Beispiel #1
0
def test_chi_squared():
    k = Symbol("k", integer=True)

    X = ChiSquared('x', k)
    assert density(X)(x) == 2**(-k / 2) * x**(k / 2 - 1) * exp(-x / 2) / gamma(
        k / 2)
    assert cdf(X)(x) == Piecewise(
        (lowergamma(k / 2, x / 2) / gamma(k / 2), x >= 0), (0, True))

    X = ChiSquared('x', 15)
    assert cdf(X)(3) == -14873 * sqrt(6) * exp(
        -S(3) / 2) / (5005 * sqrt(pi)) + erf(sqrt(6) / 2)
Beispiel #2
0
def test_precomputed_characteristic_functions():
    import mpmath

    def test_cf(dist, support_lower_limit, support_upper_limit):
        pdf = density(dist)
        t = Symbol('t')
        x = Symbol('x')

        # first function is the hardcoded CF of the distribution
        cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath')

        # second function is the Fourier transform of the density function
        f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath')
        cf2 = lambda t: mpmath.quad(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10)

        # compare the two functions at various points
        for test_point in [2, 5, 8, 11]:
            n1 = cf1(test_point)
            n2 = cf2(test_point)

            assert abs(re(n1) - re(n2)) < 1e-12
            assert abs(im(n1) - im(n2)) < 1e-12

    test_cf(Beta('b', 1, 2), 0, 1)
    test_cf(Chi('c', 3), 0, mpmath.inf)
    test_cf(ChiSquared('c', 2), 0, mpmath.inf)
    test_cf(Exponential('e', 6), 0, mpmath.inf)
    test_cf(Logistic('l', 1, 2), -mpmath.inf, mpmath.inf)
    test_cf(Normal('n', -1, 5), -mpmath.inf, mpmath.inf)
    test_cf(RaisedCosine('r', 3, 1), 2, 4)
    test_cf(Rayleigh('r', 0.5), 0, mpmath.inf)
    test_cf(Uniform('u', -1, 1), -1, 1)
    test_cf(WignerSemicircle('w', 3), -3, 3)
def test_sample_scipy():
    distribs_scipy = [
        Beta("B", 1, 1),
        BetaPrime("BP", 1, 1),
        Cauchy("C", 1, 1),
        Chi("C", 1),
        Normal("N", 0, 1),
        Gamma("G", 2, 7),
        GammaInverse("GI", 1, 1),
        GaussianInverse("GUI", 1, 1),
        Exponential("E", 2),
        LogNormal("LN", 0, 1),
        Pareto("P", 1, 1),
        StudentT("S", 2),
        ChiSquared("CS", 2),
        Uniform("U", 0, 1)
    ]
    size = 3
    scipy = import_module('scipy')
    if not scipy:
        skip('Scipy is not installed. Abort tests for _sample_scipy.')
    else:
        for X in distribs_scipy:
            samps = sample(X, size=size, library='scipy')
            samps2 = sample(X, size=(2, 2), library='scipy')
            for sam in samps:
                assert sam in X.pspace.domain.set
            for i in range(2):
                for j in range(2):
                    assert samps2[i][j] in X.pspace.domain.set
Beispiel #4
0
def test_sample_numpy():
    distribs_numpy = [
        Beta("B", 1, 1),
        Normal("N", 0, 1),
        Gamma("G", 2, 7),
        Exponential("E", 2),
        LogNormal("LN", 0, 1),
        Pareto("P", 1, 1),
        ChiSquared("CS", 2),
        Uniform("U", 0, 1)
    ]
    size = 3
    numpy = import_module('numpy')
    if not numpy:
        skip('Numpy is not installed. Abort tests for _sample_numpy.')
    else:
        for X in distribs_numpy:
            samps = sample(X, size=size, library='numpy')
            for sam in samps:
                assert sam in X.pspace.domain.set
        raises(NotImplementedError,
               lambda: sample(Chi("C", 1), library='numpy'))
    raises(
        NotImplementedError,
        lambda: Chi("C", 1).pspace.distribution.sample(library='tensorflow'))
def test_sample_pymc3():
    distribs_pymc3 = [
        Beta("B", 1, 1),
        Cauchy("C", 1, 1),
        Normal("N", 0, 1),
        Gamma("G", 2, 7),
        GaussianInverse("GI", 1, 1),
        Exponential("E", 2),
        LogNormal("LN", 0, 1),
        Pareto("P", 1, 1),
        ChiSquared("CS", 2),
        Uniform("U", 0, 1)
    ]
    size = 3
    pymc3 = import_module('pymc3')
    if not pymc3:
        skip('PyMC3 is not installed. Abort tests for _sample_pymc3.')
    else:
        with ignore_warnings(
                UserWarning
        ):  ### TODO: Restore tests once warnings are removed
            for X in distribs_pymc3:
                samps = next(sample(X, size=size, library='pymc3'))
                for sam in samps:
                    assert sam in X.pspace.domain.set
            raises(NotImplementedError,
                   lambda: next(sample(Chi("C", 1), library='pymc3')))
Beispiel #6
0
def test_prob_neq():
    E = Exponential('E', 4)
    X = ChiSquared('X', 4)
    assert P(Ne(E, 2)) == 1
    assert P(Ne(X, 4)) == 1
    assert P(Ne(X, 4)) == 1
    assert P(Ne(X, 5)) == 1
    assert P(Ne(E, x)) == 1
Beispiel #7
0
def test_chi_squared():
    k = Symbol("k", integer=True)

    X = ChiSquared('x', k)
    assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2)
    assert cdf(X)(x) == Piecewise((lowergamma(k/2, x/2)/gamma(k/2), x >= 0), (0, True))
    assert E(X) == k
    assert variance(X) == 2*k

    X = ChiSquared('x', 15)
    assert cdf(X)(3) == -14873*sqrt(6)*exp(-S(3)/2)/(5005*sqrt(pi)) + erf(sqrt(6)/2)

    k = Symbol("k", integer=True, positive=False)
    raises(ValueError, lambda: ChiSquared('x', k))

    k = Symbol("k", integer=False, positive=True)
    raises(ValueError, lambda: ChiSquared('x', k))
Beispiel #8
0
def test_chi_squared():
    k = Symbol("k", integer=True)
    X = ChiSquared('x', k)

    # Tests the characteristic function
    assert characteristic_function(X)(x) == ((-2*I*x + 1)**(-k/2))

    assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2)
    assert cdf(X)(x) == Piecewise((lowergamma(k/2, x/2)/gamma(k/2), x >= 0), (0, True))
    assert E(X) == k
    assert variance(X) == 2*k

    X = ChiSquared('x', 15)
    assert cdf(X)(3) == -14873*sqrt(6)*exp(Rational(-3, 2))/(5005*sqrt(pi)) + erf(sqrt(6)/2)

    k = Symbol("k", integer=True, positive=False)
    raises(ValueError, lambda: ChiSquared('x', k))

    k = Symbol("k", integer=False, positive=True)
    raises(ValueError, lambda: ChiSquared('x', k))
Beispiel #9
0
def test_precomputed_cdf():
    x = symbols("x", real=True, finite=True)
    mu = symbols("mu", real=True, finite=True)
    sigma, xm, alpha = symbols("sigma xm alpha", positive=True, finite=True)
    n = symbols("n", integer=True, positive=True, finite=True)
    distribs = [
            Normal("X", mu, sigma),
            Pareto("P", xm, alpha),
            ChiSquared("C", n),
            Exponential("E", sigma),
            # LogNormal("L", mu, sigma),
    ]
    for X in distribs:
        compdiff = cdf(X)(x) - simplify(X.pspace.density.compute_cdf()(x))
        compdiff = simplify(compdiff.rewrite(erfc))
        assert compdiff == 0
def test_sample_scipy():
    distribs_scipy = [
        Beta("B", 1, 1),
        BetaPrime("BP", 1, 1),
        Cauchy("C", 1, 1),
        Chi("C", 1),
        Normal("N", 0, 1),
        Gamma("G", 2, 7),
        GammaInverse("GI", 1, 1),
        GaussianInverse("GUI", 1, 1),
        Exponential("E", 2),
        LogNormal("LN", 0, 1),
        Pareto("P", 1, 1),
        StudentT("S", 2),
        ChiSquared("CS", 2),
        Uniform("U", 0, 1)
    ]
    size = 3
    numsamples = 5
    scipy = import_module('scipy')
    if not scipy:
        skip('Scipy is not installed. Abort tests for _sample_scipy.')
    else:
        with ignore_warnings(
                UserWarning
        ):  ### TODO: Restore tests once warnings are removed
            g_sample = list(
                sample(Gamma("G", 2, 7), size=size, numsamples=numsamples))
            assert len(g_sample) == numsamples
            for X in distribs_scipy:
                samps = next(sample(X, size=size, library='scipy'))
                samps2 = next(sample(X, size=(2, 2), library='scipy'))
                for sam in samps:
                    assert sam in X.pspace.domain.set
                for i in range(2):
                    for j in range(2):
                        assert samps2[i][j] in X.pspace.domain.set
Beispiel #11
0
def test_chi_squared():
    k = Symbol("k", integer=True)

    X = ChiSquared('x', k)
    assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2)
Beispiel #12
0
def test_moment_generating_function():
    t = symbols('t', positive=True)

    # Symbolic tests
    a, b, c = symbols('a b c')

    mgf = moment_generating_function(Beta('x', a, b))(t)
    assert mgf == hyper((a, ), (a + b, ), t)

    mgf = moment_generating_function(Chi('x', a))(t)
    assert mgf == sqrt(2)*t*gamma(a/2 + S.Half)*\
        hyper((a/2 + S.Half,), (Rational(3, 2),), t**2/2)/gamma(a/2) +\
        hyper((a/2,), (S.Half,), t**2/2)

    mgf = moment_generating_function(ChiSquared('x', a))(t)
    assert mgf == (1 - 2 * t)**(-a / 2)

    mgf = moment_generating_function(Erlang('x', a, b))(t)
    assert mgf == (1 - t / b)**(-a)

    mgf = moment_generating_function(ExGaussian("x", a, b, c))(t)
    assert mgf == exp(a * t + b**2 * t**2 / 2) / (1 - t / c)

    mgf = moment_generating_function(Exponential('x', a))(t)
    assert mgf == a / (a - t)

    mgf = moment_generating_function(Gamma('x', a, b))(t)
    assert mgf == (-b * t + 1)**(-a)

    mgf = moment_generating_function(Gumbel('x', a, b))(t)
    assert mgf == exp(b * t) * gamma(-a * t + 1)

    mgf = moment_generating_function(Gompertz('x', a, b))(t)
    assert mgf == b * exp(b) * expint(t / a, b)

    mgf = moment_generating_function(Laplace('x', a, b))(t)
    assert mgf == exp(a * t) / (-b**2 * t**2 + 1)

    mgf = moment_generating_function(Logistic('x', a, b))(t)
    assert mgf == exp(a * t) * beta(-b * t + 1, b * t + 1)

    mgf = moment_generating_function(Normal('x', a, b))(t)
    assert mgf == exp(a * t + b**2 * t**2 / 2)

    mgf = moment_generating_function(Pareto('x', a, b))(t)
    assert mgf == b * (-a * t)**b * uppergamma(-b, -a * t)

    mgf = moment_generating_function(QuadraticU('x', a, b))(t)
    assert str(mgf) == (
        "(3*(t*(-4*b + (a + b)**2) + 4)*exp(b*t) - "
        "3*(t*(a**2 + 2*a*(b - 2) + b**2) + 4)*exp(a*t))/(t**2*(a - b)**3)")

    mgf = moment_generating_function(RaisedCosine('x', a, b))(t)
    assert mgf == pi**2 * exp(a * t) * sinh(b * t) / (b * t *
                                                      (b**2 * t**2 + pi**2))

    mgf = moment_generating_function(Rayleigh('x', a))(t)
    assert mgf == sqrt(2)*sqrt(pi)*a*t*(erf(sqrt(2)*a*t/2) + 1)\
        *exp(a**2*t**2/2)/2 + 1

    mgf = moment_generating_function(Triangular('x', a, b, c))(t)
    assert str(mgf) == ("(-2*(-a + b)*exp(c*t) + 2*(-a + c)*exp(b*t) + "
                        "2*(b - c)*exp(a*t))/(t**2*(-a + b)*(-a + c)*(b - c))")

    mgf = moment_generating_function(Uniform('x', a, b))(t)
    assert mgf == (-exp(a * t) + exp(b * t)) / (t * (-a + b))

    mgf = moment_generating_function(UniformSum('x', a))(t)
    assert mgf == ((exp(t) - 1) / t)**a

    mgf = moment_generating_function(WignerSemicircle('x', a))(t)
    assert mgf == 2 * besseli(1, a * t) / (a * t)

    # Numeric tests

    mgf = moment_generating_function(Beta('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 1) == hyper((2, ), (3, ), 1) / 2

    mgf = moment_generating_function(Chi('x', 1))(t)
    assert mgf.diff(t).subs(t, 1) == sqrt(2) * hyper(
        (1, ), (Rational(3, 2), ), S.Half) / sqrt(pi) + hyper(
            (Rational(3, 2), ),
            (Rational(3, 2), ), S.Half) + 2 * sqrt(2) * hyper(
                (2, ), (Rational(5, 2), ), S.Half) / (3 * sqrt(pi))

    mgf = moment_generating_function(ChiSquared('x', 1))(t)
    assert mgf.diff(t).subs(t, 1) == I

    mgf = moment_generating_function(Erlang('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == 1

    mgf = moment_generating_function(ExGaussian("x", 0, 1, 1))(t)
    assert mgf.diff(t).subs(t, 2) == -exp(2)

    mgf = moment_generating_function(Exponential('x', 1))(t)
    assert mgf.diff(t).subs(t, 0) == 1

    mgf = moment_generating_function(Gamma('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == 1

    mgf = moment_generating_function(Gumbel('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == EulerGamma + 1

    mgf = moment_generating_function(Gompertz('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 1) == -e * meijerg(((), (1, 1)),
                                                  ((0, 0, 0), ()), 1)

    mgf = moment_generating_function(Laplace('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == 1

    mgf = moment_generating_function(Logistic('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == beta(1, 1)

    mgf = moment_generating_function(Normal('x', 0, 1))(t)
    assert mgf.diff(t).subs(t, 1) == exp(S.Half)

    mgf = moment_generating_function(Pareto('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == expint(1, 0)

    mgf = moment_generating_function(QuadraticU('x', 1, 2))(t)
    assert mgf.diff(t).subs(t, 1) == -12 * e - 3 * exp(2)

    mgf = moment_generating_function(RaisedCosine('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 1) == -2*e*pi**2*sinh(1)/\
    (1 + pi**2)**2 + e*pi**2*cosh(1)/(1 + pi**2)

    mgf = moment_generating_function(Rayleigh('x', 1))(t)
    assert mgf.diff(t).subs(t, 0) == sqrt(2) * sqrt(pi) / 2

    mgf = moment_generating_function(Triangular('x', 1, 3, 2))(t)
    assert mgf.diff(t).subs(t, 1) == -e + exp(3)

    mgf = moment_generating_function(Uniform('x', 0, 1))(t)
    assert mgf.diff(t).subs(t, 1) == 1

    mgf = moment_generating_function(UniformSum('x', 1))(t)
    assert mgf.diff(t).subs(t, 1) == 1

    mgf = moment_generating_function(WignerSemicircle('x', 1))(t)
    assert mgf.diff(t).subs(t, 1) == -2*besseli(1, 1) + besseli(2, 1) +\
        besseli(0, 1)