Beispiel #1
0
def test_canonicalize():
    X = MatrixSymbol('X', 2, 2)
    Y = MatrixSymbol('Y', 2, 2)
    expr = HadamardProduct(X, check=False)
    assert isinstance(expr, HadamardProduct)
    expr2 = expr.doit()  # unpack is called
    assert isinstance(expr2, MatrixSymbol)
    Z = ZeroMatrix(2, 2)
    U = OneMatrix(2, 2)
    assert HadamardProduct(Z, X).doit() == Z
    assert HadamardProduct(U, X, X, U).doit() == HadamardPower(X, 2)
    assert HadamardProduct(X, U, Y).doit() == HadamardProduct(X, Y)
    assert HadamardProduct(X, Z, U, Y).doit() == Z
Beispiel #2
0
def test_NumPyPrinter():
    from sympy import (
        Lambda,
        ZeroMatrix,
        OneMatrix,
        FunctionMatrix,
        HadamardProduct,
        KroneckerProduct,
        Adjoint,
        DiagonalOf,
        DiagMatrix,
        DiagonalMatrix,
    )
    from sympy.abc import a, b

    p = NumPyPrinter()
    assert p.doprint(sign(x)) == "numpy.sign(x)"
    A = MatrixSymbol("A", 2, 2)
    B = MatrixSymbol("B", 2, 2)
    C = MatrixSymbol("C", 1, 5)
    D = MatrixSymbol("D", 3, 4)
    assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)"
    assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)"
    assert p.doprint(Identity(3)) == "numpy.eye(3)"

    u = MatrixSymbol("x", 2, 1)
    v = MatrixSymbol("y", 2, 1)
    assert p.doprint(MatrixSolve(A, u)) == "numpy.linalg.solve(A, x)"
    assert p.doprint(MatrixSolve(A, u) + v) == "numpy.linalg.solve(A, x) + y"

    assert p.doprint(ZeroMatrix(2, 3)) == "numpy.zeros((2, 3))"
    assert p.doprint(OneMatrix(2, 3)) == "numpy.ones((2, 3))"
    assert (p.doprint(FunctionMatrix(4, 5, Lambda(
        (a, b), a + b))) == "numpy.fromfunction(lambda a, b: a + b, (4, 5))")
    assert p.doprint(HadamardProduct(A, B)) == "numpy.multiply(A, B)"
    assert p.doprint(KroneckerProduct(A, B)) == "numpy.kron(A, B)"
    assert p.doprint(Adjoint(A)) == "numpy.conjugate(numpy.transpose(A))"
    assert p.doprint(DiagonalOf(A)) == "numpy.reshape(numpy.diag(A), (-1, 1))"
    assert p.doprint(DiagMatrix(C)) == "numpy.diagflat(C)"
    assert p.doprint(DiagonalMatrix(D)) == "numpy.multiply(D, numpy.eye(3, 4))"

    # Workaround for numpy negative integer power errors
    assert p.doprint(x**-1) == "x**(-1.0)"
    assert p.doprint(x**-2) == "x**(-2.0)"

    assert p.doprint(S.Exp1) == "numpy.e"
    assert p.doprint(S.Pi) == "numpy.pi"
    assert p.doprint(S.EulerGamma) == "numpy.euler_gamma"
    assert p.doprint(S.NaN) == "numpy.nan"
    assert p.doprint(S.Infinity) == "numpy.PINF"
    assert p.doprint(S.NegativeInfinity) == "numpy.NINF"
Beispiel #3
0
def test_matrix_derivative_by_scalar():
    assert A.diff(i) == ZeroMatrix(k, k)
    assert (A*(X + B)*c).diff(i) == ZeroMatrix(k, 1)
    assert x.diff(i) == ZeroMatrix(k, 1)
    assert (x.T*y).diff(i) == ZeroMatrix(1, 1)
    assert (x*x.T).diff(i) == ZeroMatrix(k, k)
    assert (x + y).diff(i) == ZeroMatrix(k, 1)
    assert hadamard_power(x, 2).diff(i) == ZeroMatrix(k, 1)
    assert hadamard_power(x, i).diff(i) == HadamardProduct(x.applyfunc(log), HadamardPower(x, i))
    assert hadamard_product(x, y).diff(i) == ZeroMatrix(k, 1)
    assert hadamard_product(i*OneMatrix(k, 1), x, y).diff(i) == hadamard_product(x, y)
    assert (i*x).diff(i) == x
    assert (sin(i)*A*B*x).diff(i) == cos(i)*A*B*x
    assert x.applyfunc(sin).diff(i) == ZeroMatrix(k, 1)
    assert Trace(i**2*X).diff(i) == 2*i*Trace(X)
def test_matrix_derivative_by_scalar():
    assert A.diff(i) == ZeroMatrix(k, k)
    assert (A*(X + B)*c).diff(i) == ZeroMatrix(k, 1)
    assert x.diff(i) == ZeroMatrix(k, 1)
    assert (x.T*y).diff(i) == ZeroMatrix(1, 1)
    assert (x*x.T).diff(i) == ZeroMatrix(k, k)
    assert (x + y).diff(i) == ZeroMatrix(k, 1)
    assert hadamard_power(x, 2).diff(i) == ZeroMatrix(k, 1)
    assert hadamard_power(x, i).diff(i).dummy_eq(
        HadamardProduct(x.applyfunc(log), HadamardPower(x, i)))
    assert hadamard_product(x, y).diff(i) == ZeroMatrix(k, 1)
    assert hadamard_product(i*OneMatrix(k, 1), x, y).diff(i) == hadamard_product(x, y)
    assert (i*x).diff(i) == x
    assert (sin(i)*A*B*x).diff(i) == cos(i)*A*B*x
    assert x.applyfunc(sin).diff(i) == ZeroMatrix(k, 1)
    assert Trace(i**2*X).diff(i) == 2*i*Trace(X)

    mu = symbols("mu")
    expr = (2*mu*x)
    assert expr.diff(x) == 2*mu*Identity(k)
Beispiel #5
0
def test_hadamard():
    m, n, p = symbols('m, n, p', integer=True)
    A = MatrixSymbol('A', m, n)
    B = MatrixSymbol('B', m, n)
    C = MatrixSymbol('C', m, p)
    X = MatrixSymbol('X', m, m)
    I = Identity(m)
    with raises(TypeError):
        hadamard_product()
    assert hadamard_product(A) == A
    assert isinstance(hadamard_product(A, B), HadamardProduct)
    assert hadamard_product(A, B).doit() == hadamard_product(A, B)
    with raises(ShapeError):
        hadamard_product(A, C)
        hadamard_product(A, I)
    assert hadamard_product(X, I) == X
    assert isinstance(hadamard_product(X, I), MatrixSymbol)

    a = MatrixSymbol("a", k, 1)
    expr = MatAdd(ZeroMatrix(k, 1), OneMatrix(k, 1))
    expr = HadamardProduct(expr, a)
    assert expr.doit() == a
def test_arrayexpr_convert_array_to_matrix_remove_trivial_dims():

    # Tensor Product:
    assert _remove_trivial_dims(ArrayTensorProduct(a, b)) == (a * b.T, [1, 3])
    assert _remove_trivial_dims(ArrayTensorProduct(a.T, b)) == (a * b.T, [0, 3])
    assert _remove_trivial_dims(ArrayTensorProduct(a, b.T)) == (a * b.T, [1, 2])
    assert _remove_trivial_dims(ArrayTensorProduct(a.T, b.T)) == (a * b.T, [0, 2])

    assert _remove_trivial_dims(ArrayTensorProduct(I, a.T, b.T)) == (a * b.T, [0, 1, 2, 4])
    assert _remove_trivial_dims(ArrayTensorProduct(a.T, I, b.T)) == (a * b.T, [0, 2, 3, 4])

    assert _remove_trivial_dims(ArrayTensorProduct(a, I)) == (a, [2, 3])
    assert _remove_trivial_dims(ArrayTensorProduct(I, a)) == (a, [0, 1])

    assert _remove_trivial_dims(ArrayTensorProduct(a.T, b.T, c, d)) == (
        ArrayTensorProduct(a * b.T, c * d.T), [0, 2, 5, 7])
    assert _remove_trivial_dims(ArrayTensorProduct(a.T, I, b.T, c, d, I)) == (
        ArrayTensorProduct(a * b.T, c * d.T, I), [0, 2, 3, 4, 7, 9])

    # Addition:

    cg = ArrayAdd(ArrayTensorProduct(a, b), ArrayTensorProduct(c, d))
    assert _remove_trivial_dims(cg) == (a * b.T + c * d.T, [1, 3])

    # Permute Dims:

    cg = PermuteDims(ArrayTensorProduct(a, b), Permutation(3)(1, 2))
    assert _remove_trivial_dims(cg) == (a * b.T, [2, 3])

    cg = PermuteDims(ArrayTensorProduct(a, I, b), Permutation(5)(1, 2, 3, 4))
    assert _remove_trivial_dims(cg) == (a * b.T, [1, 2, 4, 5])

    cg = PermuteDims(ArrayTensorProduct(I, b, a), Permutation(5)(1, 2, 4, 5, 3))
    assert _remove_trivial_dims(cg) == (b * a.T, [0, 3, 4, 5])

    # Diagonal:

    cg = ArrayDiagonal(ArrayTensorProduct(M, a), (1, 2))
    assert _remove_trivial_dims(cg) == (cg, [])

    # Contraction:

    cg = ArrayContraction(ArrayTensorProduct(M, a), (1, 2))
    assert _remove_trivial_dims(cg) == (cg, [])

    # A few more cases to test the removal and shift of nested removed axes
    # with array contractions and array diagonals:
    tp = ArrayTensorProduct(
        OneMatrix(1, 1),
        M,
        x,
        OneMatrix(1, 1),
        Identity(1),
    )

    expr = ArrayContraction(tp, (1, 8))
    rexpr, removed = _remove_trivial_dims(expr)
    assert removed == [0, 5, 6, 7]

    expr = ArrayContraction(tp, (1, 8), (3, 4))
    rexpr, removed = _remove_trivial_dims(expr)
    assert removed == [0, 3, 4, 5]

    expr = ArrayDiagonal(tp, (1, 8))
    rexpr, removed = _remove_trivial_dims(expr)
    assert removed == [0, 5, 6, 7, 8]

    expr = ArrayDiagonal(tp, (1, 8), (3, 4))
    rexpr, removed = _remove_trivial_dims(expr)
    assert removed == [0, 3, 4, 5, 6]

    expr = ArrayDiagonal(ArrayContraction(ArrayTensorProduct(A, x, I, I1), (1, 2, 5)), (1, 4))
    rexpr, removed = _remove_trivial_dims(expr)
    assert removed == [1, 2]

    cg = ArrayDiagonal(ArrayTensorProduct(PermuteDims(ArrayTensorProduct(x, I1), Permutation(1, 2, 3)), (x.T*x).applyfunc(sqrt)), (2, 4), (3, 5))
    rexpr, removed = _remove_trivial_dims(cg)
    assert removed == [1, 2]

    # Contractions with identity matrices need to be followed by a permutation
    # in order
    cg = ArrayContraction(ArrayTensorProduct(A, B, C, M, I), (1, 8))
    ret, removed = _remove_trivial_dims(cg)
    assert ret == PermuteDims(ArrayTensorProduct(A, B, C, M), [0, 2, 3, 4, 5, 6, 7, 1])
    assert removed == []

    cg = ArrayContraction(ArrayTensorProduct(A, B, C, M, I), (1, 8), (3, 4))
    ret, removed = _remove_trivial_dims(cg)
    assert ret == PermuteDims(ArrayContraction(ArrayTensorProduct(A, B, C, M), (3, 4)), [0, 2, 3, 4, 5, 1])
    assert removed == []