Beispiel #1
0
def test_reshape():
    m0 = eye(3)
    assert m0.reshape(1, 9) == Matrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1))
    m1 = Matrix(3, 4, lambda i, j: i + j)
    assert m1.reshape(4, 3) == Matrix(
        ((0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5)))
    assert m1.reshape(2, 6) == Matrix(((0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5)))
Beispiel #2
0
 def getBasis(self, A, b):
     A = Matrix(A)
     b = Matrix(b)
     if b.shape != (A.shape[0], 1):
         raise Exception(
             "Length of b vector ({}) does not match number of rows"
             " in A matrix ({})".format(b.shape[0], A.shape[0]))
     G = zeros(A.shape[1] + 1, A.shape[0] + 1)
     G[:-1, :-1] = A.T
     G[-1, :-1] = b.reshape(1, b.shape[0])
     G[-1, -1] = 1
     # A is m x n, b is m x 1, solving AX=b, X is n x 1+
     # Ab is the (n+1) x m transposed augmented matrix. G=[A^t|0] [b^t]1]
     hnf, P, rank = self.lllhermite(G)
     r = rank - 1  # For convenience
     if not any(chain(hnf[:r, -1], hnf[r, :-1])) and hnf[r, -1] == 1:
         nullity = hnf.shape[0] - rank
         if nullity:
             basis = P[rank:, :-1].col_join(-P[r, :-1])
             solutions = basis
         else:
             return P[rank:, :-1].col_join(-P[r, :-1])
             raise NotImplementedError(
                 "Ax=B has unique solution in integers")
     else:
         solutions = []
     return solutions
Beispiel #3
0
def printnp(m):
    """
    Prints a sympy matrix in the same format as a numpy array
    """
    m = Matrix(m)
    if m.shape[1] == 1:
        m = m.reshape(1, m.shape[0])
    elem_len = max(num_chars(d) for d in m.vec())
    if m.shape[0] > 1:
        outstr = '[['
    else:
        outstr = '['
    for i in xrange(m.shape[0]):
        if i:
            outstr += ' ['
        char_count = 0
        for j, elem in enumerate(m[i, :]):
            char_count += elem_len
            if char_count > 77:
                outstr += '\n '
                char_count = elem_len + 2
            # Add spaces
            outstr += ' ' * (elem_len - num_chars(elem) +
                             int(j != 0)) + str(elem)

        if i < m.shape[0] - 1:
            outstr += ']\n'
    if m.shape[0] > 1:
        outstr += ']]'
    else:
        outstr += ']'
    print outstr
Beispiel #4
0
 def solve(self, A, b):
     """
     Finds small solutions to systems of diophantine equations, A x = b, where A
     is a M x N matrix of coefficents, b is a M x 1 vector and x is the
     N x 1 solution vector, e.g.
     >>> from sympy import Matrix
     >>> import diophantine
     >>> Dio = Diophantine()
     >>> A = Matrix([[1, 0, 0, 2], [0, 2, 3, 5], [2, 0, 3, 1], [-6, -1, 0, 2],
                     [0, 1, 1, 1], [-1, 2, 0,1], [-1, -2, 1, 0]]).T
     >>> b = Matrix([1, 1, 1, 1])
     >>> Dio.solve(A, b)
     [Matrix([
     [-1],
     [ 1],
     [ 0],
     [ 0],
     [-1],
     [-1],
     [-1]])]
     The returned solution vector will tend to be one with the smallest norms.
     If multiple solutions with the same norm are found they will all be
     returned. If there are no solutions the empty list will be returned.
     """
     A = Matrix(A)
     b = Matrix(b)
     if b.shape != (A.shape[0], 1):
         raise Exception(
             "Length of b vector ({}) does not match number of rows"
             " in A matrix ({})".format(b.shape[0], A.shape[0]))
     G = zeros(A.shape[1] + 1, A.shape[0] + 1)
     G[:-1, :-1] = A.T
     G[-1, :-1] = b.reshape(1, b.shape[0])
     G[-1, -1] = 1
     # A is m x n, b is m x 1, solving AX=b, X is n x 1+
     # Ab is the (n+1) x m transposed augmented matrix. G=[A^t|0] [b^t]1]
     hnf, P, rank = self.lllhermite(G)
     r = rank - 1  # For convenience
     if not any(chain(hnf[:r, -1], hnf[r, :-1])) and hnf[r, -1] == 1:
         nullity = hnf.shape[0] - rank
         if nullity:
             basis = P[rank:, :-1].col_join(-P[r, :-1])
             solutions = self.get_solutions(basis)
         else:
             raise NotImplementedError(
                 "Ax=B has unique solution in integers")
     else:
         solutions = []
     return solutions
Beispiel #5
0
def solve(A, b):
    """
    Finds small solutions to systems of diophantine equations, A x = b, where A
    is a M x N matrix of coefficents, b is a M x 1 vector and x is the
    N x 1 solution vector, e.g.

    >>> from sympy import Matrix
    >>> from diophantine import solve
    >>> A = Matrix([[1, 0, 0, 2], [0, 2, 3, 5], [2, 0, 3, 1], [-6, -1, 0, 2],
                    [0, 1, 1, 1], [-1, 2, 0,1], [-1, -2, 1, 0]]).T
    >>> b = Matrix([1, 1, 1, 1])
    >>> solve(A, b)
    [Matrix([
    [-1],
    [ 1],
    [ 0],
    [ 0],
    [-1],
    [-1],
    [-1]])]

    The returned solution vector will tend to be one with the smallest norms.
    If multiple solutions with the same norm are found they will all be
    returned. If there are no solutions the empty list will be returned.
    """
    A = Matrix(A)
    b = Matrix(b)
    if b.shape != (A.shape[0], 1):
        raise Exception("Length of b vector ({}) does not match number of rows"
                        " in A matrix ({})".format(b.shape[0], A.shape[0]))
    G = zeros(A.shape[1] + 1, A.shape[0] + 1)
    G[:-1, :-1] = A.T
    G[-1, :-1] = b.reshape(1, b.shape[0])
    G[-1, -1] = 1
    # A is m x n, b is m x 1, solving AX=b, X is n x 1+
    # Ab is the (n+1) x m transposed augmented matrix. G=[A^t|0] [b^t]1]
    hnf, P, rank = lllhermite(G)
    r = rank - 1  # For convenience
    if not any(chain(hnf[:r, -1], hnf[r, :-1])) and hnf[r, -1] == 1:
        nullity = hnf.shape[0] - rank
        if nullity:
            basis = P[rank:, :-1].col_join(-P[r, :-1])
            solutions = get_solutions(basis)
        else:
            raise NotImplementedError("Ax=B has unique solution in integers")
    else:
        solutions = []
    return solutions
Beispiel #6
0
def test_reshape():
    m0 = eye(3)
    assert m0.reshape(1,9) == Matrix(1,9,(1,0,0,0,1,0,0,0,1))
    m1 = Matrix(3,4, lambda i,j: i+j)
    assert m1.reshape(4,3) == Matrix(((0,1,2), (3,1,2), (3,4,2), (3,4,5)))
    assert m1.reshape(2,6) == Matrix(((0,1,2,3,1,2), (3,4,2,3,4,5)))
Beispiel #7
0
    # lever arm
    R_B2B3 = rot_axis2(-phi_y) * rot_axis1(-phi_x)
    R_IB3 = R_IB2 * R_B2B3
    r_S2S3 = R_IB3 * Matrix([0, 0, -l])
    b_omega_3 = Matrix([phi_x_dot, 0, 0]) + rot_axis1(phi_x) * \
        Matrix([0, phi_y_dot, 0]) + R_B2B3.T * b_omega_2

    v_OS3 = v_OS2 + R_IB3 * (b_omega_3.cross(Matrix([0, 0, -l])))

    # calculate Jacobians
    v_i = [v_OS1, v_OS2, v_OS3]
    om_i = [omega_1, b_omega_2, b_omega_3]

    ang_dot = Matrix([w_1z, psi_x_dot, psi_y_dot, phi_x_dot, phi_y_dot])

    R_IB2_flat = R_IB2.reshape(9, 1)
    R_IB2_dot = (
        R_IB2 * Matrix([[0, -w_2z, w_2y], [w_2z, 0, -w_2x], [-w_2y, w_2x, 0]])).reshape(9, 1)

    J_i = [v.jacobian(omega) for v in v_i]
    JR_i = [om.jacobian(omega) for om in om_i]

    # Impulse
    p_i = [m[i] * v_i[i] for i in range(3)]
    p_dot_i = [
        p.jacobian(omega) *
        omega_dot +
        p.jacobian(ang) *
        ang_dot +
        p.jacobian(R_IB2_flat) *
        R_IB2_dot for p in p_i]
    Return basis function.
    """
    return x**i

x = Symbol("x")
q = input("Enter the value of q [3]: ")
y0 = input("Enter the value of y0 [0]: ")
basis = [x**i for i in range(q+1)]
ci = [Symbol("ci_%i" %i) for i in range(q+1)]
y = y0 + sum(ci[i]*basis[i] for i in range(1,q+1))
print("The trial solution is: ", u)
k = Matrix([[0,0,0],[0,0,0],[0,0,0]])
f = Matrix(1, q, range(q))
for i in range(1,q+1):
    for j in range(1,q+1):
        k[i-1,j-1] = ci[i]*ci[j]*np.diff(basis[i], x)*np.diff(basis[j], x)
for i in range(1,q+1):
    f[i-1]=2*x*ci[i]*basis[i]+ci[i]
functional= i ntegrate(sum(k.reshape(1,q**2))+sum(f),[x,0,1])
s1 = Derivative(functional,ci[1])
d1 = s1.doit()
s2 = Derivative(functional,ci[2])
d2 = s2.doit()
s3 = Derivative(functional,ci[3])
d3 = s3.doit()
xx = solve([d1,d2,d3],dict=True)
yt = y.subs(xx)
print("The Approximate Solution is: yt= ",yt)
xr = np.linspace(0,1,100)
yt = xr**3/6 - xr # The Approximate Solution
Beispiel #9
0
def ensureMat(x, nr, nc):
    """ Ensures that the input is a matrix of shape nr, nc"""
    if not isinstance(x, Matrix):
        x = Matrix(x)
    return x.reshape(nr, nc)
Beispiel #10
0
dsipp = [0.8, 2.8, 4.8, 6.8]
for i in dsipp:
    displacement(i, 8.8)
## stress at nodal point

E = 33.2 * 10**6  #KN/m2
I = 0.2916  #m4
disp3 = Matrix(([-0.00708], [0.000192], [0], [0.00131]))
disp = Matrix(([0], [-0.00131], [-0.00686], [-0.000321]))
disp1 = Matrix(([-0.00686], [-0.000321], [-0.00708], [0.000192]))
# at 0m in the 1st beam element
lz = 8
stress = E * I / lz**2
matri_0 = Matrix(([6, 4 * lz, -6, 2 * lz]))
matri_011 = matri_0
matri_01 = matri_0.reshape(1, 4)
print(" " * 100)
# print('Nodal stress of the beam WRT nodal displacement at {}m '.format(lz), matri_01,matri_01.shape)
# at 8m
stress0 = stress * matri_01
# print(stress0,'\n',disp,disp.shape,'\n', matri_01,matri_01.shape)
ans1 = stress0 * disp
print(" " * 100)
print('nodal stress @ point 0', ans1)
matri_1 = Matrix(([-6, -2 * lz, 6, -4 * lz]))
stress1 = (stress * matri_1).reshape(1, 4)

ans2 = stress1 * disp
print(" " * 100)
print('corect at this point nodal stress @ point L', ans2)