def test_LP_solve_Karmarkar_example (): p = Polyhedron('x1+x2==MAX') for i in range (11): p1 = mpq((i,10))*1 p.add('2*%s*x1+x2<=%s+1' % (p1,p1**2)) names, D = p.get_LP() Dwork = D[:] xopt, vopt = Dwork.LP_solve(overwrite=True) assert (D[0,1:] * xopt)[0,0]==vopt==mpq ((5,4)),`D[0,1:] * xopt,vopt`
def test_LP_solve_Karmarkar_example(): p = Polyhedron('x1+x2==MAX') for i in range(11): p1 = mpq((i, 10)) * 1 p.add('2*%s*x1+x2<=%s+1' % (p1, p1**2)) names, D = p.get_LP() Dwork = D[:] xopt, vopt = Dwork.LP_solve(overwrite=True) assert (D[0, 1:] * xopt)[0, 0] == vopt == mpq( (5, 4)), ` D[0, 1:] * xopt, vopt `
def str2num(s): f = eval(s) i = int(f) if i == f: return i import sympycore, gmpy r = gmpy.f2q(f) n, d = int(r.numer()), int(r.denom()) return sympycore.mpq((n, d))
def str2num(s): f = eval(s) i = int (f) if i==f: return i import sympycore, gmpy r = gmpy.f2q(f) n,d = int(r.numer ()), int (r.denom ()) return sympycore.mpq((n,d))
def time2(n=500): import sympycore as sympy w = sympy.mpq((3,4)) x = sympy.polynomials.PolynomialRing[1]([0, 1, 1]) b = (x-1)*(x-2)*(x-w) a = (x-1)*(x-2)*(x-3)*(x-4)*(x-5)# + (x-1)*(x-2)*x**10 t1 = clock() while n: divmod(a, b) n -= 1 t2 = clock() return 100 / (t2-t1)