Beispiel #1
0
 def _eval_trace(self):
     from sympy.matrices.expressions.trace import Trace
     from sympy import Sum
     return Trace(self).rewrite(Sum).doit()
Beispiel #2
0
 def _eval_trace(self):
     from sympy.matrices.expressions.trace import Trace
     return conjugate(Trace(self.arg))
Beispiel #3
0
 def _eval_trace(self):
     from sympy.matrices.expressions.trace import Trace
     return Trace._eval_rewrite_as_Sum(Trace(self)).doit()
 def _eval_trace(self):
     if self.rowblocksizes == self.colblocksizes:
         return Add(
             *[Trace(self.blocks[i, i]) for i in range(self.blockshape[0])])
     raise NotImplementedError(
         "Can't perform trace of irregular blockshape")
Beispiel #5
0
def identify_hadamard_products(expr: tUnion[ArrayContraction, ArrayDiagonal]):

    editor: _EditArrayContraction = _EditArrayContraction(expr)

    map_contr_to_args: tDict[FrozenSet, List[_ArgE]] = defaultdict(list)
    map_ind_to_inds: tDict[Optional[int], int] = defaultdict(int)
    for arg_with_ind in editor.args_with_ind:
        for ind in arg_with_ind.indices:
            map_ind_to_inds[ind] += 1
        if None in arg_with_ind.indices:
            continue
        map_contr_to_args[frozenset(arg_with_ind.indices)].append(arg_with_ind)

    k: FrozenSet[int]
    v: List[_ArgE]
    for k, v in map_contr_to_args.items():
        make_trace: bool = False
        if len(k) == 1 and next(iter(k)) >= 0 and sum(
            [next(iter(k)) in i for i in map_contr_to_args]) == 1:
            # This is a trace: the arguments are fully contracted with only one
            # index, and the index isn't used anywhere else:
            make_trace = True
            first_element = S.One
        elif len(k) != 2:
            # Hadamard product only defined for matrices:
            continue
        if len(v) == 1:
            # Hadamard product with a single argument makes no sense:
            continue
        for ind in k:
            if map_ind_to_inds[ind] <= 2:
                # There is no other contraction, skip:
                continue

        def check_transpose(x):
            x = [i if i >= 0 else -1 - i for i in x]
            return x == sorted(x)

        # Check if expression is a trace:
        if all([map_ind_to_inds[j] == len(v) and j >= 0
                for j in k]) and all([j >= 0 for j in k]):
            # This is a trace
            make_trace = True
            first_element = v[0].element
            if not check_transpose(v[0].indices):
                first_element = first_element.T
            hadamard_factors = v[1:]
        else:
            hadamard_factors = v

        # This is a Hadamard product:

        hp = hadamard_product(*[
            i.element if check_transpose(i.indices) else Transpose(i.element)
            for i in hadamard_factors
        ])
        hp_indices = v[0].indices
        if not check_transpose(hadamard_factors[0].indices):
            hp_indices = list(reversed(hp_indices))
        if make_trace:
            hp = Trace(first_element * hp.T)._normalize()
            hp_indices = []
        editor.insert_after(v[0], _ArgE(hp, hp_indices))
        for i in v:
            editor.args_with_ind.remove(i)

    return editor.to_array_contraction()
def test_arrayexpr_convert_matrix_to_array():

    expr = M * N
    result = ArrayContraction(ArrayTensorProduct(M, N), (1, 2))
    assert convert_matrix_to_array(expr) == result

    expr = M * N * M
    result = _array_contraction(ArrayTensorProduct(M, N, M), (1, 2), (3, 4))
    assert convert_matrix_to_array(expr) == result

    expr = Transpose(M)
    assert convert_matrix_to_array(expr) == PermuteDims(M, [1, 0])

    expr = M * Transpose(N)
    assert convert_matrix_to_array(expr) == _array_contraction(
        _array_tensor_product(M, PermuteDims(N, [1, 0])), (1, 2))

    expr = 3 * M * N
    res = convert_matrix_to_array(expr)
    rexpr = convert_array_to_matrix(res)
    assert expr == rexpr

    expr = 3 * M + N * M.T * M + 4 * k * N
    res = convert_matrix_to_array(expr)
    rexpr = convert_array_to_matrix(res)
    assert expr == rexpr

    expr = Inverse(M) * N
    rexpr = convert_array_to_matrix(convert_matrix_to_array(expr))
    assert expr == rexpr

    expr = M**2
    rexpr = convert_array_to_matrix(convert_matrix_to_array(expr))
    assert expr == rexpr

    expr = M * (2 * N + 3 * M)
    res = convert_matrix_to_array(expr)
    rexpr = convert_array_to_matrix(res)
    assert expr == rexpr

    expr = Trace(M)
    result = ArrayContraction(M, (0, 1))
    assert convert_matrix_to_array(expr) == result

    expr = 3 * Trace(M)
    result = ArrayContraction(ArrayTensorProduct(3, M), (0, 1))
    assert convert_matrix_to_array(expr) == result

    expr = 3 * Trace(Trace(M) * M)
    result = ArrayContraction(ArrayTensorProduct(3, M, M), (0, 1), (2, 3))
    assert convert_matrix_to_array(expr) == result

    expr = 3 * Trace(M)**2
    result = ArrayContraction(ArrayTensorProduct(3, M, M), (0, 1), (2, 3))
    assert convert_matrix_to_array(expr) == result

    expr = HadamardProduct(M, N)
    result = ArrayDiagonal(ArrayTensorProduct(M, N), (0, 2), (1, 3))
    assert convert_matrix_to_array(expr) == result

    expr = HadamardProduct(M * N, N * M)
    result = ArrayDiagonal(
        ArrayContraction(ArrayTensorProduct(M, N, N, M), (1, 2), (5, 6)),
        (0, 2), (1, 3))
    assert convert_matrix_to_array(expr) == result

    expr = HadamardPower(M, 2)
    result = ArrayDiagonal(ArrayTensorProduct(M, M), (0, 2), (1, 3))
    assert convert_matrix_to_array(expr) == result

    expr = HadamardPower(M * N, 2)
    result = ArrayDiagonal(
        ArrayContraction(ArrayTensorProduct(M, N, M, N), (1, 2), (5, 6)),
        (0, 2), (1, 3))
    assert convert_matrix_to_array(expr) == result

    expr = HadamardPower(M, n)
    d0 = Dummy("d0")
    result = ArrayElementwiseApplyFunc(Lambda(d0, d0**n), M)
    assert convert_matrix_to_array(expr).dummy_eq(result)

    expr = M**2
    assert isinstance(expr, MatPow)
    assert convert_matrix_to_array(expr) == ArrayContraction(
        ArrayTensorProduct(M, M), (1, 2))

    expr = a.T * b
    cg = convert_matrix_to_array(expr)
    assert cg == ArrayContraction(ArrayTensorProduct(a, b), (0, 2))

    expr = KroneckerProduct(A, B)
    cg = convert_matrix_to_array(expr)
    assert cg == Reshape(PermuteDims(ArrayTensorProduct(A, B), [0, 2, 1, 3]),
                         (k**2, k**2))

    expr = KroneckerProduct(A, B, C, D)
    cg = convert_matrix_to_array(expr)
    assert cg == Reshape(
        PermuteDims(ArrayTensorProduct(A, B, C, D), [0, 2, 4, 6, 1, 3, 5, 7]),
        (k**4, k**4))
Beispiel #7
0
def _a2m_trace(arg):
    if isinstance(arg, _CodegenArrayAbstract):
        return _array_contraction(arg, (0, 1))
    else:
        from sympy.matrices.expressions.trace import Trace
        return Trace(arg)
 def density(self, expr):
     n, ZGSE = self.dimension, self.normalization_constant
     h_pspace = RandomMatrixPSpace('P', model=self)
     H = RandomMatrixSymbol('H', n, n, pspace=h_pspace)
     return Lambda(H, exp(-S(n) * Trace(H**2)) / ZGSE)(expr)
 def normalization_constant(self):
     n = self.dimension
     _H = MatrixSymbol('_H', n, n)
     return Integral(exp(-S(n) * Trace(_H**2)))
Beispiel #10
0
def test_mixed_deriv_mixed_expressions():

    expr = 3 * Trace(A)
    assert expr.diff(A) == 3 * Identity(k)

    expr = k
    deriv = expr.diff(A)
    assert isinstance(deriv, ZeroMatrix)
    assert deriv == ZeroMatrix(k, k)

    expr = Trace(A)**2
    assert expr.diff(A) == (2 * Trace(A)) * Identity(k)

    expr = Trace(A) * A
    I = Identity(k)
    assert expr.diff(A) == ArrayAdd(
        ArrayTensorProduct(I, A),
        PermuteDims(ArrayTensorProduct(Trace(A) * I, I),
                    Permutation(3)(1, 2)))

    expr = Trace(Trace(A) * A)
    assert expr.diff(A) == (2 * Trace(A)) * Identity(k)

    expr = Trace(Trace(Trace(A) * A) * A)
    assert expr.diff(A) == (3 * Trace(A)**2) * Identity(k)
Beispiel #11
0
def test_matrix_derivatives_of_traces():

    expr = Trace(A) * A
    I = Identity(k)
    assert expr.diff(A) == ArrayAdd(
        ArrayTensorProduct(I, A),
        PermuteDims(ArrayTensorProduct(Trace(A) * I, I),
                    Permutation(3)(1, 2)))
    assert expr[i, j].diff(
        A[m, n]).doit() == (KDelta(i, m) * KDelta(j, n) * Trace(A) +
                            KDelta(m, n) * A[i, j])

    ## First order:

    # Cookbook example 99:
    expr = Trace(X)
    assert expr.diff(X) == Identity(k)
    assert expr.rewrite(Sum).diff(X[m, n]).doit() == KDelta(m, n)

    # Cookbook example 100:
    expr = Trace(X * A)
    assert expr.diff(X) == A.T
    assert expr.rewrite(Sum).diff(X[m, n]).doit() == A[n, m]

    # Cookbook example 101:
    expr = Trace(A * X * B)
    assert expr.diff(X) == A.T * B.T
    assert expr.rewrite(Sum).diff(X[m, n]).doit().dummy_eq((A.T * B.T)[m, n])

    # Cookbook example 102:
    expr = Trace(A * X.T * B)
    assert expr.diff(X) == B * A

    # Cookbook example 103:
    expr = Trace(X.T * A)
    assert expr.diff(X) == A

    # Cookbook example 104:
    expr = Trace(A * X.T)
    assert expr.diff(X) == A

    # Cookbook example 105:
    # TODO: TensorProduct is not supported
    #expr = Trace(TensorProduct(A, X))
    #assert expr.diff(X) == Trace(A)*Identity(k)

    ## Second order:

    # Cookbook example 106:
    expr = Trace(X**2)
    assert expr.diff(X) == 2 * X.T

    # Cookbook example 107:
    expr = Trace(X**2 * B)
    assert expr.diff(X) == (X * B + B * X).T
    expr = Trace(MatMul(X, X, B))
    assert expr.diff(X) == (X * B + B * X).T

    # Cookbook example 108:
    expr = Trace(X.T * B * X)
    assert expr.diff(X) == B * X + B.T * X

    # Cookbook example 109:
    expr = Trace(B * X * X.T)
    assert expr.diff(X) == B * X + B.T * X

    # Cookbook example 110:
    expr = Trace(X * X.T * B)
    assert expr.diff(X) == B * X + B.T * X

    # Cookbook example 111:
    expr = Trace(X * B * X.T)
    assert expr.diff(X) == X * B.T + X * B

    # Cookbook example 112:
    expr = Trace(B * X.T * X)
    assert expr.diff(X) == X * B.T + X * B

    # Cookbook example 113:
    expr = Trace(X.T * X * B)
    assert expr.diff(X) == X * B.T + X * B

    # Cookbook example 114:
    expr = Trace(A * X * B * X)
    assert expr.diff(X) == A.T * X.T * B.T + B.T * X.T * A.T

    # Cookbook example 115:
    expr = Trace(X.T * X)
    assert expr.diff(X) == 2 * X
    expr = Trace(X * X.T)
    assert expr.diff(X) == 2 * X

    # Cookbook example 116:
    expr = Trace(B.T * X.T * C * X * B)
    assert expr.diff(X) == C.T * X * B * B.T + C * X * B * B.T

    # Cookbook example 117:
    expr = Trace(X.T * B * X * C)
    assert expr.diff(X) == B * X * C + B.T * X * C.T

    # Cookbook example 118:
    expr = Trace(A * X * B * X.T * C)
    assert expr.diff(X) == A.T * C.T * X * B.T + C * A * X * B

    # Cookbook example 119:
    expr = Trace((A * X * B + C) * (A * X * B + C).T)
    assert expr.diff(X) == 2 * A.T * (A * X * B + C) * B.T

    # Cookbook example 120:
    # TODO: no support for TensorProduct.
    # expr = Trace(TensorProduct(X, X))
    # expr = Trace(X)*Trace(X)
    # expr.diff(X) == 2*Trace(X)*Identity(k)

    # Higher Order

    # Cookbook example 121:
    expr = Trace(X**k)
    #assert expr.diff(X) == k*(X**(k-1)).T

    # Cookbook example 122:
    expr = Trace(A * X**k)
    #assert expr.diff(X) == # Needs indices

    # Cookbook example 123:
    expr = Trace(B.T * X.T * C * X * X.T * C * X * B)
    assert expr.diff(
        X
    ) == C * X * X.T * C * X * B * B.T + C.T * X * B * B.T * X.T * C.T * X + C * X * B * B.T * X.T * C * X + C.T * X * X.T * C.T * X * B * B.T

    # Other

    # Cookbook example 124:
    expr = Trace(A * X**(-1) * B)
    assert expr.diff(X) == -Inverse(X).T * A.T * B.T * Inverse(X).T

    # Cookbook example 125:
    expr = Trace(Inverse(X.T * C * X) * A)
    # Warning: result in the cookbook is equivalent if B and C are symmetric:
    assert expr.diff(X) == -X.inv().T * A.T * X.inv() * C.inv().T * X.inv(
    ).T - X.inv().T * A * X.inv() * C.inv() * X.inv().T

    # Cookbook example 126:
    expr = Trace((X.T * C * X).inv() * (X.T * B * X))
    assert expr.diff(X) == -2 * C * X * (X.T * C * X).inv() * X.T * B * X * (
        X.T * C * X).inv() + 2 * B * X * (X.T * C * X).inv()

    # Cookbook example 127:
    expr = Trace((A + X.T * C * X).inv() * (X.T * B * X))
    # Warning: result in the cookbook is equivalent if B and C are symmetric:
    assert expr.diff(X) == B * X * Inverse(A + X.T * C * X) - C * X * Inverse(
        A + X.T * C *
        X) * X.T * B * X * Inverse(A + X.T * C * X) - C.T * X * Inverse(
            A.T + (C * X).T * X) * X.T * B.T * X * Inverse(
                A.T + (C * X).T * X) + B.T * X * Inverse(A.T + (C * X).T * X)