Beispiel #1
0
 def mysimp(expr):
     from sympy.core.function import expand
     from sympy.simplify.powsimp import powsimp
     from sympy.simplify.simplify import logcombine
     return expand(
         powsimp(logcombine(expr, force=True), force=True, deep=True),
         force=True).replace(exp_polar, exp)
Beispiel #2
0
def _denest_pow(eq):
    """
    Denest powers.

    This is a helper function for powdenest that performs the actual
    transformation.
    """
    from sympy.simplify.simplify import logcombine

    b, e = eq.as_base_exp()
    if b.is_Pow or isinstance(b.func, exp) and e != 1:
        new = b._eval_power(e)
        if new is not None:
            eq = new
            b, e = new.as_base_exp()

    # denest exp with log terms in exponent
    if b is S.Exp1 and e.is_Mul:
        logs = []
        other = []
        for ei in e.args:
            if any(isinstance(ai, log) for ai in Add.make_args(ei)):
                logs.append(ei)
            else:
                other.append(ei)
        logs = logcombine(Mul(*logs))
        return Pow(exp(logs), Mul(*other))

    _, be = b.as_base_exp()
    if be is S.One and not (b.is_Mul or
                            b.is_Rational and b.q != 1 or
                            b.is_positive):
        return eq

    # denest eq which is either pos**e or Pow**e or Mul**e or
    # Mul(b1**e1, b2**e2)

    # handle polar numbers specially
    polars, nonpolars = [], []
    for bb in Mul.make_args(b):
        if bb.is_polar:
            polars.append(bb.as_base_exp())
        else:
            nonpolars.append(bb)
    if len(polars) == 1 and not polars[0][0].is_Mul:
        return Pow(polars[0][0], polars[0][1]*e)*powdenest(Mul(*nonpolars)**e)
    elif polars:
        return Mul(*[powdenest(bb**(ee*e)) for (bb, ee) in polars]) \
            *powdenest(Mul(*nonpolars)**e)

    if b.is_Integer:
        # use log to see if there is a power here
        logb = expand_log(log(b))
        if logb.is_Mul:
            c, logb = logb.args
            e *= c
            base = logb.args[0]
            return Pow(base, e)

    # if b is not a Mul or any factor is an atom then there is nothing to do
    if not b.is_Mul or any(s.is_Atom for s in Mul.make_args(b)):
        return eq

    # let log handle the case of the base of the argument being a Mul, e.g.
    # sqrt(x**(2*i)*y**(6*i)) -> x**i*y**(3**i) if x and y are positive; we
    # will take the log, expand it, and then factor out the common powers that
    # now appear as coefficient. We do this manually since terms_gcd pulls out
    # fractions, terms_gcd(x+x*y/2) -> x*(y + 2)/2 and we don't want the 1/2;
    # gcd won't pull out numerators from a fraction: gcd(3*x, 9*x/2) -> x but
    # we want 3*x. Neither work with noncommutatives.

    def nc_gcd(aa, bb):
        a, b = [i.as_coeff_Mul() for i in [aa, bb]]
        c = gcd(a[0], b[0]).as_numer_denom()[0]
        g = Mul(*(a[1].args_cnc(cset=True)[0] & b[1].args_cnc(cset=True)[0]))
        return _keep_coeff(c, g)

    glogb = expand_log(log(b))
    if glogb.is_Add:
        args = glogb.args
        g = reduce(nc_gcd, args)
        if g != 1:
            cg, rg = g.as_coeff_Mul()
            glogb = _keep_coeff(cg, rg*Add(*[a/g for a in args]))

    # now put the log back together again
    if isinstance(glogb, log) or not glogb.is_Mul:
        if glogb.args[0].is_Pow or isinstance(glogb.args[0], exp):
            glogb = _denest_pow(glogb.args[0])
            if (abs(glogb.exp) < 1) == True:
                return Pow(glogb.base, glogb.exp*e)
        return eq

    # the log(b) was a Mul so join any adds with logcombine
    add = []
    other = []
    for a in glogb.args:
        if a.is_Add:
            add.append(a)
        else:
            other.append(a)
    return Pow(exp(logcombine(Mul(*add))), e*Mul(*other))
Beispiel #3
0
def _denest_pow(eq):
    """
    Denest powers.

    This is a helper function for powdenest that performs the actual
    transformation.
    """
    from sympy.simplify.simplify import logcombine

    b, e = eq.as_base_exp()
    if b.is_Pow or isinstance(b.func, exp) and e != 1:
        new = b._eval_power(e)
        if new is not None:
            eq = new
            b, e = new.as_base_exp()

    # denest exp with log terms in exponent
    if b is S.Exp1 and e.is_Mul:
        logs = []
        other = []
        for ei in e.args:
            if any(isinstance(ai, log) for ai in Add.make_args(ei)):
                logs.append(ei)
            else:
                other.append(ei)
        logs = logcombine(Mul(*logs))
        return Pow(exp(logs), Mul(*other))

    _, be = b.as_base_exp()
    if be is S.One and not (b.is_Mul or b.is_Rational and b.q != 1
                            or b.is_positive):
        return eq

    # denest eq which is either pos**e or Pow**e or Mul**e or
    # Mul(b1**e1, b2**e2)

    # handle polar numbers specially
    polars, nonpolars = [], []
    for bb in Mul.make_args(b):
        if bb.is_polar:
            polars.append(bb.as_base_exp())
        else:
            nonpolars.append(bb)
    if len(polars) == 1 and not polars[0][0].is_Mul:
        return Pow(polars[0][0], polars[0][1] * e) * powdenest(
            Mul(*nonpolars)**e)
    elif polars:
        return Mul(*[powdenest(bb**(ee*e)) for (bb, ee) in polars]) \
            *powdenest(Mul(*nonpolars)**e)

    if b.is_Integer:
        # use log to see if there is a power here
        logb = expand_log(log(b))
        if logb.is_Mul:
            c, logb = logb.args
            e *= c
            base = logb.args[0]
            return Pow(base, e)

    # if b is not a Mul or any factor is an atom then there is nothing to do
    if not b.is_Mul or any(s.is_Atom for s in Mul.make_args(b)):
        return eq

    # let log handle the case of the base of the argument being a Mul, e.g.
    # sqrt(x**(2*i)*y**(6*i)) -> x**i*y**(3**i) if x and y are positive; we
    # will take the log, expand it, and then factor out the common powers that
    # now appear as coefficient. We do this manually since terms_gcd pulls out
    # fractions, terms_gcd(x+x*y/2) -> x*(y + 2)/2 and we don't want the 1/2;
    # gcd won't pull out numerators from a fraction: gcd(3*x, 9*x/2) -> x but
    # we want 3*x. Neither work with noncommutatives.

    def nc_gcd(aa, bb):
        a, b = [i.as_coeff_Mul() for i in [aa, bb]]
        c = gcd(a[0], b[0]).as_numer_denom()[0]
        g = Mul(*(a[1].args_cnc(cset=True)[0] & b[1].args_cnc(cset=True)[0]))
        return _keep_coeff(c, g)

    glogb = expand_log(log(b))
    if glogb.is_Add:
        args = glogb.args
        g = reduce(nc_gcd, args)
        if g != 1:
            cg, rg = g.as_coeff_Mul()
            glogb = _keep_coeff(cg, rg * Add(*[a / g for a in args]))

    # now put the log back together again
    if isinstance(glogb, log) or not glogb.is_Mul:
        if glogb.args[0].is_Pow or isinstance(glogb.args[0], exp):
            glogb = _denest_pow(glogb.args[0])
            if (abs(glogb.exp) < 1) == True:
                return Pow(glogb.base, glogb.exp * e)
        return eq

    # the log(b) was a Mul so join any adds with logcombine
    add = []
    other = []
    for a in glogb.args:
        if a.is_Add:
            add.append(a)
        else:
            other.append(a)
    return Pow(exp(logcombine(Mul(*add))), e * Mul(*other))
Beispiel #4
0
    def _eval_nseries(self, x, n, logx, cdir=0):
        # NOTE Please see the comment at the beginning of this file, labelled
        #      IMPORTANT.
        from sympy.functions.elementary.complexes import im
        from sympy.polys.polytools import cancel
        from sympy.series.order import Order
        from sympy.simplify.simplify import logcombine
        from itertools import product
        if not logx:
            logx = log(x)
        if self.args[0] == x:
            return logx
        arg = self.args[0]
        k, l = Wild("k"), Wild("l")
        r = arg.match(k * x**l)
        if r is not None:
            k, l = r[k], r[l]
            if l != 0 and not l.has(x) and not k.has(x):
                r = log(k) + l * logx  # XXX true regardless of assumptions?
                return r

        def coeff_exp(term, x):
            coeff, exp = S.One, S.Zero
            for factor in Mul.make_args(term):
                if factor.has(x):
                    base, exp = factor.as_base_exp()
                    if base != x:
                        try:
                            return term.leadterm(x)
                        except ValueError:
                            return term, S.Zero
                else:
                    coeff *= factor
            return coeff, exp

        # TODO new and probably slow
        try:
            a, b = arg.leadterm(x)
            s = arg.nseries(x, n=n + b, logx=logx)
        except (ValueError, NotImplementedError, PoleError):
            s = arg.nseries(x, n=n, logx=logx)
            while s.is_Order:
                n += 1
                s = arg.nseries(x, n=n, logx=logx)
        a, b = s.removeO().leadterm(x)
        p = cancel(s / (a * x**b) - 1).expand().powsimp()
        if p.has(exp):
            p = logcombine(p)
        if isinstance(p, Order):
            n = p.getn()
        _, d = coeff_exp(p, x)
        if not d.is_positive:
            return log(a) + b * logx + Order(x**n, x)

        def mul(d1, d2):
            res = {}
            for e1, e2 in product(d1, d2):
                ex = e1 + e2
                if ex < n:
                    res[ex] = res.get(ex, S.Zero) + d1[e1] * d2[e2]
            return res

        pterms = {}

        for term in Add.make_args(p):
            co1, e1 = coeff_exp(term, x)
            pterms[e1] = pterms.get(e1, S.Zero) + co1.removeO()

        k = S.One
        terms = {}
        pk = pterms

        while k * d < n:
            coeff = -S.NegativeOne**k / k
            for ex in pk:
                terms[ex] = terms.get(ex, S.Zero) + coeff * pk[ex]
            pk = mul(pk, pterms)
            k += S.One

        res = log(a) + b * logx
        for ex in terms:
            res += terms[ex] * x**(ex)

        if cdir != 0:
            cdir = self.args[0].dir(x, cdir)
        if a.is_real and a.is_negative and im(cdir) < 0:
            res -= 2 * I * S.Pi
        return res + Order(x**n, x)
Beispiel #5
0
    def eval(cls, arg):
        from sympy.calculus import AccumBounds
        from sympy.matrices.matrices import MatrixBase
        from sympy.functions.elementary.complexes import (im, re)
        from sympy.simplify.simplify import logcombine
        if isinstance(arg, MatrixBase):
            return arg.exp()
        elif global_parameters.exp_is_pow:
            return Pow(S.Exp1, arg)
        elif arg.is_Number:
            if arg is S.NaN:
                return S.NaN
            elif arg.is_zero:
                return S.One
            elif arg is S.One:
                return S.Exp1
            elif arg is S.Infinity:
                return S.Infinity
            elif arg is S.NegativeInfinity:
                return S.Zero
        elif arg is S.ComplexInfinity:
            return S.NaN
        elif isinstance(arg, log):
            return arg.args[0]
        elif isinstance(arg, AccumBounds):
            return AccumBounds(exp(arg.min), exp(arg.max))
        elif isinstance(arg, SetExpr):
            return arg._eval_func(cls)
        elif arg.is_Mul:
            coeff = arg.as_coefficient(S.Pi * S.ImaginaryUnit)
            if coeff:
                if (2 * coeff).is_integer:
                    if coeff.is_even:
                        return S.One
                    elif coeff.is_odd:
                        return S.NegativeOne
                    elif (coeff + S.Half).is_even:
                        return -S.ImaginaryUnit
                    elif (coeff + S.Half).is_odd:
                        return S.ImaginaryUnit
                elif coeff.is_Rational:
                    ncoeff = coeff % 2  # restrict to [0, 2pi)
                    if ncoeff > 1:  # restrict to (-pi, pi]
                        ncoeff -= 2
                    if ncoeff != coeff:
                        return cls(ncoeff * S.Pi * S.ImaginaryUnit)

            # Warning: code in risch.py will be very sensitive to changes
            # in this (see DifferentialExtension).

            # look for a single log factor

            coeff, terms = arg.as_coeff_Mul()

            # but it can't be multiplied by oo
            if coeff in [S.NegativeInfinity, S.Infinity]:
                if terms.is_number:
                    if coeff is S.NegativeInfinity:
                        terms = -terms
                    if re(terms).is_zero and terms is not S.Zero:
                        return S.NaN
                    if re(terms).is_positive and im(terms) is not S.Zero:
                        return S.ComplexInfinity
                    if re(terms).is_negative:
                        return S.Zero
                return None

            coeffs, log_term = [coeff], None
            for term in Mul.make_args(terms):
                term_ = logcombine(term)
                if isinstance(term_, log):
                    if log_term is None:
                        log_term = term_.args[0]
                    else:
                        return None
                elif term.is_comparable:
                    coeffs.append(term)
                else:
                    return None

            return log_term**Mul(*coeffs) if log_term else None

        elif arg.is_Add:
            out = []
            add = []
            argchanged = False
            for a in arg.args:
                if a is S.One:
                    add.append(a)
                    continue
                newa = cls(a)
                if isinstance(newa, cls):
                    if newa.args[0] != a:
                        add.append(newa.args[0])
                        argchanged = True
                    else:
                        add.append(a)
                else:
                    out.append(newa)
            if out or argchanged:
                return Mul(*out) * cls(Add(*add), evaluate=False)

        if arg.is_zero:
            return S.One