - y)) == DIV + NEG + SUB
    assert count(-1 / (y - x)) == DIV + NEG + SUB
    assert count(1 + x**y) == ADD + POW
    assert count(1 + x + y) == 2 * ADD
    assert count(1 + x + y + z) == 3 * ADD
    assert count(1 + x**y + 2 * x * y + y**2) == 3 * ADD + 2 * POW + 2 * MUL
    assert count(2 * z + y + x + 1) == 3 * ADD + MUL
    assert count(2 * z + y**17 + x + 1) == 3 * ADD + MUL + POW
    assert count(2 * z + y**17 + x + sin(x)) == 3 * ADD + POW + MUL + SIN
    assert count(2 * z + y**17 + x +
                 sin(x**2)) == 3 * ADD + MUL + 2 * POW + SIN
    assert count(2 * z + y**17 + x + sin(x**2) +
                 exp(cos(x))) == 4 * ADD + MUL + 2 * POW + EXP + COS + SIN

    assert count(Derivative(x, x)) == D
    assert count(Integral(x, x) + 2 * x / (1 + x)) == G + DIV + MUL + 2 * ADD
    assert count(Sum(x, (x, 1, x + 1)) + 2 * x /
                 (1 + x)) == M + DIV + MUL + 3 * ADD
    assert count(Basic()) is S.Zero

    assert count({x + 1: sin(x)}) == ADD + SIN
    assert count([x + 1, sin(x) + y, None]) == ADD + SIN + ADD
    assert count({x + 1: sin(x), y: cos(x) + 1}) == SIN + COS + 2 * ADD
    assert count({}) is S.Zero
    assert count([x + 1, sin(x) * y, None]) == SIN + ADD + MUL
    assert count([]) is S.Zero

    assert count(Basic()) == 0
    assert count(Basic(Basic(), Basic(x, x + y))) == ADD + 2 * BASIC
    assert count(Basic(x, x + y)) == ADD + BASIC
    assert [count(Rel(x, y, op)) for op in '< <= > >= == <> !='.split()
            ] == [LT, LE, GT, GE, EQ, NE, NE]
    assert count(Or(x, y)) == OR
    assert count(And(x, y)) == AND
    assert count(Or(x, Or(y, And(z, a)))) == AND + OR
    assert count(Nor(x, y)) == NOT + OR
    assert count(Nand(x, y)) == NOT + AND
    assert count(Xor(x, y)) == XOR
    assert count(Implies(x, y)) == IMPLIES
    assert count(Equivalent(x, y)) == EQUIVALENT
    assert count(ITE(x, y, z)) == _ITE
    assert count([Or(x, y), And(x, y), Basic(x + y)]) == ADD + AND + BASIC + OR

    assert count(Basic(Tuple(x))) == BASIC + TUPLE
    #It checks that TUPLE is counted as an operation.

    assert count(Eq(x + y, S(2))) == ADD + EQ
Beispiel #16
0
    ("symmetric",         "matrices.AskSymmetricHandler"),
    ("invertible",        "matrices.AskInvertibleHandler"),
    ("orthogonal",        "matrices.AskOrthogonalHandler"),
    ("positive_definite", "matrices.AskPositiveDefiniteHandler"),
    ("upper_triangular",  "matrices.AskUpperTriangularHandler"),
    ("lower_triangular",  "matrices.AskLowerTriangularHandler"),
    ("diagonal",          "matrices.AskDiagonalHandler"),
]
for name, value in _handlers:
    register_handler(name, _val_template % value)


known_facts_keys = [getattr(Q, attr) for attr in Q.__dict__
                    if not attr.startswith('__')]
known_facts = And(
    Implies(Q.real, Q.complex),
    Implies(Q.real, Q.hermitian),
    Equivalent(Q.even, Q.integer & ~Q.odd),
    Equivalent(Q.extended_real, Q.real | Q.infinity),
    Equivalent(Q.odd, Q.integer & ~Q.even),
    Equivalent(Q.prime, Q.integer & Q.positive & ~Q.composite),
    Implies(Q.integer, Q.rational),
    Implies(Q.imaginary, Q.complex & ~Q.real),
    Implies(Q.imaginary, Q.antihermitian),
    Implies(Q.antihermitian, ~Q.hermitian),
    Equivalent(Q.negative, Q.nonzero & ~Q.positive),
    Equivalent(Q.positive, Q.nonzero & ~Q.negative),
    Equivalent(Q.rational, Q.real & ~Q.irrational),
    Equivalent(Q.real, Q.rational | Q.irrational),
    Implies(Q.nonzero, Q.real),
    Equivalent(Q.nonzero, Q.positive | Q.negative),
Beispiel #17
0
print(Nor(False, True))
print(Nor(False, False))
print(Nor(x, y))

from sympy import true, false

print(True >> False)
print(true >> false)

#implies

from sympy.logic.boolalg import Implies
from sympy import symbols
x, y = symbols('x y')

print(Implies(True, False))
print(Implies(False, False))
print(Implies(True, True))
print(Implies(False, True))

#cnf
from sympy.logic.boolalg import to_cnf
from sympy.abc import A, B, D

print(to_cnf(~(A | B) | D))
print(to_cnf((A | B) & (A | ~A), True))

#dnf
from sympy.logic.boolalg import to_dnf
from sympy.abc import A, B, C
        return len(self.d)

    def __repr__(self):
        return repr(self.d)


fact_registry = ClassFactRegistry()


def register_fact(klass, fact, registry=fact_registry):
    registry[klass] |= {fact}


for klass, fact in [
    (Mul, Equivalent(Q.zero, AnyArgs(Q.zero))),
    (MatMul, Implies(AllArgs(Q.square), Equivalent(Q.invertible, AllArgs(Q.invertible)))),
    (Add, Implies(AllArgs(Q.positive), Q.positive)),
    (Add, Implies(AllArgs(Q.negative), Q.negative)),
    (Mul, Implies(AllArgs(Q.positive), Q.positive)),
    (Mul, Implies(AllArgs(Q.commutative), Q.commutative)),
    (Mul, Implies(AllArgs(Q.real), Q.commutative)),

    (Pow, CustomLambda(lambda power: Implies(Q.real(power.base) &
    Q.even(power.exp) & Q.nonnegative(power.exp), Q.nonnegative(power)))),
    (Pow, CustomLambda(lambda power: Implies(Q.nonnegative(power.base) & Q.odd(power.exp) & Q.nonnegative(power.exp), Q.nonnegative(power)))),
    (Pow, CustomLambda(lambda power: Implies(Q.nonpositive(power.base) & Q.odd(power.exp) & Q.nonnegative(power.exp), Q.nonpositive(power)))),

    # This one can still be made easier to read. I think we need basic pattern
    # matching, so that we can just write Equivalent(Q.zero(x**y), Q.zero(x) & Q.positive(y))
    (Pow, CustomLambda(lambda power: Equivalent(Q.zero(power), Q.zero(power.base) & Q.positive(power.exp)))),
    (Integer, CheckIsPrime(Q.prime)),
Beispiel #19
0
def _(expr):
    # General Case: Odd number of imaginary args implies mul is imaginary(To be implemented)
    allargs_imag_or_real = allargs(x, Q.imaginary(x) | Q.real(x), expr)
    onearg_imaginary = exactlyonearg(x, Q.imaginary(x), expr)
    return Implies(allargs_imag_or_real,
                   Implies(onearg_imaginary, Q.imaginary(expr)))
Beispiel #20
0
def test_sympy__logic__boolalg__Implies():
    from sympy.logic.boolalg import Implies
    assert _test_args(Implies(x, 2))
Beispiel #21
0
def _(expr):
    allargs_real = allargs(x, Q.real(x), expr)
    onearg_irrational = exactlyonearg(x, Q.irrational(x), expr)
    return Implies(allargs_real, Implies(onearg_irrational,
                                         Q.irrational(expr)))
Beispiel #22
0
def test_eliminate_implications():

    assert eliminate_implications(Implies(A, B, evaluate=False)) == (~A) | B
    assert eliminate_implications(A >> (C >> Not(B))) == Or(
        Or(Not(B), Not(C)), Not(A))
Beispiel #23
0
def _(expr):
    allargs_square = allargs(x, Q.square(x), expr)
    allargs_invertible = allargs(x, Q.invertible(x), expr)
    return Implies(allargs_square,
                   Equivalent(Q.invertible(expr), allargs_invertible))
Beispiel #24
0
def test_true_false():
    assert true is S.true
    assert false is S.false
    assert true is not True
    assert false is not False
    assert true
    assert not false
    assert true == True
    assert false == False
    assert not (true == False)
    assert not (false == True)
    assert not (true == false)

    assert hash(true) == hash(True)
    assert hash(false) == hash(False)
    assert len({true, True}) == len({false, False}) == 1

    assert isinstance(true, BooleanAtom)
    assert isinstance(false, BooleanAtom)
    # We don't want to subclass from bool, because bool subclasses from
    # int. But operators like &, |, ^, <<, >>, and ~ act differently on 0 and
    # 1 then we want them to on true and false.  See the docstrings of the
    # various And, Or, etc. functions for examples.
    assert not isinstance(true, bool)
    assert not isinstance(false, bool)

    # Note: using 'is' comparison is important here. We want these to return
    # true and false, not True and False

    assert Not(true) is false
    assert Not(True) is false
    assert Not(false) is true
    assert Not(False) is true
    assert ~true is false
    assert ~false is true

    for T, F in cartes([True, true], [False, false]):
        assert And(T, F) is false
        assert And(F, T) is false
        assert And(F, F) is false
        assert And(T, T) is true
        assert And(T, x) == x
        assert And(F, x) is false
        if not (T is True and F is False):
            assert T & F is false
            assert F & T is false
        if not F is False:
            assert F & F is false
        if not T is True:
            assert T & T is true

        assert Or(T, F) is true
        assert Or(F, T) is true
        assert Or(F, F) is false
        assert Or(T, T) is true
        assert Or(T, x) is true
        assert Or(F, x) == x
        if not (T is True and F is False):
            assert T | F is true
            assert F | T is true
        if not F is False:
            assert F | F is false
        if not T is True:
            assert T | T is true

        assert Xor(T, F) is true
        assert Xor(F, T) is true
        assert Xor(F, F) is false
        assert Xor(T, T) is false
        assert Xor(T, x) == ~x
        assert Xor(F, x) == x
        if not (T is True and F is False):
            assert T ^ F is true
            assert F ^ T is true
        if not F is False:
            assert F ^ F is false
        if not T is True:
            assert T ^ T is false

        assert Nand(T, F) is true
        assert Nand(F, T) is true
        assert Nand(F, F) is true
        assert Nand(T, T) is false
        assert Nand(T, x) == ~x
        assert Nand(F, x) is true

        assert Nor(T, F) is false
        assert Nor(F, T) is false
        assert Nor(F, F) is true
        assert Nor(T, T) is false
        assert Nor(T, x) is false
        assert Nor(F, x) == ~x

        assert Implies(T, F) is false
        assert Implies(F, T) is true
        assert Implies(F, F) is true
        assert Implies(T, T) is true
        assert Implies(T, x) == x
        assert Implies(F, x) is true
        assert Implies(x, T) is true
        assert Implies(x, F) == ~x
        if not (T is True and F is False):
            assert T >> F is false
            assert F << T is false
            assert F >> T is true
            assert T << F is true
        if not F is False:
            assert F >> F is true
            assert F << F is true
        if not T is True:
            assert T >> T is true
            assert T << T is true

        assert Equivalent(T, F) is false
        assert Equivalent(F, T) is false
        assert Equivalent(F, F) is true
        assert Equivalent(T, T) is true
        assert Equivalent(T, x) == x
        assert Equivalent(F, x) == ~x
        assert Equivalent(x, T) == x
        assert Equivalent(x, F) == ~x

        assert ITE(T, T, T) is true
        assert ITE(T, T, F) is true
        assert ITE(T, F, T) is false
        assert ITE(T, F, F) is false
        assert ITE(F, T, T) is true
        assert ITE(F, T, F) is false
        assert ITE(F, F, T) is true
        assert ITE(F, F, F) is false

    assert all(i.simplify(1, 2) is i for i in (S.true, S.false))
Beispiel #25
0
def get_known_facts():
    # We build the facts starting with primitive predicates.
    # DO NOT include the predicates in get_composite_predicates()'s keys here!
    return And(

        # primitive predicates exclude each other
        Implies(Q.negative_infinite, ~Q.positive_infinite),
        Implies(Q.negative, ~Q.zero & ~Q.positive),
        Implies(Q.positive, ~Q.zero),

        # build real line and complex plane
        Implies(Q.negative | Q.zero | Q.positive, ~Q.imaginary),
        Implies(Q.negative | Q.zero | Q.positive | Q.imaginary,
                Q.algebraic | Q.transcendental),

        # other subsets of complex
        Implies(Q.transcendental, ~Q.algebraic),
        Implies(Q.irrational, ~Q.rational),
        Equivalent(Q.rational | Q.irrational,
                   Q.negative | Q.zero | Q.positive),
        Implies(Q.rational, Q.algebraic),

        # integers
        Implies(Q.even, ~Q.odd),
        Implies(Q.even | Q.odd, Q.rational),
        Implies(Q.zero, Q.even),
        Implies(Q.composite, ~Q.prime),
        Implies(Q.composite | Q.prime, (Q.even | Q.odd) & Q.positive),
        Implies(Q.even & Q.positive & ~Q.prime, Q.composite),

        # hermitian and antihermitian
        Implies(Q.negative | Q.zero | Q.positive, Q.hermitian),
        Implies(Q.imaginary, Q.antihermitian),
        Implies(Q.zero, Q.hermitian | Q.antihermitian),

        # define finity and infinity, and build extended real line
        Implies(Q.infinite, ~Q.finite),
        Implies(Q.algebraic | Q.transcendental, Q.finite),
        Implies(Q.negative_infinite | Q.positive_infinite, Q.infinite),

        # commutativity
        Implies(Q.finite | Q.infinite, Q.commutative),

        # matrices
        Implies(Q.orthogonal, Q.positive_definite),
        Implies(Q.orthogonal, Q.unitary),
        Implies(Q.unitary & Q.real_elements, Q.orthogonal),
        Implies(Q.unitary, Q.normal),
        Implies(Q.unitary, Q.invertible),
        Implies(Q.normal, Q.square),
        Implies(Q.diagonal, Q.normal),
        Implies(Q.positive_definite, Q.invertible),
        Implies(Q.diagonal, Q.upper_triangular),
        Implies(Q.diagonal, Q.lower_triangular),
        Implies(Q.lower_triangular, Q.triangular),
        Implies(Q.upper_triangular, Q.triangular),
        Implies(Q.triangular, Q.upper_triangular | Q.lower_triangular),
        Implies(Q.upper_triangular & Q.lower_triangular, Q.diagonal),
        Implies(Q.diagonal, Q.symmetric),
        Implies(Q.unit_triangular, Q.triangular),
        Implies(Q.invertible, Q.fullrank),
        Implies(Q.invertible, Q.square),
        Implies(Q.symmetric, Q.square),
        Implies(Q.fullrank & Q.square, Q.invertible),
        Equivalent(Q.invertible, ~Q.singular),
        Implies(Q.integer_elements, Q.real_elements),
        Implies(Q.real_elements, Q.complex_elements),
    )
Beispiel #26
0
def test_simplification():
    """
    Test working of simplification methods.
    """
    set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]]
    set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]]
    assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x))
    assert Not(SOPform([x, y, z], set2)) == \
        Not(Or(And(Not(x), Not(z)), And(x, z)))
    assert POSform([x, y, z], set1 + set2) is true
    assert SOPform([x, y, z], set1 + set2) is true
    assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true

    minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
                [1, 1, 1, 1]]
    dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, 3, 7, 11, 15]
    dontcares = [0, 2, 5]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, [0, 0, 1, 1], 7, [1, 0, 1, 1],
                [1, 1, 1, 1]]
    dontcares = [0, [0, 0, 1, 0], 5]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, {y: 1, z: 1}]
    dontcares = [0, [0, 0, 1, 0], 5]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)


    minterms = [{y: 1, z: 1}, 1]
    dontcares = [[0, 0, 0, 0]]

    minterms = [[0, 0, 0]]
    raises(ValueError, lambda: SOPform([w, x, y, z], minterms))
    raises(ValueError, lambda: POSform([w, x, y, z], minterms))

    raises(TypeError, lambda: POSform([w, x, y, z], ["abcdefg"]))

    # test simplification
    ans = And(A, Or(B, C))
    assert simplify_logic(A & (B | C)) == ans
    assert simplify_logic((A & B) | (A & C)) == ans
    assert simplify_logic(Implies(A, B)) == Or(Not(A), B)
    assert simplify_logic(Equivalent(A, B)) == \
        Or(And(A, B), And(Not(A), Not(B)))
    assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C)
    assert simplify_logic(And(Equality(A, 2), A)) is S.false
    assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A)
    assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C)
    assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \
        == And(Equality(A, 3), Or(B, C))
    b = (~x & ~y & ~z) | (~x & ~y & z)
    e = And(A, b)
    assert simplify_logic(e) == A & ~x & ~y
    raises(ValueError, lambda: simplify_logic(A & (B | C), form='blabla'))

    # Check that expressions with nine variables or more are not simplified
    # (without the force-flag)
    a, b, c, d, e, f, g, h, j = symbols('a b c d e f g h j')
    expr = a & b & c & d & e & f & g & h & j | \
        a & b & c & d & e & f & g & h & ~j
    # This expression can be simplified to get rid of the j variables
    assert simplify_logic(expr) == expr

    # check input
    ans = SOPform([x, y], [[1, 0]])
    assert SOPform([x, y], [[1, 0]]) == ans
    assert POSform([x, y], [[1, 0]]) == ans

    raises(ValueError, lambda: SOPform([x], [[1]], [[1]]))
    assert SOPform([x], [[1]], [[0]]) is true
    assert SOPform([x], [[0]], [[1]]) is true
    assert SOPform([x], [], []) is false

    raises(ValueError, lambda: POSform([x], [[1]], [[1]]))
    assert POSform([x], [[1]], [[0]]) is true
    assert POSform([x], [[0]], [[1]]) is true
    assert POSform([x], [], []) is false

    # check working of simplify
    assert simplify((A & B) | (A & C)) == And(A, Or(B, C))
    assert simplify(And(x, Not(x))) == False
    assert simplify(Or(x, Not(x))) == True
    assert simplify(And(Eq(x, 0), Eq(x, y))) == And(Eq(x, 0), Eq(y, 0))
    assert And(Eq(x - 1, 0), Eq(x, y)).simplify() == And(Eq(x, 1), Eq(y, 1))
    assert And(Ne(x - 1, 0), Ne(x, y)).simplify() == And(Ne(x, 1), Ne(x, y))
    assert And(Eq(x - 1, 0), Ne(x, y)).simplify() == And(Eq(x, 1), Ne(y, 1))
    assert And(Eq(x - 1, 0), Eq(x, z + y), Eq(y + x, 0)).simplify(
        ) == And(Eq(x, 1), Eq(y, -1), Eq(z, 2))
    assert And(Eq(x - 1, 0), Eq(x + 2, 3)).simplify() == Eq(x, 1)
    assert And(Ne(x - 1, 0), Ne(x + 2, 3)).simplify() == Ne(x, 1)
    assert And(Eq(x - 1, 0), Eq(x + 2, 2)).simplify() == False
    assert And(Ne(x - 1, 0), Ne(x + 2, 2)).simplify(
        ) == And(Ne(x, 1), Ne(x, 0))
Beispiel #27
0
 def test_implies_intuitive(self):
     A, B = self.alpha_symbols[:2]
     expr = Implies(A, B)
     model = mental_model_builder(expr, Insight.INTUITIVE)
     npt.assert_allclose(model.model, np.array([[POS_VAL, POS_VAL]]))