def test_svd_test_case(): # a test case from Golub and Reinsch # (see wilkinson/reinsch: handbook for auto. comp., vol ii-linear algebra, 134-151(1971).) eps = mp.exp(0.8 * mp.log(mp.eps)) a = [[22, 10, 2, 3, 7], [14, 7, 10, 0, 8], [-1, 13, -1, -11, 3], [-3, -2, 13, -2, 4], [ 9, 8, 1, -2, 4], [ 9, 1, -7, 5, -1], [ 2, -6, 6, 5, 1], [ 4, 5, 0, -2, 2]] a = mp.matrix(a) b = mp.matrix([mp.sqrt(1248), 20, mp.sqrt(384), 0, 0]) S = mp.svd_r(a, compute_uv = False) S -= b assert mp.mnorm(S) < eps S = mp.svd_c(a, compute_uv = False) S -= b assert mp.mnorm(S) < eps
def test_svd_test_case(): # a test case from Golub and Reinsch # (see wilkinson/reinsch: handbook for auto. comp., vol ii-linear algebra, 134-151(1971).) eps = mp.exp(0.8 * mp.log(mp.eps)) a = [[22, 10, 2, 3, 7], [14, 7, 10, 0, 8], [-1, 13, -1, -11, 3], [-3, -2, 13, -2, 4], [9, 8, 1, -2, 4], [9, 1, -7, 5, -1], [2, -6, 6, 5, 1], [4, 5, 0, -2, 2]] a = mp.matrix(a) b = mp.matrix([mp.sqrt(1248), 20, mp.sqrt(384), 0, 0]) S = mp.svd_r(a, compute_uv=False) S -= b assert mp.mnorm(S) < eps S = mp.svd_c(a, compute_uv=False) S -= b assert mp.mnorm(S) < eps
def run_svd_c(A, full_matrices=False, verbose=True): m, n = A.rows, A.cols eps = mp.exp(0.8 * mp.log(mp.eps)) if verbose: print("original matrix:\n", str(A)) print("full", full_matrices) U, S0, V = mp.svd_c(A, full_matrices=full_matrices) S = mp.zeros(U.cols, V.rows) for j in xrange(min(m, n)): S[j, j] = S0[j] if verbose: print("U:\n", str(U)) print("S:\n", str(S0)) print("V:\n", str(V)) C = U * S * V - A err = mp.mnorm(C) if verbose: print("C\n", str(C), "\n", err) assert err < eps D = V * V.transpose_conj() - mp.eye(V.rows) err = mp.mnorm(D) if verbose: print("D:\n", str(D), "\n", err) assert err < eps E = U.transpose_conj() * U - mp.eye(U.cols) err = mp.mnorm(E) if verbose: print("E:\n", str(E), "\n", err) assert err < eps
def run_svd_c(A, full_matrices = False, verbose = True): m, n = A.rows, A.cols eps = mp.exp(0.8 * mp.log(mp.eps)) if verbose: print("original matrix:\n", str(A)) print("full", full_matrices) U, S0, V = mp.svd_c(A, full_matrices = full_matrices) S = mp.zeros(U.cols, V.rows) for j in xrange(min(m, n)): S[j,j] = S0[j] if verbose: print("U:\n", str(U)) print("S:\n", str(S0)) print("V:\n", str(V)) C = U * S * V - A err = mp.mnorm(C) if verbose: print("C\n", str(C), "\n", err) assert err < eps D = V * V.transpose_conj() - mp.eye(V.rows) err = mp.mnorm(D) if verbose: print("D:\n", str(D), "\n", err) assert err < eps E = U.transpose_conj() * U - mp.eye(U.cols) err = mp.mnorm(E) if verbose: print("E:\n", str(E), "\n", err) assert err < eps