def test_treeapply_strategies(): from sympy.strategies import chain, minimize join = {list: chain, tuple: minimize} inc = lambda x: x + 1 dec = lambda x: x - 1 double = lambda x: 2*x assert treeapply(inc, join) == inc assert treeapply((inc, dec), join)(5) == minimize(inc, dec)(5) assert treeapply([inc, dec], join)(5) == chain(inc, dec)(5) tree = (inc, [dec, double]) # either inc or dec-then-double assert treeapply(tree, join)(5) == 6 assert treeapply(tree, join)(1) == 0 maximize = partial(minimize, objective=lambda x: -x) join = {list: chain, tuple: maximize} fn = treeapply(tree, join) assert fn(4) == 6 # highest value comes from the dec then double assert fn(1) == 2 # highest value comes from the inc
def test_treeapply_strategies(): from sympy.strategies import chain, minimize join = {list: chain, tuple: minimize} inc = lambda x: x + 1 dec = lambda x: x - 1 double = lambda x: 2 * x assert treeapply(inc, join) == inc assert treeapply((inc, dec), join)(5) == minimize(inc, dec)(5) assert treeapply([inc, dec], join)(5) == chain(inc, dec)(5) tree = (inc, [dec, double]) # either inc or dec-then-double assert treeapply(tree, join)(5) == 6 assert treeapply(tree, join)(1) == 0 maximize = partial(minimize, objective=lambda x: -x) join = {list: chain, tuple: maximize} fn = treeapply(tree, join) assert fn(4) == 6 # highest value comes from the dec then double assert fn(1) == 2 # highest value comes from the inc