Beispiel #1
0
def test_manualintegrate_special():
    f, F = 4*exp(-x**2/3), 2*sqrt(3)*sqrt(pi)*erf(sqrt(3)*x/3)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = 3*exp(4*x**2), 3*sqrt(pi)*erfi(2*x)/4
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = x**Rational(1, 3)*exp(-x/8), -16*uppergamma(Rational(4, 3), x/8)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = exp(2*x)/x, Ei(2*x)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = exp(1 + 2*x - x**2), sqrt(pi)*exp(2)*erf(x - 1)/2
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f = sin(x**2 + 4*x + 1)
    F = (sqrt(2)*sqrt(pi)*(-sin(3)*fresnelc(sqrt(2)*(2*x + 4)/(2*sqrt(pi))) +
        cos(3)*fresnels(sqrt(2)*(2*x + 4)/(2*sqrt(pi))))/2)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = cos(4*x**2), sqrt(2)*sqrt(pi)*fresnelc(2*sqrt(2)*x/sqrt(pi))/4
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = sin(3*x + 2)/x, sin(2)*Ci(3*x) + cos(2)*Si(3*x)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = sinh(3*x - 2)/x, -sinh(2)*Chi(3*x) + cosh(2)*Shi(3*x)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = 5*cos(2*x - 3)/x, 5*cos(3)*Ci(2*x) + 5*sin(3)*Si(2*x)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = cosh(x/2)/x, Chi(x/2)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = cos(x**2)/x, Ci(x**2)/2
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = 1/log(2*x + 1), li(2*x + 1)/2
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = polylog(2, 5*x)/x, polylog(3, 5*x)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = 5/sqrt(3 - 2*sin(x)**2), 5*sqrt(3)*elliptic_f(x, Rational(2, 3))/3
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = sqrt(4 + 9*sin(x)**2), 2*elliptic_e(x, Rational(-9, 4))
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
Beispiel #2
0
def test_manualintegrate_special():
    f, F = 4*exp(-x**2/3), 2*sqrt(3)*sqrt(pi)*erf(sqrt(3)*x/3)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = 3*exp(4*x**2), 3*sqrt(pi)*erfi(2*x)/4
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = x**(S(1)/3)*exp(-x/8), -16*uppergamma(S(4)/3, x/8)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = exp(2*x)/x, Ei(2*x)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = exp(1 + 2*x - x**2), sqrt(pi)*exp(2)*erf(x - 1)/2
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f = sin(x**2 + 4*x + 1)
    F = (sqrt(2)*sqrt(pi)*(-sin(3)*fresnelc(sqrt(2)*(2*x + 4)/(2*sqrt(pi))) +
        cos(3)*fresnels(sqrt(2)*(2*x + 4)/(2*sqrt(pi))))/2)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = cos(4*x**2), sqrt(2)*sqrt(pi)*fresnelc(2*sqrt(2)*x/sqrt(pi))/4
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = sin(3*x + 2)/x, sin(2)*Ci(3*x) + cos(2)*Si(3*x)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = sinh(3*x - 2)/x, -sinh(2)*Chi(3*x) + cosh(2)*Shi(3*x)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = 5*cos(2*x - 3)/x, 5*cos(3)*Ci(2*x) + 5*sin(3)*Si(2*x)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = cosh(x/2)/x, Chi(x/2)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = cos(x**2)/x, Ci(x**2)/2
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = 1/log(2*x + 1), li(2*x + 1)/2
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = polylog(2, 5*x)/x, polylog(3, 5*x)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = 5/sqrt(3 - 2*sin(x)**2), 5*sqrt(3)*elliptic_f(x, S(2)/3)/3
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
    f, F = sqrt(4 + 9*sin(x)**2), 2*elliptic_e(x, -S(9)/4)
    assert manualintegrate(f, x) == F and F.diff(x).equals(f)
Beispiel #3
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == r'f{\left (x \right )}'
    assert latex(f) == r'f'

    g = Function('g')
    assert latex(g(x, y)) == r'g{\left (x,y \right )}'
    assert latex(g) == r'g'

    h = Function('h')
    assert latex(h(x, y, z)) == r'h{\left (x,y,z \right )}'
    assert latex(h) == r'h'

    Li = Function('Li')
    assert latex(Li) == r'\operatorname{Li}'
    assert latex(Li(x)) == r'\operatorname{Li}{\left (x \right )}'

    beta = Function('beta')

    # not to be confused with the beta function
    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(beta) == r"\beta"

    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(
        FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\left\lvert{x}\right\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(
        polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(elliptic_k(z)) == r"K\left(z\right)"
    assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
    assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
    assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(z)) == r"E\left(z\right)"
    assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
    assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y, z)**2) == \
        r"\Pi^{2}\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
    assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}', latex(Chi(x)**2)

    assert latex(
        jacobi(n, a, b, x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)'
    assert latex(jacobi(n, a, b, x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
    assert latex(
        gegenbauer(n, a, x)) == r'C_{n}^{\left(a\right)}\left(x\right)'
    assert latex(gegenbauer(n, a, x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
    assert latex(
        chebyshevt(n, x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}'
    assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
    assert latex(
        chebyshevu(n, x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}'
    assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
    assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
    assert latex(
        assoc_legendre(n, a, x)) == r'P_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_legendre(n, a, x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
    assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
    assert latex(
        assoc_laguerre(n, a, x)) == r'L_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_laguerre(n, a, x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
    assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'

    theta = Symbol("theta", real=True)
    phi = Symbol("phi", real=True)
    assert latex(Ynm(n,m,theta,phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
    assert latex(Ynm(n, m, theta, phi)**3) == r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
    assert latex(Znm(n,m,theta,phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
    assert latex(Znm(n, m, theta, phi)**3) == r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'

    # Test latex printing of function names with "_"
    assert latex(
        polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(
        0)**3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"

    assert latex(totient(n)) == r'\phi\left( n \right)'

    # some unknown function name should get rendered with \operatorname
    fjlkd = Function('fjlkd')
    assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left (x \right )}'
    # even when it is referred to without an argument
    assert latex(fjlkd) == r'\operatorname{fjlkd}'
Beispiel #4
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}'

    beta = Function('beta')

    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(
        FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\left\lvert{x}\right\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(
        polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(elliptic_k(z)) == r"K\left(z\right)"
    assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
    assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
    assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(z)) == r"E\left(z\right)"
    assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
    assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y, z)**2) == \
        r"\Pi^{2}\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
    assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}'

    assert latex(
        jacobi(n, a, b, x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)'
    assert latex(jacobi(n, a, b, x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
    assert latex(
        gegenbauer(n, a, x)) == r'C_{n}^{\left(a\right)}\left(x\right)'
    assert latex(gegenbauer(n, a, x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
    assert latex(
        chebyshevt(n, x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}'
    assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
    assert latex(
        chebyshevu(n, x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}'
    assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
    assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
    assert latex(
        assoc_legendre(n, a, x)) == r'P_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_legendre(n, a, x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
    assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
    assert latex(
        assoc_laguerre(n, a, x)) == r'L_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_laguerre(n, a, x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
    assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'

    # Test latex printing of function names with "_"
    assert latex(
        polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(
        0)**3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"

    assert latex(totient(n)) == r'\phi\left( n \right)'
Beispiel #5
0
import sympy as syp
#from sympy import Symbol
#from scipy.special import ellipk, ellipe, ellipkm1
from numpy import pi, sqrt, linspace
from pylab import plot, xlabel, ylabel, suptitle, legend, show

uo = 4E-7*pi     # Permeability constant - units of H/m
x = syp.Symbol('x')
Bo = lambda i, a, u=uo: i*u/(2*a)    # Central field = f(current, loop radius, perm. constant)
al = lambda r, a: r/a               # Alpha = f(radius of measurement point, radius of loop)
be = lambda x, a: x/a               # Beta = f(axial distance to meas. point, radius of loop)
ga = lambda x, r: x/r               # Gamma = f(axial distance, radius to meas. point)
Q = lambda r, x, a: (1 + al(r,a))**2 + be(x,a)**2   # Q = f(radius, distance to meas. point, loop radius)
k = lambda r, x, a: syp.sqrt(4*al(r,a)/Q(r,x,a))       # k = f(radius, distance to meas. point, loop radius)
K = lambda k: syp.elliptic_f(pi/2,k**2.0)          # Elliptic integral, first kind, as a function of k
E = lambda k: syp.elliptic_e(pi/2,k**2.0)          # Elliptic integral, second kind, as a function of k

N = 10;
lc = 0.065;
# Axial field component by a solenoid
def BxSol(i, a, r):
    pitch = lc/N;
    fBx = 0;
    for j in range(int(N)):
        Bxtemp = (Bo(i,a)*\
        (E(k(r,x-j*pitch,a))*((1.0-al(r,a)**2-be(x-j*pitch,a)**2)/(Q(r,x-j*pitch,a)-4*al(r,a))) + K(k(r,x-j*pitch,a))))\
        /pi/syp.sqrt(Q(r,x-j*pitch,a));

        fBx = fBx + Bxtemp;
    return fBx
Beispiel #6
0
def test_J2():
    assert diff(elliptic_e(x, y**2), y) == (elliptic_e(x, y**2) - elliptic_f(x, y**2))/y
Beispiel #7
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == r'f{\left (x \right )}'
    assert latex(f) == r'f'

    g = Function('g')
    assert latex(g(x, y)) == r'g{\left (x,y \right )}'
    assert latex(g) == r'g'

    h = Function('h')
    assert latex(h(x, y, z)) == r'h{\left (x,y,z \right )}'
    assert latex(h) == r'h'

    Li = Function('Li')
    assert latex(Li) == r'\operatorname{Li}'
    assert latex(Li(x)) == r'\operatorname{Li}{\left (x \right )}'

    beta = Function('beta')

    # not to be confused with the beta function
    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(beta) == r"\beta"

    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3,
                                  k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\left\lvert{x}\right\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma{\left(x \right)}"
    w = Wild('w')
    assert latex(gamma(w)) == r"\Gamma{\left(w \right)}"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(Order(x, x)) == r"\mathcal{O}\left(x\right)"
    assert latex(Order(x, x, 0)) == r"\mathcal{O}\left(x\right)"
    assert latex(Order(x, x,
                       oo)) == r"\mathcal{O}\left(x; x\rightarrow\infty\right)"
    assert latex(
        Order(x, x, y)
    ) == r"\mathcal{O}\left(x; \begin{pmatrix}x, & y\end{pmatrix}\rightarrow0\right)"
    assert latex(
        Order(x, x, y, 0)
    ) == r"\mathcal{O}\left(x; \begin{pmatrix}x, & y\end{pmatrix}\rightarrow0\right)"
    assert latex(
        Order(x, x, y, oo)
    ) == r"\mathcal{O}\left(x; \begin{pmatrix}x, & y\end{pmatrix}\rightarrow\infty\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(polylog(x,
                         y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(elliptic_k(z)) == r"K\left(z\right)"
    assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
    assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
    assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(z)) == r"E\left(z\right)"
    assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
    assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y, z)**2) == \
        r"\Pi^{2}\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
    assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}'
    assert latex(Chi(x)) == r'\operatorname{Chi}{\left (x \right )}'

    assert latex(jacobi(n, a, b,
                        x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)'
    assert latex(jacobi(
        n, a, b,
        x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
    assert latex(gegenbauer(n, a,
                            x)) == r'C_{n}^{\left(a\right)}\left(x\right)'
    assert latex(gegenbauer(
        n, a,
        x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
    assert latex(chebyshevt(n,
                            x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}'
    assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
    assert latex(chebyshevu(n,
                            x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}'
    assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
    assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
    assert latex(assoc_legendre(n, a,
                                x)) == r'P_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_legendre(
        n, a,
        x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
    assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
    assert latex(assoc_laguerre(n, a,
                                x)) == r'L_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_laguerre(
        n, a,
        x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
    assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'

    theta = Symbol("theta", real=True)
    phi = Symbol("phi", real=True)
    assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
    assert latex(
        Ynm(n, m, theta,
            phi)**3) == r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
    assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
    assert latex(
        Znm(n, m, theta,
            phi)**3) == r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'

    # Test latex printing of function names with "_"
    assert latex(
        polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(0)**
                 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"

    assert latex(totient(n)) == r'\phi\left( n \right)'

    # some unknown function name should get rendered with \operatorname
    fjlkd = Function('fjlkd')
    assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left (x \right )}'
    # even when it is referred to without an argument
    assert latex(fjlkd) == r'\operatorname{fjlkd}'