Beispiel #1
0
def test_GroebnerBasis():
    assert str(groebner([], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')"

    F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]

    assert str(groebner(F, order='grlex')) == \
        "GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')"
    assert str(groebner(F, order='lex')) == \
        "GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')"
def test_GroebnerBasis():
    assert str(groebner(
        [], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')"

    F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]

    assert str(groebner(F, order='grlex')) == \
        "GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')"
    assert str(groebner(F, order='lex')) == \
        "GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')"
Beispiel #3
0
def solve_biquadratic(f, g, opt):
    """Solve a system of two bivariate quadratic polynomial equations. """
    G = groebner([f, g])

    if len(G) == 1 and G[0].is_ground:
        return None

    if len(G) != 2:
        raise SolveFailed

    p, q = G
    x, y = opt.gens

    p = Poly(p, x, expand=False)
    q = q.ltrim(-1)

    p_roots = [ rcollect(expr, y) for expr in roots(p).keys() ]
    q_roots = roots(q).keys()

    solutions = []

    for q_root in q_roots:
        for p_root in p_roots:
            solution = (p_root.subs(y, q_root), q_root)
            solutions.append(solution)

    return sorted(solutions)
Beispiel #4
0
def solve_biquadratic(f, g, opt):
    """Solve a system of two bivariate quadratic polynomial equations. """
    G = groebner([f, g])

    if len(G) == 1 and G[0].is_ground:
        return None

    if len(G) != 2:
        raise SolveFailed

    p, q = G
    x, y = opt.gens

    p = Poly(p, x, expand=False)
    q = q.ltrim(-1)

    p_roots = [ rcollect(expr, y) for expr in roots(p).keys() ]
    q_roots = roots(q).keys()

    solutions = []

    for q_root in q_roots:
        for p_root in p_roots:
            solution = (p_root.subs(y, q_root), q_root)
            solutions.append(solution)

    return sorted(solutions)
Beispiel #5
0
    def _solve_reduced_system(system, gens, entry=False):
        """Recursively solves reduced polynomial systems. """
        if len(system) == len(gens) == 1:
            zeros = list(roots(system[0], gens[-1]).keys())
            return [(zero, ) for zero in zeros]

        basis = groebner(system, gens, polys=True)

        if len(basis) == 1 and basis[0].is_ground:
            if not entry:
                return []
            else:
                return None

        univariate = list(filter(_is_univariate, basis))

        if len(univariate) == 1:
            f = univariate.pop()
        else:
            raise NotImplementedError(
                filldedent('''
                only zero-dimensional systems supported
                (finite number of solutions)
                '''))

        gens = f.gens
        gen = gens[-1]

        zeros = list(roots(f.ltrim(gen)).keys())

        if not zeros:
            return []

        if len(basis) == 1:
            return [(zero, ) for zero in zeros]

        solutions = []

        for zero in zeros:
            new_system = []
            new_gens = gens[:-1]

            for b in basis[:-1]:
                eq = _subs_root(b, gen, zero)

                if eq is not S.Zero:
                    new_system.append(eq)

            for solution in _solve_reduced_system(new_system, new_gens):
                solutions.append(solution + (zero, ))

        if solutions and len(solutions[0]) != len(gens):
            raise NotImplementedError(
                filldedent('''
                only zero-dimensional systems supported
                (finite number of solutions)
                '''))
        return solutions
Beispiel #6
0
    def _solve_reduced_system(system, gens, entry=False):
        """Recursively solves reduced polynomial systems. """
        if len(system) == len(gens) == 1:
            zeros = list(roots(system[0], gens[-1]).keys())
            return [(zero,) for zero in zeros]

        basis = groebner(system, gens, polys=True)

        if len(basis) == 1 and basis[0].is_ground:
            if not entry:
                return []
            else:
                return None

        univariate = list(filter(_is_univariate, basis))

        if len(univariate) == 1:
            f = univariate.pop()
        else:
            raise NotImplementedError(filldedent('''
                only zero-dimensional systems supported
                (finite number of solutions)
                '''))

        gens = f.gens
        gen = gens[-1]

        zeros = list(roots(f.ltrim(gen)).keys())

        if not zeros:
            return []

        if len(basis) == 1:
            return [(zero,) for zero in zeros]

        solutions = []

        for zero in zeros:
            new_system = []
            new_gens = gens[:-1]

            for b in basis[:-1]:
                eq = _subs_root(b, gen, zero)

                if eq is not S.Zero:
                    new_system.append(eq)

            for solution in _solve_reduced_system(new_system, new_gens):
                solutions.append(solution + (zero,))

        if solutions and len(solutions[0]) != len(gens):
            raise NotImplementedError(filldedent('''
                only zero-dimensional systems supported
                (finite number of solutions)
                '''))
        return solutions
Beispiel #7
0
def solve_biquadratic(f, g, opt):
    """Solve a system of two bivariate quadratic polynomial equations.

    Examples
    ========

    >>> from sympy.polys import Options, Poly
    >>> from sympy.abc import x, y
    >>> from sympy.solvers.polysys import solve_biquadratic
    >>> NewOption = Options((x, y), {'domain': 'ZZ'})

    >>> a = Poly(y**2 - 4 + x, y, x, domain='ZZ')
    >>> b = Poly(y*2 + 3*x - 7, y, x, domain='ZZ')
    >>> solve_biquadratic(a, b, NewOption)
    [(1/3, 3), (41/27, 11/9)]

    >>> a = Poly(y + x**2 - 3, y, x, domain='ZZ')
    >>> b = Poly(-y + x - 4, y, x, domain='ZZ')
    >>> solve_biquadratic(a, b, NewOption)
    [(7/2 - sqrt(29)/2, -sqrt(29)/2 - 1/2), (sqrt(29)/2 + 7/2, -1/2 + \
      sqrt(29)/2)]
    """
    G = groebner([f, g])

    if len(G) == 1 and G[0].is_ground:
        return None

    if len(G) != 2:
        raise SolveFailed

    x, y = opt.gens
    p, q = G
    if not p.gcd(q).is_ground:
        # not 0-dimensional
        raise SolveFailed

    p = Poly(p, x, expand=False)
    p_roots = [rcollect(expr, y) for expr in roots(p).keys()]

    q = q.ltrim(-1)
    q_roots = list(roots(q).keys())

    solutions = []

    for q_root in q_roots:
        for p_root in p_roots:
            solution = (p_root.subs(y, q_root), q_root)
            solutions.append(solution)

    return sorted(solutions, key=default_sort_key)
Beispiel #8
0
def solve_biquadratic(f, g, opt):
    """Solve a system of two bivariate quadratic polynomial equations.

    Examples
    ========

    >>> from sympy.polys import Options, Poly
    >>> from sympy.abc import x, y
    >>> from sympy.solvers.polysys import solve_biquadratic
    >>> NewOption = Options((x, y), {'domain': 'ZZ'})

    >>> a = Poly(y**2 - 4 + x, y, x, domain='ZZ')
    >>> b = Poly(y*2 + 3*x - 7, y, x, domain='ZZ')
    >>> solve_biquadratic(a, b, NewOption)
    [(1/3, 3), (41/27, 11/9)]

    >>> a = Poly(y + x**2 - 3, y, x, domain='ZZ')
    >>> b = Poly(-y + x - 4, y, x, domain='ZZ')
    >>> solve_biquadratic(a, b, NewOption)
    [(-sqrt(29)/2 + 7/2, -sqrt(29)/2 - 1/2), (sqrt(29)/2 + 7/2, -1/2 + \
      sqrt(29)/2)]
    """
    G = groebner([f, g])

    if len(G) == 1 and G[0].is_ground:
        return None

    if len(G) != 2:
        raise SolveFailed

    x, y = opt.gens
    p, q = G
    if not p.gcd(q).is_ground:
        # not 0-dimensional
        raise SolveFailed

    p = Poly(p, x, expand=False)
    p_roots = [rcollect(expr, y) for expr in roots(p).keys()]

    q = q.ltrim(-1)
    q_roots = list(roots(q).keys())

    solutions = []

    for q_root in q_roots:
        for p_root in p_roots:
            solution = (p_root.subs(y, q_root), q_root)
            solutions.append(solution)

    return sorted(solutions, key=default_sort_key)
Beispiel #9
0
    def solve_reduced_system(system, gens, entry=False):
        """Recursively solves reduced polynomial systems. """
        basis = groebner(system, gens, polys=True)

        if len(basis) == 1 and basis[0].is_ground:
            if not entry:
                return []
            else:
                return None

        univariate = filter(is_univariate, basis)
        basis = [ b.as_basic() for b in basis ]

        if len(univariate) == 1:
            f = univariate.pop()
        else:
            raise ValueError("only zero-dimensional systems supported")

        gens = f.gens
        f = f.as_basic()

        zeros = roots(f, gens[-1]).keys()

        if not zeros:
            return []

        if len(basis) == 1:
            return [ [zero] for zero in zeros ]

        solutions = []

        for zero in zeros:
            new_system = []
            new_gens = gens[:-1]

            for b in basis[:-1]:
                eq = b.subs(gens[-1], zero).expand()

                if not eq.is_zero:
                    new_system.append(eq)

            for solution in solve_reduced_system(new_system, new_gens):
                solutions.append(solution + [zero])

        return solutions
Beispiel #10
0
def solve_triangulated(polys, *gens, **args):
    """
    Solve a polynomial system using Gianni-Kalkbrenner algorithm.

    The algorithm proceeds by computing one Groebner basis in the ground
    domain and then by iteratively computing polynomial factorizations in
    appropriately constructed algebraic extensions of the ground domain.

    Examples
    ========

    >>> from sympy.solvers.polysys import solve_triangulated
    >>> from sympy.abc import x, y, z

    >>> F = [x**2 + y + z - 1, x + y**2 + z - 1, x + y + z**2 - 1]

    >>> solve_triangulated(F, x, y, z)
    [(0, 0, 1), (0, 1, 0), (1, 0, 0)]

    References
    ==========

    1. Patrizia Gianni, Teo Mora, Algebraic Solution of System of
    Polynomial Equations using Groebner Bases, AAECC-5 on Applied Algebra,
    Algebraic Algorithms and Error-Correcting Codes, LNCS 356 247--257, 1989

    """
    G = groebner(polys, gens, polys=True)
    G = list(reversed(G))

    domain = args.get('domain')

    if domain is not None:
        for i, g in enumerate(G):
            G[i] = g.set_domain(domain)

    f, G = G[0].ltrim(-1), G[1:]
    dom = f.get_domain()

    zeros = f.ground_roots()
    solutions = set([])

    for zero in zeros:
        solutions.add(((zero,), dom))

    var_seq = reversed(gens[:-1])
    vars_seq = postfixes(gens[1:])

    for var, vars in zip(var_seq, vars_seq):
        _solutions = set([])

        for values, dom in solutions:
            H, mapping = [], zip(vars, values)

            for g in G:
                _vars = (var,) + vars

                if g.has_only_gens(*_vars) and g.degree(var) != 0:
                    h = g.ltrim(var).eval(dict(mapping))

                    if g.degree(var) == h.degree():
                        H.append(h)

            p = min(H, key=lambda h: h.degree())
            zeros = p.ground_roots()

            for zero in zeros:
                if not zero.is_Rational:
                    dom_zero = dom.algebraic_field(zero)
                else:
                    dom_zero = dom

                _solutions.add(((zero,) + values, dom_zero))

        solutions = _solutions

    solutions = list(solutions)

    for i, (solution, _) in enumerate(solutions):
        solutions[i] = solution

    return sorted(solutions)
Beispiel #11
0
def solve_biquadratic(f, g, opt):
    """Solve a system of two bivariate quadratic polynomial equations.

    Parameters
    ==========

    f: a single Expr or Poly
        First equation
    g: a single Expr or Poly
        Second Equation
    opt: an Options object
        For specifying keyword arguments and generators

    Returns
    =======

    List[Tuple]
        A List of tuples. Solutions for symbols that satisfy the
        equations listed in seq.

    Examples
    ========

    >>> from sympy import Options, Poly
    >>> from sympy.abc import x, y
    >>> from sympy.solvers.polysys import solve_biquadratic
    >>> NewOption = Options((x, y), {'domain': 'ZZ'})

    >>> a = Poly(y**2 - 4 + x, y, x, domain='ZZ')
    >>> b = Poly(y*2 + 3*x - 7, y, x, domain='ZZ')
    >>> solve_biquadratic(a, b, NewOption)
    [(1/3, 3), (41/27, 11/9)]

    >>> a = Poly(y + x**2 - 3, y, x, domain='ZZ')
    >>> b = Poly(-y + x - 4, y, x, domain='ZZ')
    >>> solve_biquadratic(a, b, NewOption)
    [(7/2 - sqrt(29)/2, -sqrt(29)/2 - 1/2), (sqrt(29)/2 + 7/2, -1/2 + \
      sqrt(29)/2)]
    """
    G = groebner([f, g])

    if len(G) == 1 and G[0].is_ground:
        return None

    if len(G) != 2:
        raise SolveFailed

    x, y = opt.gens
    p, q = G
    if not p.gcd(q).is_ground:
        # not 0-dimensional
        raise SolveFailed

    p = Poly(p, x, expand=False)
    p_roots = [rcollect(expr, y) for expr in roots(p).keys()]

    q = q.ltrim(-1)
    q_roots = list(roots(q).keys())

    solutions = []

    for q_root in q_roots:
        for p_root in p_roots:
            solution = (p_root.subs(y, q_root), q_root)
            solutions.append(solution)

    return sorted(solutions, key=default_sort_key)
Beispiel #12
0
def solve_triangulated(polys, *gens, **args):
    """
    Solve a polynomial system using Gianni-Kalkbrenner algorithm.

    The algorithm proceeds by computing one Groebner basis in the ground
    domain and then by iteratively computing polynomial factorizations in
    appropriately constructed algebraic extensions of the ground domain.

    Parameters
    ==========

    polys: a list/tuple/set
        Listing all the equations that are needed to be solved
    gens: generators
        generators of the equations in polys for which we want the
        solutions
    args: Keyword arguments
        Special options for solving the equations

    Returns
    =======

    List[Tuple]
        A List of tuples. Solutions for symbols that satisfy the
        equations listed in polys

    Examples
    ========

    >>> from sympy import solve_triangulated
    >>> from sympy.abc import x, y, z

    >>> F = [x**2 + y + z - 1, x + y**2 + z - 1, x + y + z**2 - 1]

    >>> solve_triangulated(F, x, y, z)
    [(0, 0, 1), (0, 1, 0), (1, 0, 0)]

    References
    ==========

    1. Patrizia Gianni, Teo Mora, Algebraic Solution of System of
    Polynomial Equations using Groebner Bases, AAECC-5 on Applied Algebra,
    Algebraic Algorithms and Error-Correcting Codes, LNCS 356 247--257, 1989

    """
    G = groebner(polys, gens, polys=True)
    G = list(reversed(G))

    domain = args.get('domain')

    if domain is not None:
        for i, g in enumerate(G):
            G[i] = g.set_domain(domain)

    f, G = G[0].ltrim(-1), G[1:]
    dom = f.get_domain()

    zeros = f.ground_roots()
    solutions = set()

    for zero in zeros:
        solutions.add(((zero, ), dom))

    var_seq = reversed(gens[:-1])
    vars_seq = postfixes(gens[1:])

    for var, vars in zip(var_seq, vars_seq):
        _solutions = set()

        for values, dom in solutions:
            H, mapping = [], list(zip(vars, values))

            for g in G:
                _vars = (var, ) + vars

                if g.has_only_gens(*_vars) and g.degree(var) != 0:
                    h = g.ltrim(var).eval(dict(mapping))

                    if g.degree(var) == h.degree():
                        H.append(h)

            p = min(H, key=lambda h: h.degree())
            zeros = p.ground_roots()

            for zero in zeros:
                if not zero.is_Rational:
                    dom_zero = dom.algebraic_field(zero)
                else:
                    dom_zero = dom

                _solutions.add(((zero, ) + values, dom_zero))

        solutions = _solutions

    solutions = list(solutions)

    for i, (solution, _) in enumerate(solutions):
        solutions[i] = solution

    return sorted(solutions, key=default_sort_key)
Beispiel #13
0
def solve_triangulated(polys, *gens, **args):
    """
    Solve a polynomial system using Gianni-Kalkbrenner algorithm.

    The algorithm proceeds by computing one Groebner basis in the ground
    domain and then by iteratively computing polynomial factorizations in
    appropriately constructed algebraic extensions of the ground domain.

    Example
    =======

    >>> from sympy.solvers.polysys import solve_triangulated
    >>> from sympy.abc import x, y, z

    >>> F = [x**2 + y + z - 1, x + y**2 + z - 1, x + y + z**2 - 1]

    >>> solve_triangulated(F, x, y, z)
    [(0, 0, 1), (0, 1, 0), (1, 0, 0)]

    References
    ==========

    .. [Gianni89] Patrizia Gianni, Teo Mora, Algebraic Solution of System of
    Polynomial Equations using Groebner Bases, AAECC-5 on Applied Algebra,
    Algebraic Algorithms and Error-Correcting Codes, LNCS 356 247--257, 1989

    """
    G = groebner(polys, gens, polys=True)
    G = list(reversed(G))

    domain = args.get('domain')

    if domain is not None:
        for i, g in enumerate(G):
            G[i] = g.set_domain(domain)

    f, G = G[0].ltrim(-1), G[1:]
    dom = f.get_domain()

    zeros = f.ground_roots()
    solutions = set([])

    for zero in zeros:
        solutions.add(((zero, ), dom))

    var_seq = reversed(gens[:-1])
    vars_seq = postfixes(gens[1:])

    for var, vars in zip(var_seq, vars_seq):
        _solutions = set([])

        for values, dom in solutions:
            H, mapping = [], zip(vars, values)

            for g in G:
                _vars = (var, ) + vars

                if g.has_only_gens(*_vars) and g.degree(var) != 0:
                    h = g.ltrim(var).eval(mapping)

                    if g.degree(var) == h.degree():
                        H.append(h)

            p = minkey(H, key=lambda h: h.degree())
            zeros = p.ground_roots()

            for zero in zeros:
                if not zero.is_Rational:
                    dom_zero = dom.algebraic_field(zero)
                else:
                    dom_zero = dom

                _solutions.add(((zero, ) + values, dom_zero))

        solutions = _solutions

    solutions = list(solutions)

    for i, (solution, _) in enumerate(solutions):
        solutions[i] = solution

    return sorted(solutions)