Beispiel #1
0
def format_status_data(results_object):
    """
    Put the results into a printable format

    :param results_dict: dict, keys are different segments
    :return:
    """

    formatted_output = []

    formatted_output.append(
        header("Status report produced on %s" %
               (str(datetime.datetime.now()))))

    table1_df = results_object['process']
    table1 = table('Status of processses', table1_df)
    formatted_output.append(table1)

    table2_df = results_object['method']
    table2 = table('Status of methods', table2_df)
    formatted_output.append(table2)

    table3_df = results_object['price']
    table3 = table('Status of adjusted price / FX price collection', table3_df)
    formatted_output.append(table3)

    table4_df = results_object['position']
    table4 = table('Status of optimal position generation', table4_df)
    formatted_output.append(table4)

    formatted_output.append(header("END OF STATUS REPORT"))

    return formatted_output
Beispiel #2
0
def format_reconcile_data(results_object):
    """
    Put the results into a printable format

    :param results_dict: dict, keys are different segments
    :return:
    """


    formatted_output=[]

    formatted_output.append(header("Reconcile report produced on %s" % (str(datetime.datetime.now()))))

    table1_df = results_object['positions_mine']
    table1 = table('Positions in DB', table1_df)
    formatted_output.append(table1)

    table2_df = results_object['positions_ib']
    table2 = table('Positions broker', table2_df)
    formatted_output.append(table2)

    body_text("Position breaks %s" % results_object['position_breaks'])

    table3_df = results_object['trades_mine']
    table3 = table('Trades in DB', table3_df)
    formatted_output.append(table3)

    table4_df = results_object['trades_ib']
    table4 = table('Trades from broker', table4_df)
    formatted_output.append(table4)

    formatted_output.append(header("END OF STATUS REPORT"))

    return formatted_output
Beispiel #3
0
def format_pandl_data(results_object):
    """
    Put the results into a printable format

    :param results_dict: dict, keys are instruments, contains roll information
    :return:
    """


    formatted_output=[]

    formatted_output.append(header("P&L report produced on %s from %s to %s" % (str(datetime.datetime.now()),
                                   str(results_object.start_date), str(results_object.end_date))))

    formatted_output.append(body_text("Total p&l is %.3f%%" % results_object.total_capital_pandl))


    table1_df = results_object.pandl_for_instruments_across_strategies

    table1_df = table1_df.round(2)

    table1 = table('P&L by instrument for all strategies', table1_df)

    formatted_output.append(table1)

    formatted_output.append(body_text("Total futures p&l is %.3f%%" % results_object.futures_total))

    formatted_output.append(body_text("Residual p&l is %.3f%%" % results_object.residual))

    formatted_output.append(header("END OF P&L REPORT"))

    return formatted_output
def format_status_data(results_object):
    """
    Put the results into a printable format

    :param results_dict: dict, keys are different segments
    :return:
    """

    formatted_output = []

    formatted_output.append(
        header("Status report produced on %s" %
               (str(datetime.datetime.now()))))

    table1_df = results_object["process"]
    table1 = table("Config for process control", table1_df)
    formatted_output.append(table1)

    table1a_df = results_object["process2"]
    table1a = table("Status of process control", table1a_df)
    formatted_output.append(table1a)

    table1b_df = results_object["process3"]
    table1b = table("Status of process control", table1b_df)
    formatted_output.append(table1b)

    table2_df = results_object["method"]
    table2 = table("Status of methods", table2_df)
    formatted_output.append(table2)

    table3_df = results_object["price"]
    table3 = table("Status of adjusted price / FX price collection", table3_df)
    formatted_output.append(table3)

    table4_df = results_object["position"]
    table4 = table("Status of optimal position generation", table4_df)
    formatted_output.append(table4)

    table5_df = results_object["limits"]
    table5 = table("Status of trade limits", table5_df)
    formatted_output.append(table5)

    table6_df = results_object["position_limits"]
    table6 = table("Status of position limits", table6_df)
    formatted_output.append(table6)

    table7_df = results_object["overrides"]
    table7 = table("Status of overrides", table7_df)
    formatted_output.append(table7)

    text1 = body_text(results_object["locks"])
    formatted_output.append(text1)

    formatted_output.append(header("END OF STATUS REPORT"))

    return formatted_output
Beispiel #5
0
def run_report_with_data_blob(report_config, data, **kwargs):
    """

    :param report_config:
    :return:
    """

    report_function = resolve_function(report_config.function)
    report_result = success
    try:
        report_results = report_function(data, **kwargs)
    except Exception as e:
        report_results = [
            header("Report %s failed to process with error %s" %
                   (report_config.title, e))
        ]
        report_result = failure
    try:
        parsed_report = parse_report_results(report_results)
    except Exception as e:
        parsed_report = "Report failed to parse %s with error %s\n" % (
            report_config.title, str(e))
        report_result = failure

    # We eithier print or email
    if report_config.output is "console":
        print(parsed_report)
    elif report_config.output is "email":
        send_mail_msg(parsed_report, subject=report_config.title)

    return report_result
Beispiel #6
0
def report_system_classic(data, backtest: interactiveBacktest) -> list:
    """

    :param strategy_name: str
    :param data: dataBlob
    :param backtest: dataBacktest object populated with a specific backtest
    :return: list of report format type objects
    """

    strategy_name = backtest.strategy_name
    timestamp = backtest.timestamp

    format_output = []
    report_header = header(
        "Strategy report for %s backtest timestamp %s produced at %s"
        % (strategy_name, timestamp, str(datetime.datetime.now()))
    )
    format_output.append(report_header)

    format_output = report_system_classic_no_header_or_footer(
        data, backtest=backtest, format_output=format_output
    )

    format_output.append(body_text("End of report for %s" % strategy_name))

    return format_output
Beispiel #7
0
def format_reconcile_data(results_object):
    """
    Put the results into a printable format

    :param results_dict: dict, keys are different segments
    :return:
    """

    formatted_output = []

    formatted_output.append(
        header(
            "Reconcile report produced on %s" %
            (str(
                datetime.datetime.now()))))

    table0_df = results_object["positions_optimal"]
    table0 = table("Optimal versus actual positions", table0_df)
    formatted_output.append(table0)

    table1_df = results_object["positions_mine"]
    table1 = table("Positions in DB", table1_df)
    formatted_output.append(table1)

    table2_df = results_object["positions_ib"]
    table2 = table("Positions broker", table2_df)
    formatted_output.append(table2)

    text1 = body_text(results_object["position_breaks"])
    formatted_output.append(text1)

    table3_df = results_object["trades_mine"]
    table3 = table("Trades in DB", table3_df)
    formatted_output.append(table3)

    table4_df = results_object["trades_ib"]
    table4 = table("Trades from broker", table4_df)
    formatted_output.append(table4)

    formatted_output.append(header("END OF STATUS REPORT"))

    return formatted_output
Beispiel #8
0
def format_risk_report(results_dict):
    """
    Put the results into a printable format

    :param results_dict: dict of risk tables
    :return:
    """

    formatted_output = []

    formatted_output.append(
        header("Risk report produced on %s" % str(datetime.datetime.now())))

    result1 = results_dict['portfolio_risk_total'] * 100
    result1_text = body_text(
        "Total risk across all strategies, annualised percentage %.1f" %
        result1)
    formatted_output.append(result1_text)

    table2_df = results_dict['strategy_risk'] * 100
    table2_df = table2_df.round(1)
    table2 = table("Risk per strategy, annualised percentage", table2_df)
    formatted_output.append(table2)

    table3_df = results_dict['instrument_risk_data']
    table3_df = table3_df.round(1)
    table3 = table("Instrument risk", table3_df)
    formatted_output.append(table3)

    table4_df = results_dict['corr_data']
    table4_df = table4_df.round(2)
    table4 = table("Correlations", table4_df)
    formatted_output.append(table4)

    formatted_output.append(header("END OF RISK REPORT"))

    return formatted_output
def format_trades_data(results_object):
    """
    Put the results into a printable format

    :param results_dict: dict, keys are different segments
    :return:
    """

    formatted_output = []

    formatted_output.append(
        header("Trades report produced on %s" %
               (str(datetime.datetime.now()))))

    if len(results_object["overview"]) == 0:
        formatted_output.append(body_text("No trades in relevant period"))

        return formatted_output

    table1_df = results_object["overview"]
    table1 = table("Broker orders", table1_df)
    formatted_output.append(table1)

    table2_df = results_object["delays"]
    table2 = table("Delays", table2_df)
    formatted_output.append(table2)

    table3_df = results_object["raw_slippage"]
    table3 = table("Slippage (ticks per lot)", table3_df)
    formatted_output.append(table3)

    table4_df = results_object["vol_slippage"]
    table4 = table("Slippage (normalised by annual vol, BP of annual SR)",
                   table4_df)
    formatted_output.append(table4)

    table5_df = results_object["cash_slippage"]
    table5 = table("Slippage (In base currency)", table5_df)
    formatted_output.append(table5)

    summary_results_dict = results_object["summary_dict"]
    for summary_table_name, summary_table_item in summary_results_dict.items():
        summary_table = table("Summary %s" % summary_table_name,
                              summary_table_item)
        formatted_output.append(summary_table)

    return formatted_output
Beispiel #10
0
def format_trades_data(results_object):
    """
    Put the results into a printable format

    :param results_dict: dict, keys are different segments
    :return:
    """

    formatted_output = []

    formatted_output.append(
        header("Trades report produced on %s" %
               (str(datetime.datetime.now()))))

    table1_df = results_object['broker_orders']
    table1 = table('Broker orders', table1_df)
    formatted_output.append(table1)

    return formatted_output
Beispiel #11
0
def format_costs_data(costs_report_data: dict) -> list:

    formatted_output = []

    formatted_output.append(
        header("Costs report produced on %s from %s to %s" %
               (str(datetime.datetime.now()), costs_report_data['start_date'],
                costs_report_data['end_date'])))

    formatted_output.append(body_text("* indicates currently held position"))

    table1_df = costs_report_data['combined_df_costs']
    table1 = table("Check of slippage", table1_df)
    formatted_output.append(table1)

    table2_df = costs_report_data['table_of_SR_costs']
    table2 = table(
        "SR costs (using stored slippage): more than 0.01 means panic",
        table2_df)
    formatted_output.append(table2)

    return formatted_output
Beispiel #12
0
def report_system_dynamic(data: dataBlob, backtest: interactiveBacktest):

    format_output = []

    strategy_name = backtest.strategy_name
    timestamp = backtest.timestamp

    optimal_positions_df = get_optimal_positions_table_as_df(
        data=data, strategy_name=backtest.strategy_name)
    optimal_positions_table = table("Optimal positions", optimal_positions_df)
    format_output.append(optimal_positions_table)

    report_header = header(
        "Strategy report for %s backtest timestamp %s produced at %s" %
        (strategy_name, timestamp, str(datetime.datetime.now())))
    format_output.append(report_header)

    format_output = report_system_classic_no_header_or_footer(
        data, backtest=backtest, format_output=format_output)

    format_output.append(body_text("End of report for %s" % strategy_name))

    return format_output
Beispiel #13
0
def format_liquidity_data(liquidity_report_data: dict) -> list:

    formatted_output = []
    all_liquidity_df = liquidity_report_data['all_liquidity_df']
    formatted_output.append(
        header("Liquidity report produced on %s" %
               (str(datetime.datetime.now()))))

    formatted_output.append(body_text("* indicates currently held position"))

    table1_df = all_liquidity_df.sort_values("contracts")
    table1 = table(
        " Sorted by contracts: Less than 100 contracts a day is a problem",
        table1_df)
    formatted_output.append(table1)

    table2_df = all_liquidity_df.sort_values("risk")
    table2 = table(
        "Sorted by risk: Less than $1.5 million of risk per day is a problem",
        table2_df)
    formatted_output.append(table2)

    return formatted_output
def report_system_classic(data, data_backtest):
    """

    :param strategy_name: str
    :param data: dataBlob
    :param data_backtest: dataBacktest object populated with a specific backtest
    :return: list of report format type objects
    """

    strategy_name = data_backtest.strategy_name

    format_output = []
    report_header = header(
        "Strategy report for %s backtest timestamp %s produced at %s" %
        (strategy_name, data_backtest.timestamp, str(
            datetime.datetime.now())))
    format_output.append(report_header)

    unweighted_forecasts_df = get_forecast_matrix(
        data_backtest,
        stage_name="forecastScaleCap",
        method_name="get_capped_forecast")
    unweighted_forecasts_df_rounded = unweighted_forecasts_df.round(1)
    unweighted_forecasts_table = table(
        "Unweighted forecasts", unweighted_forecasts_df_rounded
    )
    format_output.append(unweighted_forecasts_table)

    # Forecast weights
    forecast_weights_df = get_forecast_matrix_over_code(
        data_backtest, stage_name="combForecast", method_name="get_forecast_weights")
    forecast_weights_df_as_perc = forecast_weights_df * 100
    forecast_weights_df_as_perc_rounded = forecast_weights_df_as_perc.round(1)
    forecast_weights_table = table(
        "Forecast weights", forecast_weights_df_as_perc_rounded
    )
    format_output.append(forecast_weights_table)

    # Weighted forecast
    weighted_forecasts_df = forecast_weights_df * unweighted_forecasts_df
    weighted_forecast_rounded = weighted_forecasts_df.round(1)
    weighted_forecast_table = table(
        "Weighted forecasts",
        weighted_forecast_rounded)
    format_output.append(weighted_forecast_table)

    # Cash target
    cash_target_dict = data_backtest.system.positionSize.get_daily_cash_vol_target()
    cash_target_text = body_text(
        "\nVol target calculation %s\n" %
        cash_target_dict)

    format_output.append(cash_target_text)

    # Vol calc
    vol_calc_df = get_stage_breakdown_over_codes(
        data_backtest,
        method_list=[
            daily_returns_vol,
            daily_denom_price,
            rawdata_daily_perc_vol],
    )
    vol_calc_df["annual % vol"] = vol_calc_df["Daily % vol"] * \
        ROOT_BDAYS_INYEAR
    vol_calc_df_rounded = vol_calc_df.round(4)
    vol_calc_table = table("Vol calculation", vol_calc_df_rounded)
    format_output.append(vol_calc_table)

    # Subsystem position table
    subystem_positions_df = get_stage_breakdown_over_codes(
        data_backtest,
        method_list=[
            get_block_value,
            get_price_volatility,
            get_instrument_ccy_vol,
            get_fx_rate,
            get_instrument_value_vol,
            get_daily_cash_vol_target,
            get_vol_scalar,
            get_combined_forecast,
            get_subsystem_position,
        ],
    )
    subystem_positions_df_rounded = subystem_positions_df.round(2)
    subystem_positions_table = table(
        "Subsystem position", subystem_positions_df_rounded
    )
    format_output.append(subystem_positions_table)

    # Portfolio position table: ss position, instr weight, IDM, position
    # required
    portfolio_positions_df = get_stage_breakdown_over_codes(
        data_backtest,
        method_list=[
            get_subsystem_position,
            get_instrument_weights,
            get_idm,
            get_required_portfolio_position,
        ],
    )
    portfolio_positions_df_rounded = portfolio_positions_df.round(3)
    portfolio_positions_table = table(
        "Portfolio positions", portfolio_positions_df_rounded
    )

    format_output.append(portfolio_positions_table)

    # position diags
    position_diags_df = calc_position_diags(portfolio_positions_df, subystem_positions_df)

    position_diags_df_rounded = position_diags_df.round(2)
    position_diags_table = table("Position diags", position_diags_df_rounded)

    format_output.append(position_diags_table)

    # Position vs buffer table: position required, buffers, actual position
    versus_buffers_df = get_stage_breakdown_over_codes(
        data_backtest,
        method_list=[
            get_required_portfolio_position,
            get_lower_buffer,
            get_upper_buffer,
        ],
    )

    instrument_code_list = versus_buffers_df.index
    timestamp_positions = get_position_at_timestamp_df_for_instrument_code_list(
        data_backtest, data, instrument_code_list)
    current_positions = get_current_position_df_for_instrument_code_list(
        data_backtest, data, instrument_code_list
    )
    versus_buffers_and_positions_df = pd.concat(
        [versus_buffers_df, timestamp_positions, current_positions], axis=1
    )
    versus_buffers_and_positions_df_rounded = versus_buffers_and_positions_df.round(
        1)
    versus_buffers_and_positions_table = table(
        "Positions vs buffers", versus_buffers_and_positions_df_rounded
    )

    format_output.append(versus_buffers_and_positions_table)

    format_output.append(body_text("End of report for %s" % strategy_name))

    return format_output
Beispiel #15
0
def format_roll_data_for_instrument(results_dict):
    """
    Put the results into a printable format

    :param results_dict: dict, keys are instruments, contains roll information
    :return:
    """

    instrument_codes = list(results_dict.keys())

    formatted_output = []

    formatted_output.append(
        header("Roll status report produced on %s" %
               str(datetime.datetime.now())))

    table1_df = pd.DataFrame(
        dict(
            Status=[results_dict[code]["status"] for code in instrument_codes],
            Roll_exp=[
                results_dict[code]["roll_expiry"] for code in instrument_codes
            ],
            Prc_exp=[
                results_dict[code]["price_expiry"] for code in instrument_codes
            ],
            Crry_exp=[
                results_dict[code]["carry_expiry"] for code in instrument_codes
            ],
        ),
        index=instrument_codes,
    )

    # sort by time to theoretical roll, and apply same sort order for all
    # tables
    table1_df = table1_df.sort_values("Roll_exp")
    instrument_codes = list(table1_df.index)

    table1 = table("Status and time to roll in days", table1_df)
    formatted_output.append(table1)
    formatted_output.append(
        body_text(
            "Roll_exp is days until preferred roll set by roll parameters. Prc_exp is days until price contract expires, "
            "Crry_exp is days until carry contract expires"))

    # will always be 6 wide
    width_contract_columns = len(
        results_dict[instrument_codes[0]]["contract_labels"])

    table2_dict = {}
    for col_number in range(width_contract_columns):
        table2_dict["C%d" % col_number] = [
            str(results_dict[code]["contract_labels"][col_number])
            for code in instrument_codes
        ]

    table2_df = pd.DataFrame(table2_dict, index=instrument_codes)
    table2 = table("List of contracts", table2_df)
    formatted_output.append(table2)
    formatted_output.append(body_text("Suffix: p=price, f=forward, c=carry"))

    table2b_dict = {}
    for col_number in range(width_contract_columns):
        table2b_dict["Pos%d" % col_number] = [
            results_dict[code]["positions"][col_number]
            for code in instrument_codes
        ]

    table2b_df = pd.DataFrame(table2b_dict, index=instrument_codes)

    table2b = table("Positions", table2b_df)
    formatted_output.append(table2b)

    table3_dict = {}
    for col_number in range(width_contract_columns):
        table3_dict["V%d" % col_number] = [
            results_dict[code]["volumes"][col_number]
            for code in instrument_codes
        ]

    table3_df = pd.DataFrame(table3_dict, index=instrument_codes)
    table3_df = table3_df.round(2)

    table3 = table("Relative volumes", table3_df)
    formatted_output.append(table3)
    formatted_output.append(
        body_text(
            "Contract volumes over recent days, normalised so largest volume is 1.0"
        ))

    formatted_output.append(header("END OF ROLL REPORT"))

    return formatted_output