def exercise1a():
    """ Exercise 1a
    The goal of this exercise is to understand the relationship
    between muscle length and tension.
    Here you will re-create the isometric muscle contraction experiment.
    To do so, you will have to keep the muscle at a constant length and
    observe the force while stimulating the muscle at a constant activation."""

    # Defination of muscles
    parameters = MuscleParameters()
    pylog.warning("Loading default muscle parameters")
    pylog.info(parameters.showParameters())
    pylog.info("Use the parameters object to change the muscle parameters")

    # Create muscle object
    muscle = Muscle(parameters)

    pylog.warning("Isometric muscle contraction to be completed")

    # Instatiate isometric muscle system
    sys = IsometricMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.l_opt # To get the muscle optimal length
    #x0 = [0.0, sys.muscle.L_OPT]

    # Evalute for a single muscle stretch
    muscle_stretch = 0.2

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.

    # Set the initial condition
    x0 = [0.0, sys.muscle.l_opt]
    # x0[0] --> muscle stimulation intial value
    # x0[1] --> muscle contracticle length initial value

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.2
    time_step = 0.001

    time = np.arange(t_start, t_stop, time_step)

    # Run the integration

    result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           stimulation=muscle_stimulation,
                           muscle_length=muscle_stretch)

    # Plotting
    plt.figure('Isometric muscle experiment')
    plt.plot(result.time, result.l_ce)
    plt.title('Isometric muscle experiment')
    plt.xlabel('Time [s]')
    plt.ylabel('Muscle contracticle length [m]')
    plt.grid()

    muscle_stretches = np.arange(0, muscle_stretch, 0.001)

    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ### code for 1a
    pylog.info(
        "1a. relationship between forces and contractile element length")

    length_start = 0.0
    length_stop = 0.3
    length_step = 0.005
    muscle_lengths = np.arange(length_start, length_stop, length_step)

    active_forces = []
    passive_forces = []
    total_forces = []
    element_lengths = []

    for temp_length in muscle_lengths:

        temp_result = sys.integrate(x0=x0,
                                    time=time,
                                    time_step=time_step,
                                    stimulation=muscle_stimulation,
                                    muscle_length=temp_length)
        temp_active_force = temp_result.active_force[-1]
        temp_passive_force = temp_result.passive_force[-1]
        tenp_total_force = temp_active_force + temp_passive_force
        temp_element_length = temp_result.l_ce[-1]

        active_forces = active_forces + [temp_active_force]
        passive_forces = passive_forces + [temp_passive_force]
        total_forces = total_forces + [tenp_total_force]
        element_lengths = element_lengths + [temp_element_length]

    plt.figure("1a. Isometric muscle experiment (muscle_stimulation == 1)")
    plt.plot(element_lengths, active_forces)
    plt.plot(element_lengths, passive_forces)
    plt.plot(element_lengths, total_forces)
    plt.title('Isometric Muscle Experiment (muscle_stimulation == 1)')
    plt.xlabel('Muscle contracticle length [m]')
    plt.ylabel('Tension [N]')
    plt.legend(("Active Force", "Passive Force", "Total force"))
    plt.grid()
    plt.show()

    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ### code for 1b
    pylog.info(
        "1b. relationship between forces and contractile element length with different stimulations"
    )

    length_start = 0.0
    length_stop = 0.3
    length_step = 0.005
    muscle_lengths = np.arange(length_start, length_stop, length_step)

    muscle_stimulations = np.arange(0, muscle_stimulation + 0.1, 0.1)

    all_active_forces = []
    all_passive_forces = []
    all_total_forces = []
    all_element_lengths = []

    for temp_muscle_stimulation in muscle_stimulations:
        temp_active_forces = []
        temp_passive_forces = []
        temp_total_forces = []
        temp_element_lengths = []

        for temp_length in muscle_lengths:
            temp_result = sys.integrate(x0=x0,
                                        time=time,
                                        time_step=time_step,
                                        stimulation=temp_muscle_stimulation,
                                        muscle_length=temp_length)
            temp_active_force = temp_result.active_force[-1]
            temp_passive_force = temp_result.passive_force[-1]
            tenp_total_force = temp_active_force + temp_passive_force
            temp_element_length = temp_result.l_ce[-1]

            temp_active_forces = temp_active_forces + [temp_active_force]
            temp_passive_forces = temp_passive_forces + [temp_passive_force]
            temp_total_forces = temp_total_forces + [tenp_total_force]
            temp_element_lengths = temp_element_lengths + [temp_element_length]

        all_active_forces = all_active_forces + [temp_active_forces]
        all_passive_forces = all_passive_forces + [temp_passive_forces]
        all_total_forces = all_total_forces + [temp_total_forces]
        all_element_lengths = all_element_lengths + [temp_element_lengths]

    plt.figure(
        '1b. Isometric muscle experiment for active forces with different stimulations'
    )
    for i in range(len(muscle_stimulations)):
        plt.plot(all_element_lengths[i], all_active_forces[i])
    plt.title(
        'Isometric muscle experiment for active forces with different stimulations'
    )
    plt.xlabel('Muscle contracticle length [m]')
    plt.ylabel('Tension [N]')
    temp_legends = [
        'stimulation = ' + format((temp_stimulation), '.1f')
        for temp_stimulation in muscle_stimulations
    ]
    plt.legend(temp_legends)
    plt.grid()
    plt.show()

    plt.figure(
        '1b. Isometric muscle experiment for passive forces with different stimulations'
    )
    for i in range(len(muscle_stimulations)):
        plt.plot(all_element_lengths[i], all_passive_forces[i])
    plt.title(
        'Isometric muscle experiment for passive forces with different stimulations'
    )
    plt.xlabel('Muscle contracticle length [m]')
    plt.ylabel('Tension [N]')
    temp_legends = [
        'stimulation = ' + format((temp_stimulation), '.1f')
        for temp_stimulation in muscle_stimulations
    ]
    plt.legend(temp_legends)
    plt.grid()
    plt.show()

    plt.figure(
        '1b. Isometric muscle experiment for total forces with different stimulations'
    )
    for i in range(len(muscle_stimulations)):
        plt.plot(all_element_lengths[i], all_total_forces[i])
    plt.title(
        'Isometric muscle experiment for total forces with different stimulations'
    )
    plt.xlabel('Muscle contracticle length [m]')
    plt.ylabel('Tension [N]')
    temp_legends = [
        'stimulation = ' + format((temp_stimulation), '.1f')
        for temp_stimulation in muscle_stimulations
    ]
    plt.legend(temp_legends)
    plt.grid()
    plt.show()

    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ### code for 1c
    pylog.info(
        "1c. relationship between forces and contractile element length with different fiber lengths"
    )

    short_opt = 0.05
    medium_opt = 0.1
    long_opt = 0.15
    opt_range = [short_opt, medium_opt, long_opt]

    muscle_stimulation = 1.

    length_start = 0.0
    length_stop = 0.3
    length_step = 0.005
    muscle_lengths = np.arange(length_start, length_stop, length_step)

    for temp_opt in opt_range:

        parameters = MuscleParameters(l_opt=temp_opt)
        muscle = Muscle(parameters)
        sys = IsometricMuscleSystem()
        sys.add_muscle(muscle)
        #muscle.L_OPT = temp_opt

        temp_active_forces = []
        temp_passive_forces = []
        temp_total_forces = []
        temp_element_lengths = []

        for temp_length in muscle_lengths:
            temp_result = sys.integrate(x0=x0,
                                        time=time,
                                        time_step=time_step,
                                        stimulation=muscle_stimulation,
                                        muscle_length=temp_length)
            temp_active_force = temp_result.active_force[-1]
            temp_passive_force = temp_result.passive_force[-1]
            tenp_total_force = temp_active_force + temp_passive_force
            temp_element_length = temp_result.l_ce[-1]

            temp_active_forces = temp_active_forces + [temp_active_force]
            temp_passive_forces = temp_passive_forces + [temp_passive_force]
            temp_total_forces = temp_total_forces + [tenp_total_force]
            temp_element_lengths = temp_element_lengths + [temp_element_length]

        plt.figure(
            "1c. Isometric muscle experiment with musle fiber length  = " +
            format((temp_opt), '.2f'))
        plt.plot(temp_element_lengths, temp_active_forces)
        plt.plot(temp_element_lengths, temp_passive_forces)
        plt.plot(temp_element_lengths, temp_total_forces)
        plt.xlabel('Muscle contracticle length [m]')
        plt.ylabel('Tension [N]')
        plt.title("Isometric muscle experiment with musle fiber length  = " +
                  format((temp_opt), '.2f'))
        plt.legend(("Active Force", "Passive Force ", "Total Force "))
        plt.grid()
        plt.show()
Beispiel #2
0
def exercise1d():
    """ Exercise 1d

    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    pylog.warning("Isotonic muscle contraction to be implemented")

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.

    #sys.muscle.L_OPT=0.05

    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.25
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal

    # Create a V_ce vector
    V_ce_1d = np.zeros(100)
    PF_ce_1d = np.zeros(100)
    AF_ce_1d = np.zeros(100)
    # Create load vector
    Load = np.linspace(1, 600, num=100)
    """1.d) velocity-tension analysis """

    for i in range(0, len(Load)):
        # Set the initial condition
        x0 = [
            muscle_stimulation, sys.muscle.L_OPT,
            sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0
        ]

        # Evalute for a single load
        load = Load[i]

        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               time_stabilize=time_stabilize,
                               stimulation=muscle_stimulation,
                               load=load)
        #print(sys.muscle.L_OPT+sys.muscle.L_SLACK)
        #print(result.l_mtc[-1]-(sys.muscle.L_OPT+sys.muscle.L_SLACK))

        if (result.l_mtc[-1] < sys.muscle.L_OPT + sys.muscle.L_SLACK):
            V_ce_1d[i] = min(result.v_ce)

        else:

            V_ce_1d[i] = max(result.v_ce)

        PF_ce_1d[i] = result.passive_force[-1]
        AF_ce_1d[i] = result.active_force[-1]

        # Plotting
        plt.figure('Isotonic muscle experiment')
        plt.plot(result.time, result.v_ce)
        plt.title('Isotonic muscle experiment')
        plt.xlabel('Time [s]')
        plt.ylabel('Contractile element velocity')
        plt.grid()

    # Plot velocity versus tension
    plt.figure()
    plt.plot(V_ce_1d, Load)
    plt.title('Isotonic muscle experiment')
    plt.xlabel('Contractile element velocity')
    plt.ylabel('Load')
    plt.grid()
    plt.axvline(0, color='r', linestyle='--')

    # Plot velocity versus tension
    plt.figure()
    plt.plot(V_ce_1d, PF_ce_1d + AF_ce_1d)
    #plt.plot(V_ce_1d, PF_ce_1d)
    #plt.plot(V_ce_1d, AF_ce_1d, '--')
    plt.title('Isotonic muscle experiment')
    plt.xlabel('Contractile element velocity')
    plt.ylabel('Total Force')
    plt.grid()
    #plt.legend(['total','passive', 'active'])
    plt.axvline(0, color='r', linestyle='--')
    """ 1.f) velocity-tension as a function of muscle activation """
    # Create solution vector
    #R_glob=np.zeros((5,50))
    # Create muscle activation vector
    dS = np.linspace(0.1, 1, num=5)
    # Create a V_ce vector
    V_ce = np.zeros((5, 100))

    PF_ce = np.zeros((5, 100))
    AF_ce = np.zeros((5, 100))
    for i in range(0, len(Load)):
        for j in range(0, len(dS)):

            # Evalute for a single load
            load = Load[i]

            # Evalute for a single muscle stimulation
            muscle_stimulation = dS[j]

            # Set the initial condition
            x0 = [
                muscle_stimulation, sys.muscle.L_OPT,
                sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0
            ]

            # Run the integration
            result = sys.integrate(x0=x0,
                                   time=time,
                                   time_step=time_step,
                                   time_stabilize=time_stabilize,
                                   stimulation=muscle_stimulation,
                                   load=load)
            #R_glob[j,i]=result.tendon_force[len(result.tendon_force)-1]
            #print(sys.muscle.L_OPT+sys.muscle.L_SLACK)
            #print(result.l_mtc[-1]-(sys.muscle.L_OPT+sys.muscle.L_SLACK))

            if (result.l_mtc[-1] < sys.muscle.L_OPT + sys.muscle.L_SLACK):
                V_ce[j, i] = min(result.v_ce)

            else:

                V_ce[j, i] = max(result.v_ce)

            PF_ce[j, i] = result.passive_force[-1]
            AF_ce[j, i] = result.active_force[-1]

            # # Plotting
            # plt.figure('Isotonic muscle experiment')
            # plt.plot(result.time, result.v_ce)
            # plt.title('Isotonic muscle experiment')
            # plt.xlabel('Time [s]')
            # plt.ylabel('Contractile element velocity')
            # plt.grid()

    # Plot velocity versus tension
    plt.figure()
    for i in range(0, 5):
        plt.plot(V_ce[i, :], PF_ce[i, :] + AF_ce[i, :])
        plt.title('Isotonic muscle experiment')
        plt.xlabel('Contractile element velocity')
        plt.ylabel('Force')
        plt.grid()
    plt.legend([
        'Stimulation = 0.1', 'Stimulation = 0.28', 'Stimulation = 0.46',
        'Stimulation = 0.64', 'Stimulation = 0.82', 'Stimulation = 1'
    ])
Beispiel #3
0
def exercise1a():
    """ Exercise 1a
    The goal of this exercise is to understand the relationship
    between muscle length and tension.
    Here you will re-create the isometric muscle contraction experiment.
    To do so, you will have to keep the muscle at a constant length and
    observe the force while stimulating the muscle at a constant activation."""

    # Defination of muscles
    parameters = MuscleParameters()
    pylog.warning("Loading default muscle parameters")
    pylog.info(parameters.showParameters())
    pylog.info("Use the parameters object to change the muscle parameters")

    # Create muscle object
    muscle = Muscle(parameters)

    pylog.warning("Isometric muscle contraction to be completed")
    
    
    
    # Instatiate isometric muscle system
    sys = IsometricMuscleSystem()

    # Add the muscle to the system
    
    sys.add_muscle(muscle)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Evalute for a single muscle stretch
    muscle_stretch = 0.2
    
    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT]
    # x0[0] --> muscle stimulation intial value
    # x0[1] --> muscle contracticle length initial value

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.2
    time_step = 0.001

    time = np.arange(t_start, t_stop, time_step)

    # Run the integration
    result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           stimulation=muscle_stimulation,
                           muscle_length=muscle_stretch)
    
    

    # 
    muscle_length=np.arange(0,0.4,0.001)
    F_active=[] 
    F_passive=[] 
    F_total=[] 
    F_length=[]
    # Exercice 1 a
    pylog.info("Ex 1a")
    for length in muscle_length:
        result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           stimulation=muscle_stimulation,
                           muscle_length=length)
        F_active.append(result.active_force[-1])
        F_passive.append(result.passive_force[-1])  
        F_total.append(result.active_force[-1]+result.passive_force[-1])
        F_length.append(result.l_ce[-1]) 
        if length==0.2:
            plt.figure('Single integration experiment')
            plt.title("Single Integration Experiment for Muscle length = 0.11")
            plt.plot(result.time,result.active_force)
            plt.plot(result.time,result.passive_force)
            plt.xlabel('Time [s]')
            plt.ylabel('Muscle force [N]')
            plt.legend(("Active Force","Passive Force"))
            plt.grid()
            plt.show()
  
     
    plt.figure("Isometric muscle experiment")
    plt.title("Isometric Muscle Experiments for Different Lengths")
    plt.plot(F_length,F_active)
    plt.plot(F_length,F_passive)
    plt.plot(F_length,F_total)
    plt.title('Isometric muscle experiment')
    plt.xlabel('Contractile Element Length [m]')
    plt.ylabel('Muscle force [N]')
    plt.legend(("Active","Passive","Total force"))

    plt.grid()
    plt.show()
    pylog.info("Ex 1b")
    # Exercise 1. b
    plt.figure("Isometric muscle experiment by changing the stimulation")
    different_stimulation=np.arange(0,1.2,0.2) 
#    for stimulation in different_stimulation:

    for stimulation in different_stimulation:
        F_total=[] 
        F_length=[]
        pylog.info("stimulation is {}".format(stimulation))
        for length in muscle_length: 
            result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           stimulation=stimulation,
                           muscle_length=length)
            F_total.append(result.active_force[-1]+result.passive_force[-1])
            F_length.append(result.l_ce[-1]) 
        plt.plot(F_length,F_total)
    plt.title("Isometric Muscle Experiments with different Stimulation values")
    plt.xlabel('Length [m]')
    plt.ylabel('Total muscle force [N]')
    plt.legend(("stimulation = 0","stimulation = 0.2","stimulation = 0.4","stimulation = 0.6","stimulation = 0.8","stimulation = 1"))       
    plt.grid()
    plt.show()
    
    # 1/c 
    fiber_opt_small=0.07 
    fiber_opt_medium=0.11
    fiber_opt_long=0.16 
    lopt_list=[fiber_opt_small,fiber_opt_medium,fiber_opt_long]
    muscle_stimulation = 1
    for lopt in lopt_list:
        print("RUNNING lopt=",lopt)
        parameters = MuscleParameters(l_opt=lopt)
        muscle = Muscle(parameters)
        sys = IsometricMuscleSystem()
        sys.add_muscle(muscle)
        F_active=[] 
        F_passive=[] 
        F_total=[] 
        F_length=[]
        for length in muscle_length: 
            result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           stimulation=muscle_stimulation,
                           muscle_length=length)
            F_active.append(result.active_force[-1])
            F_passive.append(result.passive_force[-1])
            F_total.append(result.active_force[-1]+result.passive_force[-1])
            F_length.append(result.l_ce[-2]) 
        plt.figure("Isometric muscle experiment with length {}".format(lopt))    
        plt.plot(F_length,F_active)
        plt.plot(F_length,F_passive)
        plt.plot(F_length,F_total)
        plt.xlabel('Contractile Element Length [m]')
        plt.ylabel('Total Muscle Force [N]')
        plt.title("Isometric muscle experiment with length {}".format(lopt))   
        plt.legend(("Active","Passive","Total force"))
        plt.grid()
        plt.show()
def exercise1d():
    """ Exercise 1d

    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    pylog.warning("Isotonic muscle contraction to be implemented")

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Evaluate for a single muscle stimulation
    muscle_stimulation = 1.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 1.25
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)

    # Set max_vce
    max_vce = []

    # ---------------------------------------------
    # Small load experiment
    # ---------------------------------------------
    load_table_small = [5, 10, 20, 50, 100]

    # Begin plotting
    plt.figure('Isotonic muscle experiment - load [10, 200] [N]')
    max_vce_small = ex1d_for(sys, x0, time, time_step, time_stabilize,
                             muscle_stimulation, load_table_small, False)

    plt.title('Isotonic muscle experiment - load [5, 140] [N]')
    plt.xlabel('Time [s]')
    plt.ylabel('Muscle contractile velocity [m/s]')
    plt.legend(loc='upper right')
    plt.grid()

    # ---------------------------------------------
    # Big load experiment
    # ---------------------------------------------
    load_table_big = [150, 200, 220, 250, 500, 1000, 1500]

    # Begin plotting
    plt.figure('Isotonic muscle experiment - load [150, 1500] [N]')
    max_vce += ex1d_for(sys, x0, time, time_step, time_stabilize,
                        muscle_stimulation, load_table_big, True)

    plt.title('Isotonic muscle experiment - load [150, 1500] [N]')
    plt.xlabel('Time [s]')
    plt.ylabel('Muscle contractile velocity [m/s]')
    plt.legend(loc='upper right')
    plt.grid()

    # ---------------------------------------------
    # Plot velocity - tension relation
    # ---------------------------------------------
    load = np.arange(5, 2500, 200)
    (max_vce, active_force) = ex1d_for(sys, x0, time, time_step,
                                       time_stabilize, muscle_stimulation,
                                       load, False)

    fig = plt.figure('Velocity - Tension')
    ax = fig.add_subplot(111)

    # Plot comments and line at 0 value
    min_val = 0.0
    if min(map(abs, max_vce)) not in max_vce:
        min_val = -min(map(abs, max_vce))
    else:
        min_val = min(map(abs, max_vce))

    xy = (load[max_vce.index(min_val)], min_val)
    xytext = (load[max_vce.index(min_val)] + 50, min_val)
    ax.annotate('load = {:0.1f}'.format(152.2), xy=xy, xytext=xytext)

    plt.title('Velocity [m/s] - Tension [N]')
    plt.xlabel('Tension [N]')
    plt.ylabel('Velocity [m/s]')
    plt.grid()

    plt.plot(load, max_vce)
    plt.plot(load[max_vce.index(min_val)], min_val, 'o')
Beispiel #5
0
def exercise1d():
    """ Exercise 1d

    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    pylog.warning("Isotonic muscle contraction to be implemented")

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Evalute for a single load
    load = 100.

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT,
          sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.3
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)

    # Run the integration
    result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           time_stabilize=time_stabilize,
                           stimulation=muscle_stimulation,
                           load=load)

    # Plotting
    plt.figure('Isotonic muscle experiment')
    plt.plot(result.time, result.v_ce)
    plt.title('Isotonic muscle experiment')
    plt.xlabel('Time [s]')
    plt.ylabel('Muscle contractilve velocity')
    plt.grid()
    
    # Run 1.d
    load = np.arange(0,1000,20)
    plotVceLoad(load,[0.1,0.5,1])
Beispiel #6
0
def exercise1a():
    """ Exercise 1a
    The goal of this exercise is to understand the relationship
    between muscle length and tension.
    Here you will re-create the isometric muscle contraction experiment.
    To do so, you will have to keep the muscle at a constant length and
    observe the force while stimulating the muscle at a constant activation."""

    # Defination of muscles
    parameters = MuscleParameters()
    pylog.warning("Loading default muscle parameters")
    pylog.info(parameters.showParameters())
    pylog.info("Use the parameters object to change the muscle parameters")

    # Create muscle object
    muscle = Muscle(parameters)

    # Instatiate isometric muscle system
    sys = IsometricMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT]
    # x0[0] --> muscle stimulation intial value
    # x0[1] --> muscle contracticle length initial value

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.5
    time_step = 0.001
    time = np.arange(t_start, t_stop, time_step)

    # Evalute for a single muscle stimulation
    muscle_stimulation = np.arange(0, 1., 0.2)

    # Several muscle stretch
    muscle_stretches = np.arange(0, 0.3, 0.01)

    active_active = []

    for stim in muscle_stimulation:
        active_forces = []
        passive_forces = []
        total = []
        lengths = []
        for stretch in muscle_stretches:
            # Run the integration
            result = sys.integrate(x0=x0,
                                   time=time,
                                   time_step=time_step,
                                   stimulation=stim,
                                   muscle_length=stretch)
            active_forces.append(result.active_force[-1])
            passive_forces.append(result.passive_force[-1])
            total.append(result.active_force[-1] + result.passive_force[-1])
            lengths.append(result.l_ce[-1])
        active_active.append(active_forces)

    # Plotting
    plt.figure('Isometric muscle experiment 1')
    plt.plot(lengths, active_forces)
    plt.plot(lengths, passive_forces)
    plt.plot(lengths, total)
    plt.title('Isometric muscle experiment stimulation')
    plt.xlabel('Muscle stretch')
    plt.ylabel('Muscle force')
    plt.legend(('Active', 'Passive', 'Total'))
    plt.grid()
    plt.show()

    # Plotting
    plt.figure('Isometric muscle experiment 2')
    for i in range(len(muscle_stimulation)):
        plt.plot(lengths, active_active[i])
    plt.title('Isometric muscle experiment')
    plt.xlabel('Muscle stretch')
    plt.ylabel('Muscle force')
    plt.legend(muscle_stimulation)
    plt.grid()
    plt.show()

    # Plotting
    #plt.figure('Isotonic muscle experiment')
    #plt.plot(result.time, result.v_ce)
    #plt.title('Isotonic muscle experiment')
    #plt.xlabel('Time [s]')
    #plt.ylabel('Muscle contractilve velocity')
    #plt.grid()

    #muscle with longer l_opt
    muscle.L_OPT = 0.5
    muscle_stimulation = 1.
    lce = []
    totalF = []
    activeF = []
    passiveF = []
    for stretch in muscle_stretches:
        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               stimulation=muscle_stimulation,
                               muscle_length=stretch)
        activeF.append(result.active_force[-1])
        passiveF.append(result.passive_force[-1])
        lce.append(result.l_ce[-1])
        totalF.append(result.active_force[-1] + result.passive_force[-1])
    plt.figure('muscle with l_opt=0.5')
    plt.title('muscle with l_opt=0.5')
    plt.plot(lce, activeF)
    plt.plot(lce, passiveF)
    plt.plot(lce, totalF)
    plt.xlabel('Muscle Stretch')
    plt.ylabel('Force')
    plt.ylim((0, 4000))
    plt.legend(('Active Force', 'Passive Force', 'Total Force'))

    plt.grid()

    #muscle with shorter l_opt
    t_start = 0.0
    t_stop = 1
    time_step = 0.005

    time = np.arange(t_start, t_stop, time_step)
    muscle_stretches = np.arange(0, 0.3, 0.01)
    muscle.L_OPT = 0.075
    muscle_stimulation = 1.
    lce = []
    totalF = []
    activeF = []
    passiveF = []
    plt.figure('muscle with l_opt=0.075')

    for stretch in muscle_stretches:
        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               stimulation=muscle_stimulation,
                               muscle_length=stretch)
        activeF.append(result.active_force[-1])
        passiveF.append(result.passive_force[-1])
        lce.append(result.l_ce[-1])
        totalF.append(result.active_force[-1] + result.passive_force[-1])
    plt.title('muscle with l_opt=0.075')
    plt.plot(lce, activeF)
    plt.plot(lce, passiveF)
    plt.plot(lce, totalF)
    plt.xlabel('Muscle Stretch')
    plt.ylabel('Force')
    plt.ylim((0, 4000))
    plt.legend(('Active Force', 'Passive Force', 'Total Force'))
    plt.grid()
def exercise1c():
    """describe how fiber length influences the force-length curve. Compare 
    a muscle comprised of short muscle fibers to a muscle comprised of 
    long muscle fibers. Change the parameter, you can use 
    system_parameters.py::MuscleParameters before instantiating the muscle
    No more than 2 plots are required.
    """

    # Defination of muscles
    parameters = MuscleParameters()
    pylog.warning("Loading default muscle parameters")
    pylog.info(parameters.showParameters())
    pylog.info("Use the parameters object to change the muscle parameters")

    # Create muscle object
    muscle = Muscle(parameters)

    pylog.warning("Isometric muscle contraction to be completed")

    # Instatiate isometric muscle system
    sys = IsometricMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length
    muscle_lengths = np.arange(.1, .26, .03)

    max_muscle_active_forces = []
    max_muscle_passive_forces = []
    max_total_force = []
    max_force_stretch = []

    # Evalute for a single muscle stretch
    for muscle_length in muscle_lengths:

        parameters.l_opt = muscle_length
        muscle = Muscle(parameters)

        pylog.warning("Isometric muscle contraction to be completed")

        # Instatiate isometric muscle system
        sys = IsometricMuscleSystem()

        # Add the muscle to the system
        sys.add_muscle(muscle)

        if muscle_length < .16:
            start_stretch_length = .16
        else:
            start_stretch_length = muscle_length

        muscle_stretches = np.arange(
            start_stretch_length, 1.2 * muscle_length + .16,
            (1.2 * muscle_length + .16 - start_stretch_length) / 40)

        muscle_active_forces = []
        muscle_passive_forces = []
        total_force = []

        # Evalute for a single muscle stretch
        for muscle_stretch in muscle_stretches:

            # Evalute for a single muscle stimulation
            muscle_stimulation = 1.

            # Set the initial condition
            x0 = [0.0, sys.muscle.L_OPT]
            # x0[0] --> muscle stimulation intial value
            # x0[1] --> muscle contracticle length initial value

            # Set the time for integration
            t_start = 0.0
            t_stop = 0.3
            time_step = 0.001

            time = np.arange(t_start, t_stop, time_step)

            # Run the integration
            result = sys.integrate(x0=x0,
                                   time=time,
                                   time_step=time_step,
                                   stimulation=muscle_stimulation,
                                   muscle_length=muscle_stretch)

            muscle_active_forces.append(result.active_force[-1])
            muscle_passive_forces.append(result.passive_force[-1])
            total_force.append(result.active_force[-1] +
                               result.passive_force[-1])

        max_muscle_active_forces.append(max(muscle_active_forces))

        active_max_index = muscle_active_forces.index(
            max(muscle_active_forces))
        max_muscle_passive_forces.append(
            muscle_passive_forces[active_max_index])
        max_total_force.append(total_force[active_max_index])
        max_force_stretch.append(muscle_stretches[active_max_index])

        # Plotting max force for each muscle length over different stretch values. Uncomment to see (adds ~8 plots)
        #        plt.figure('Isometric muscle experiment. L_opt = %.2f'%(muscle_length))
        #        plt.plot(muscle_stretches, muscle_active_forces, label='active')
        #        plt.plot(muscle_stretches, muscle_passive_forces, label='passive')
        #        plt.plot(muscle_stretches, total_force, label='total')
        #        plt.title('Isometric muscle experiment 1C, L_opt = %.2f'%(muscle_length))
        #        plt.xlabel('Stretch Length [m]')
        #        plt.ylabel('Muscle Force [N]')
        #        plt.legend(loc='upper left')
        #        plt.grid()

        # Plotting active on its own
        plt.figure('Isometric muscle experiment, Active Force')
        plt.plot(muscle_stretches,
                 muscle_active_forces,
                 label=('L_opt = %.2f' % (muscle_length)))
        plt.title('Isometric muscle experiment: Active Force vs L_Opt')
        plt.xlabel('Stretch Length [m]')
        plt.ylabel('Active Muscle Force [N]')
        plt.legend(loc='upper left')
        plt.grid()

        # Plotting passive on its own
        plt.figure('Isometric muscle experiment, Passive Force')
        plt.plot(muscle_stretches,
                 muscle_passive_forces,
                 label=('L_opt = %.2f' % (muscle_length)))
        plt.title('Isometric muscle experiment: Passive Force vs L_Opt')
        plt.xlabel('Stretch Length [m]')
        plt.ylabel('Passive Muscle Force [N]')
        plt.legend(loc='upper left')
        plt.grid()

    # Plot max vals
    plt.figure('Isometric muscle experiment max Force')
    plt.plot(muscle_lengths, max_muscle_active_forces, label='active')
    #plt.plot(muscle_lengths, max_muscle_passive_forces, label='passive')
    #plt.plot(muscle_lengths, max_total_force, label='total')
    plt.title('Isometric muscle experiment 1C, Max')
    plt.xlabel('Muscle Optimal Length [m]')
    plt.ylabel('Max Muscle Force [N]')
    plt.legend(loc='upper left')
    plt.grid()

    #    print(max_muscle_active_forces)
    # Plot max stretch lengths of max vals
    plt.figure('Isometric muscle experiment max Force stretch')
    plt.plot(muscle_lengths, max_force_stretch, label='active')
    #plt.plot(muscle_lengths, max_muscle_passive_forces, label='passive')
    #plt.plot(muscle_lengths, max_total_force, label='total')
    plt.title('Isometric muscle experiment 1C, Max Stretch')
    plt.xlabel('Muscle Optimal Length [m]')
    plt.ylabel('Muscle Stretch of Max Force [m]')
    plt.legend(loc='upper left')
    plt.grid()
Beispiel #8
0
def exercise1c():
    """ Exercice 1c """

    # Defination of muscles
    parameters = MuscleParameters()
    pylog.warning("Loading default muscle parameters")
    pylog.info(parameters.showParameters())
    pylog.info("Use the parameters object to change the muscle parameters")

    # Create muscle object
    muscle = Muscle(parameters)

    # Instatiate isometric muscle system
    sys = IsometricMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Force-length curves

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT]

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.2
    time_step = 0.001
    time = np.arange(t_start, t_stop, time_step)

    N_stretch = 40
    activeF = np.zeros(N_stretch)
    passiveF = np.zeros(N_stretch)
    tendonF = np.zeros(N_stretch)
    lceF = np.zeros(N_stretch)

    # Evaluate for various optimal length
    l_opt_list = np.array([0.1, 0.3])

    # Subplots grid
    n_plot = len(l_opt_list)
    n_subplot = int((np.sqrt(n_plot - 1)) + 1)
    if (n_plot <= n_subplot * (n_subplot - 1)):
        fig, axes = plt.subplots(n_subplot, n_subplot - 1)
        n_subplot2 = n_subplot - 1
    else:
        fig, axes = plt.subplots(n_subplot, n_subplot)
        n_subplot2 = n_subplot

    for i, l_opt in enumerate(l_opt_list):

        # Evaluate for various muscle stretch
        muscle.L_OPT = l_opt
        stretch_min = muscle.L_OPT
        stretch_max = muscle.L_OPT * 3
        muscle_stretch = np.arange(stretch_min, stretch_max,
                                   (stretch_max - stretch_min) / N_stretch)

        for stretch in range(len(muscle_stretch)):
            # Run the integration
            result = sys.integrate(x0=x0,
                                   time=time,
                                   time_step=time_step,
                                   stimulation=1.,
                                   muscle_length=muscle_stretch[stretch])
            activeF[stretch] = result.active_force[-1]
            passiveF[stretch] = result.passive_force[-1]
            tendonF[stretch] = result.tendon_force[-1]
            lceF[stretch] = result.l_ce[-1]

        plt.subplot(n_subplot, n_subplot2, i + 1)
        plt.plot(lceF, 100 * activeF / muscle.F_MAX, label='Active Force')
        plt.plot(lceF, 100 * passiveF / muscle.F_MAX, label='Passive Force')
        plt.plot(lceF, 100 * tendonF / muscle.F_MAX, label='Tendon Force')
        plt.axvline(l_opt, linestyle="--", color="r")
        plt.xlim([l_opt - 0.3, l_opt + 0.3])
        plt.ylim([0, 120])
        plt.xlabel('Contractile element length')
        plt.ylabel('Force [% of $F_{max}$]')
        plt.title('Optimal length = {} [m]'.format(l_opt))
        plt.legend()
        plt.grid()

    plt.suptitle(
        'Force-length curves for isometric muscle experiment with various muscle optimal lengths'
    )
    fig.tight_layout()
Beispiel #9
0
def exercise1a():
    """ Exercise 1a """

    # Defination of muscles
    parameters = MuscleParameters()
    pylog.warning("Loading default muscle parameters")
    pylog.info(parameters.showParameters())
    pylog.info("Use the parameters object to change the muscle parameters")

    # Create muscle object
    muscle = Muscle(parameters)

    # Instatiate isometric muscle system
    sys = IsometricMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Force-length curves

    # Evalute for various muscle stretch
    stretch_min = muscle.L_OPT
    stretch_max = muscle.L_OPT * 3
    N_stretch = 100
    muscle_stretch = np.arange(stretch_min, stretch_max,
                               (stretch_max - stretch_min) / N_stretch)

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT]
    # x0[0] --> muscle stimulation intial value
    # x0[1] --> muscle contracticle length initial value

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.2
    time_step = 0.001
    time = np.arange(t_start, t_stop, time_step)

    activeF = np.zeros(N_stretch)
    passiveF = np.zeros(N_stretch)
    tendonF = np.zeros(N_stretch)
    lceF = np.zeros(N_stretch)

    for index_strech, stretch in enumerate(muscle_stretch):
        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               stimulation=1.0,
                               muscle_length=stretch)
        activeF[index_strech] = result.active_force[-1]
        passiveF[index_strech] = result.passive_force[-1]
        tendonF[index_strech] = result.tendon_force[-1]
        lceF[index_strech] = result.l_ce[-1]

    # Plotting
    plt.figure('Isometric Muscle Experiment 1a')

    plt.plot(lceF * 100 / muscle.L_OPT,
             activeF * 100 / muscle.F_MAX,
             label='Active Force')
    plt.plot(lceF * 100 / muscle.L_OPT,
             passiveF * 100 / muscle.F_MAX,
             label='Passive Force')
    plt.plot(lceF * 100 / muscle.L_OPT,
             tendonF * 100 / muscle.F_MAX,
             label=' Tendon Force')

    plt.axvline(100, linewidth=1, linestyle='--', color='r')
    plt.axvline(145, linewidth=1, linestyle='--', color='r')

    plt.xlabel('Contractile element length [% of $L_{opt}$]')
    plt.ylabel('Force [% of $F_{max}$]')
    plt.title(
        'Force-length curves for isometric muscle experiment (Stimulation = 1.0)'
    )
    plt.legend()
    plt.grid()
Beispiel #10
0
import matplotlib.pyplot as plt
import numpy as np

import cmc_pylog as pylog
from muscle import Muscle
from mass import Mass
from cmcpack import DEFAULT, parse_args
from cmcpack.plot import save_figure
from system_parameters import MuscleParameters, MassParameters
from isometric_muscle_system import IsometricMuscleSystem
from isotonic_muscle_system import IsotonicMuscleSystem

parameters = MuscleParameters()
pylog.warning("Loading default muscle parameters")
pylog.info(parameters.showParameters())
pylog.info("Use the parameters object to change the muscle parameters")

# Create muscle object
muscle = Muscle(parameters)

# Instatiate isometric muscle system
sys = IsometricMuscleSystem()

# Add the muscle to the system
sys.add_muscle(muscle)

stretch_min = muscle.L_OPT
stretch_max = muscle.L_OPT * 3
N_stretch = 40
muscle_stretch = np.arange(stretch_min, stretch_max,
Beispiel #11
0
def exercise1b():
    """ Exercise 1b """

    # Defination of muscles
    parameters = MuscleParameters()
    pylog.warning("Loading default muscle parameters")
    pylog.info(parameters.showParameters())
    pylog.info("Use the parameters object to change the muscle parameters")

    # Create muscle object
    muscle = Muscle(parameters)

    # Instatiate isometric muscle system
    sys = IsometricMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Force-length curves

    # Evalute for various muscle stretch
    stretch_min = muscle.L_OPT * 0.5
    stretch_max = muscle.L_OPT * 2.8
    N_stretch = 40
    muscle_stretch = np.arange(stretch_min, stretch_max,
                               (stretch_max - stretch_min) / N_stretch)

    # Evaluate for various muscle stimulation
    N_stim = 6
    muscle_stimulation = np.round(np.arange(N_stim) / (N_stim - 1), 2)

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT]

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.3
    time_step = 0.001
    time = np.arange(t_start, t_stop, time_step)

    activeF = np.zeros(N_stretch)
    passiveF = np.zeros(N_stretch)
    tendonF = np.zeros(N_stretch)
    lceF = np.zeros(N_stretch)

    # Plotting
    plt.figure('Isometric Muscle Experiment 1b')
    colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']

    for stim in range(len(muscle_stimulation)):
        pylog.info('Stimulation = {}'.format(stim))
        activeF = np.zeros(N_stretch)
        tendonF = np.zeros(N_stretch)
        for stretch in range(len(muscle_stretch)):
            # Run the integration
            result = sys.integrate(x0=x0,
                                   time=time,
                                   time_step=time_step,
                                   stimulation=muscle_stimulation[stim],
                                   muscle_length=muscle_stretch[stretch])
            activeF[stretch] = result.active_force[-1]
            if (stim == 0):
                passiveF[stretch] = result.passive_force[-1]
            tendonF[stretch] = result.tendon_force[-1]
            lceF[stretch] = result.l_ce[-1]

        color = colors[stim]
        plt.plot(lceF * 100 / muscle.L_OPT,
                 100 * activeF / muscle.F_MAX,
                 color,
                 label='Active Force - Stimulation = ' +
                 str(round(muscle_stimulation[stim], 2)))

    plt.plot(lceF * 100 / muscle.L_OPT,
             100 * passiveF / muscle.F_MAX,
             '+' + 'k',
             label='Passive Force')
    plt.title(
        'Force-length curves for isometric muscle experiment with various muscle stimulations'
    )
    plt.xlabel('Contractile element length [% of $L_{opt}$]')
    plt.ylabel('Force [% of $F_{max}$]')
    plt.legend()
    plt.grid()
Beispiel #12
0
def exercise1a():
    """ Exercise 1a
    The goal of this exercise is to understand the relationship
    between muscle length and tension.
    Here you will re-create the isometric muscle contraction experiment.
    To do so, you will have to keep the muscle at a constant length and
    observe the force while stimulating the muscle at a constant activation."""

    # Defination of muscles
    parameters = MuscleParameters()
    pylog.warning("Loading default muscle parameters")
    pylog.info(parameters.showParameters())
    pylog.info("Use the parameters object to change the muscle parameters")

    # Create muscle object
    muscle = Muscle(parameters)

    pylog.warning("Isometric muscle contraction to be completed")

    # Instatiate isometric muscle system
    sys = IsometricMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.l_opt # To get the muscle optimal length

    # Evalute for a single muscle stretch
    muscle_stretch = 0.35

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.

    sys.muscle.l_opt=0.15
    # Set the initial condition
    x0 = [0.0, sys.muscle.l_opt]
    # x0[0] --> muscle stimulation intial value
    # x0[1] --> muscle contracticle length initial value
    print(x0)

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.2
    time_step = 0.001

    time = np.arange(t_start, t_stop, time_step)

    # Run the integration
    result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           stimulation=muscle_stimulation,
                           muscle_length=muscle_stretch)
   
    # Plotting
    plt.figure('Isometric muscle experiment')
    plt.plot(result.l_ce/sys.muscle.l_opt, result.active_force, label = "Active Force")
    plt.plot(result.l_ce/sys.muscle.l_opt, result.passive_force, label = "Passive Force")
    plt.plot(result.l_ce/sys.muscle.l_opt, result.passive_force + result.active_force, label = "Total Force")
    plt.legend(loc="upper left")
    plt.title('Isometric muscle experiment')
    plt.xlabel('length')
    plt.ylabel('Force [N]')
    plt.grid()
    plt.show
    
    
    plt.figure('Isometric Muscle experiment 2')
    
    stim = np.linspace(0,1,11)
    print(stim)
    for i in range(10):
        muscle_stimulation = stim[i]
        j = 0.1*i
        j = round(j,1)
        # Run the integration
        result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           stimulation=muscle_stimulation,
                           muscle_length=muscle_stretch)
    
    
        plt.plot(result.l_ce,result.active_force, label ="MS %s" %j)
    a
    plt.xlabel('length')
    plt.ylabel('Force [N]')
    plt.show
Beispiel #13
0
def exercise1d():
    """ Exercise 1d

    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    pylog.warning("Isotonic muscle contraction to be implemented")

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.l_opt # To get the muscle optimal length

    # Evalute for a single load
    load = 250/9.81

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.0

    # Set the initial condition
    x0 = [0.0, sys.muscle.l_opt,
          sys.muscle.l_opt + sys.muscle.l_slack, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.4
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)
    
    load = np.linspace(100/9.81,1700/9.81,50)
    Stimu = np.linspace(0,1,6)
    Vce = np.zeros((len(load),len(Stimu)))
    plt.figure('Isotonix Globale')
    for j in range(len(Stimu)):
        
   #     Vce = np.empty(len(load))
    #    Vcemax = np.empty(len(load))
    #    Vcemin = np.empty(len(load))
    
        for i in range(len(load)):

    # Run the integration
            result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           time_stabilize=time_stabilize,
                           stimulation=Stimu[j],
                           load=load[i]
                           )
            print(result.l_mtu[-1])
            print(sys.muscle.l_opt + sys.muscle.l_slack)
            if (result.l_mtu[-1] > sys.muscle.l_opt + sys.muscle.l_slack):
                Vce[i,j]=(max(result.v_ce))
            else: Vce[i,j] = min(result.v_ce)
        
        Vce[:,j]
        plt.plot(Vce[:,j],load, label ="MS %s" %round(Stimu[j],1))
        plt.legend(loc = "upper left")
        plt.xlabel('Vitesse max [m/s]')
        plt.ylabel('Load [kg]')






    # Plotting
    plt.figure('Isotonic muscle experiment')
    #plt.plot(result.time,
    #         result.v_ce)
    plt.plot(Vce,load)
    plt.title('Isotonic muscle experiment')
    plt.xlabel('Vitesse max [m/s]')
    plt.ylabel('Load [kg]')
    #plt.xlabel('Time [s]')
    #plt.ylabel('Muscle contracticle velocity [lopts/s]')
    plt.grid()

#MUSCLE-Force Velocity relationship : 
    plt.figure('Muscle Force-Velocity')
    plt.plot(result.v_ce,result.active_force, label ="Active Force")
    plt.plot(result.v_ce,result.active_force+result.passive_force, label = "Passive + Active")
    plt.plot(result.v_ce,result.passive_force, label = "Passive Force")
    plt.legend(loc = "upper left")
    plt.xlabel('Vitesse m')
    plt.ylabel('Force')
Beispiel #14
0
def exercise1a():
    """ Exercise 1a
    The goal of this exercise is to understand the relationship
    between muscle length and tension.
    Here you will re-create the isometric muscle contraction experiment.
    To do so, you will have to keep the muscle at a constant length and
    observe the force while stimulating the muscle at a constant activation."""

    # Defination of muscles
    parameters = MuscleParameters()
    pylog.warning("Loading default muscle parameters")
    pylog.info(parameters.showParameters())

    # Create muscle object
    muscle = Muscle(parameters)

    # Instatiate isometric muscle system
    sys = IsometricMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Evalute for a single muscle stimulation
    muscle_stimulation = 0.5

    # Create time vector
    t_start = 0.0
    t_stop = 0.3
    time_step = 0.001
    time = np.arange(t_start, t_stop, time_step)

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT]

    # Create stretch coefficient vector
    dL = np.linspace(-0.5, 0.5, num=50)
    len_ce = np.zeros(dL.size)
    # Create a steady state muscle force vector
    R_glob_1a = np.zeros((50))
    R_pass_1a = np.zeros((50))
    R_activ_1a = np.zeros((50))
    """ 1.a) Effect of stretching coefficient on the muscle force """

    for i in range(0, len(dL)):

        # Evalute for a single muscle stretch
        muscle_stretch = (sys.muscle.L_OPT + sys.muscle.L_SLACK) * (1 + dL[i])

        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               stimulation=muscle_stimulation,
                               muscle_length=muscle_stretch)
        R_glob_1a[i] = result.tendon_force[-1]
        R_pass_1a[i] = result.passive_force[-1]
        R_activ_1a[i] = result.active_force[-1]
        len_ce[i] = result.l_ce[-1]


#        # Plot Isometric muscle experiment
#        plt.figure('Isometric muscle experiment')
#        plt.plot(result.time, result.tendon_force)
#        plt.title('Isometric muscle experiment')
#        plt.xlabel('Time [s]')
#        plt.ylabel('Muscle force')

# Plot force-length curve
    plt.figure('Forces as a function of stretching coefficient')
    # Passive Force
    plt.plot(dL, R_pass_1a)
    # Active Force
    plt.plot(dL, R_activ_1a)
    # Total force
    plt.plot(dL, R_glob_1a)

    plt.xlabel('Stretch coeffcient [%]')
    plt.ylabel('Muscle force [N]')
    plt.legend(['Passive Force', 'Active Force', 'Total Force'])
    plt.ylim([0, 4000])
    plt.xlim([-0.4, 0.4])

    plt.figure('Forces as a function of the contractile element length')
    # Passive Force
    plt.plot(len_ce, R_pass_1a)
    # Active Force
    plt.plot(len_ce, R_activ_1a)
    # Total force
    plt.plot(len_ce, R_glob_1a)

    plt.ylim([0, 4000])
    plt.xlim([0.06, 0.18])
    plt.xlabel('Contractile element Lenght [m]')
    plt.ylabel('Muscle force [N]')
    plt.legend(['Passive Force', 'Active Force', 'Total Force'])

    #plt.savefig('Forces_stretch_coeff')
    """1.b) Effect of muscle stimulation [-1,0] on muscle force as a function of stretch coefficient"""

    # Create a steady state muscle force vector
    R_glob_1b = np.zeros((5, 50))
    R_pass_1b = np.zeros((5, 50))
    R_act_1b = np.zeros((5, 50))
    # Create muscle activation vector
    dS = np.linspace(0, 1, num=5)

    for i in range(0, len(dL)):
        for j in range(0, len(dS)):

            # Evalute for a single muscle stimulation
            muscle_stimulation = dS[j]

            # Evalute for a single muscle stretch
            muscle_stretch = (sys.muscle.L_OPT + sys.muscle.L_SLACK) * (1 +
                                                                        dL[i])

            # Run the integration
            result = sys.integrate(x0=x0,
                                   time=time,
                                   time_step=time_step,
                                   stimulation=muscle_stimulation,
                                   muscle_length=muscle_stretch)
            R_glob_1b[j, i] = result.tendon_force[-1]
            R_pass_1b[j, i] = result.passive_force[-1]
            R_act_1b[j, i] = result.active_force[-1]
    # Plot force-length curve for different muscle activation
    plt.figure('Forces as a function of dL for different muscle stimulation')
    plt.plot(dL, R_glob_1b[0, :])
    plt.plot(dL, R_glob_1b[1, :])
    plt.plot(dL, R_glob_1b[2, :])
    plt.plot(dL, R_glob_1b[3, :])
    plt.plot(dL, R_glob_1b[4, :])
    plt.xlabel('Stretch coeffcient [%]')
    plt.ylabel('Muscle force [N]')
    plt.legend([
        'Stimulation = 0', 'Stimulation = 0.25', 'Stimulation = 0.5',
        'Stimulation = 0.75', 'Stimulation = 1'
    ])
    plt.title('Total forces')

    plt.ylim([0, 4000])

    plt.figure(
        'Active forces as a function of dL for different muscle stimulation')
    plt.plot(dL, R_act_1b[0, :])
    plt.plot(dL, R_act_1b[1, :])
    plt.plot(dL, R_act_1b[2, :])
    plt.plot(dL, R_act_1b[3, :])
    plt.plot(dL, R_act_1b[4, :])
    plt.xlabel('Stretch coeffcient [%]')
    plt.ylabel('Muscle force [N]')
    plt.legend([
        'Stimulation = 0', 'Stimulation = 0.25', 'Stimulation = 0.5',
        'Stimulation = 0.75', 'Stimulation = 1'
    ])
    plt.title('Active forces')

    plt.figure(
        'Passive forces as a function of dL for different muscle stimulation')
    plt.plot(dL, R_pass_1b[0, :])
    plt.plot(dL, R_pass_1b[1, :])
    plt.plot(dL, R_pass_1b[2, :])
    plt.plot(dL, R_pass_1b[3, :])
    plt.plot(dL, R_pass_1b[4, :])
    plt.xlabel('Stretch coeffcient [%]')
    plt.ylabel('Muscle force [N]')
    plt.legend([
        'Stimulation = 0', 'Stimulation = 0.25', 'Stimulation = 0.5',
        'Stimulation = 0.75', 'Stimulation = 1'
    ])
    plt.title('Passive forces')
    """ 1.c) Effect of fiber length on force-length curve """

    # Evalute for a single muscle stimulation
    muscle_stimulation = 0.5
    # Create fiber length vector
    #dl=np.linspace(0.1,1,num=10)
    dl = [0.07, 0.11, 0.15]
    # Create a steady state muscle force vectors
    R_glob_1c = np.zeros((len(dl), len(dL)))
    # Create active force vectors
    R_act_1c = np.zeros((len(dl), len(dL)))
    # Create passive force vectors
    R_pas_1c = np.zeros((len(dl), len(dL)))
    # Create contractile element length vectors
    len_ce = np.zeros((len(dl), len(dL)))

    for i in range(0, len(dL)):
        for j in range(0, len(dl)):

            # Change the fiber length
            sys.muscle.L_OPT = dl[j]

            # Evalute for a single muscle stretch
            muscle_stretch = (sys.muscle.L_OPT + sys.muscle.L_SLACK) * (1 +
                                                                        dL[i])

            # Run the integration
            result = sys.integrate(x0=x0,
                                   time=time,
                                   time_step=time_step,
                                   stimulation=muscle_stimulation,
                                   muscle_length=muscle_stretch)
            R_glob_1c[j, i] = result.tendon_force[-1]
            R_act_1c[j, i] = result.active_force[-1]
            R_pas_1c[j, i] = result.passive_force[-1]
            len_ce[j, i] = result.l_ce[-1]

    plt.figure('Forces as a function of dL for different fiber lengths')
    for i in range(0, len(dl)):
        plt.plot(dL, R_glob_1c[i, :])

    plt.xlabel('Strecth coeffcient')
    plt.ylabel('Muscle force')
    plt.legend(['Opt_len: 0.07', 'Opt_len: 0.11', 'Opt_len : 0.15'])

    plt.figure('Forces wrt CE length for different optimal lengths')
    for i in range(0, len(dl)):
        plt.plot(len_ce[i, :], R_glob_1c[i, :])

    plt.legend(['Opt_len: 0.07', 'Opt_len: 0.11', 'Opt_len : 0.15'])
    for i in range(0, len(dl)):
        plt.axvline(dl[i], color='r', linestyle='--')
    mvs = np.max(R_act_1c, axis=1)
    mv = np.unique(np.round(mvs))
    plt.axhline(mv, color='black', linestyle='--')
    plt.ylim([0, 3000])
    plt.xlabel('Contractile elememnt length [m]')
    plt.ylabel('Muscle force [n]')

    plt.figure('Active forces')
    for i in range(0, len(dl)):
        plt.plot(len_ce[i, :], R_act_1c[i, :])

    plt.xlabel('Contractile elememnt length [m]')
    plt.ylabel('Muscle force [n]')
    plt.legend(['Opt_len: 0.07', 'Opt_len: 0.11', 'Opt_len : 0.15'])

    plt.figure('Passive forces')
    for i in range(0, len(dl)):
        plt.plot(len_ce[i, :], R_pas_1c[i, :])

    plt.xlabel('Contractile elememnt length [m]')
    plt.ylabel('Muscle force [n]')
    plt.legend(['Opt_len: 0.07', 'Opt_len: 0.11', 'Opt_len : 0.15'])
def exercise1d():
    """ Exercise 1d

    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    pylog.warning("Isotonic muscle contraction to be implemented")

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.l_opt # To get the muscle optimal length

    # Evalute for a single load
    load = 250 / 9.81

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.0

    # Set the initial condition
    x0 = [0.0, sys.muscle.l_opt, sys.muscle.l_opt + sys.muscle.l_slack, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.4
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)

    # Run the integration
    result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           time_stabilize=time_stabilize,
                           stimulation=muscle_stimulation,
                           load=load)

    # Plotting
    plt.figure('Isotonic muscle experiment')
    plt.plot(result.time, result.v_ce)
    plt.title('Isotonic muscle experiment')
    plt.xlabel('Time [s]')
    plt.ylabel('Muscle contracticle velocity [lopts/s]')
    plt.grid()

    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ### code for 1d
    pylog.info(
        "1d. relationship between muscle contractile velocity and external load"
    )

    load_start = 1
    load_stop = 501
    load_step = 10
    load_range = np.arange(load_start, load_stop, load_step)

    muscle_stimulation = 1.0

    vels = []
    tendon_forces = []
    active_forces = []
    passive_forces = []
    total_forces = []

    for temp_load in load_range:
        temp_result = sys.integrate(x0=x0,
                                    time=time,
                                    time_step=time_step,
                                    time_stabilize=time_stabilize,
                                    stimulation=muscle_stimulation,
                                    load=temp_load)

        temp_tendon_force = temp_result.tendon_force[-1]
        temp_active_force = temp_result.active_force[-1]
        temp_passive_force = temp_result.passive_force[-1]
        temp_total_force = temp_active_force + temp_passive_force

        tendon_forces = tendon_forces + [temp_tendon_force]
        active_forces = active_forces + [temp_active_force]
        passive_forces = passive_forces + [temp_passive_force]
        total_forces = total_forces + [temp_total_force]

        temp_l_mtu = temp_result.l_mtu[-1]

        if temp_l_mtu < sys.muscle.l_opt + sys.muscle.l_slack:
            vels = vels + [np.min(temp_result.v_ce)]
        else:
            vels = vels + [np.max(temp_result.v_ce)]

    plt.figure(
        '1d. Isotonic muscle experiment for tension and contractile velocities'
    )
    plt.plot(vels, tendon_forces)
    plt.plot(vels, load_range)
    plt.plot(vels, active_forces)
    plt.plot(vels, passive_forces)
    plt.plot(vels, total_forces)
    plt.title(
        'Isotonic muscle experiment for tension and contractile velocities')
    plt.xlabel('Muscle contracticle velocity [lopts/s]')
    plt.ylabel('Tension [N]')
    plt.legend(("Tendon Force", "Load", "Active Force", "Passive Force",
                "Total force"))
    plt.grid()
    plt.show()

    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ######################################################################
    ### code for 1f

    pylog.info(
        "1f. relationship between muscle contractile velocity and external load with different stimulations"
    )

    muscle_stimulations = np.arange(0, muscle_stimulation + 0.1, 0.1)

    load_start = 1
    load_stop = 501
    load_step = 10
    load_range = np.arange(load_start, load_stop, load_step)

    all_vels = []
    all_tendon_forces = []

    for temp_muscle_stimulation in muscle_stimulations:

        temp_vels = []
        temp_tendon_forces = []

        for temp_load in load_range:
            temp_result = sys.integrate(x0=x0,
                                        time=time,
                                        time_step=time_step,
                                        time_stabilize=time_stabilize,
                                        stimulation=temp_muscle_stimulation,
                                        load=temp_load)

            temp_tendon_force = temp_result.tendon_force[-1]
            temp_tendon_forces = temp_tendon_forces + [temp_tendon_force]

            temp_l_mtu = temp_result.l_mtu[-1]

            if temp_l_mtu < sys.muscle.l_opt + sys.muscle.l_slack:
                temp_vels = temp_vels + [np.min(temp_result.v_ce)]
            else:
                temp_vels = temp_vels + [np.max(temp_result.v_ce)]

        all_vels = all_vels + [temp_vels]
        all_tendon_forces = all_tendon_forces + [temp_tendon_forces]

    plt.figure(
        '1f. Isotonic muscle experiment for loads and contractile velocities with different stimulations'
    )
    for i in range(len(muscle_stimulations)):
        plt.plot(all_vels[i], load_range)
    plt.title(
        'Isotonic muscle experiment for loads and contractile velocities with different stimulations'
    )
    plt.xlabel('Muscle contracticle velocity [lopts/s]')
    plt.ylabel('Tension [N]')
    temp_legends = [
        'stimulation = ' + format((temp_stimulation), '.1f')
        for temp_stimulation in muscle_stimulations
    ]
    plt.legend(temp_legends)
    plt.grid()
    plt.show()

    plt.figure(
        '1f. Isotonic muscle experiment for tendon forces and contractile velocities with different stimulations'
    )
    for i in range(len(muscle_stimulations)):
        plt.plot(all_vels[i], all_tendon_forces[i])
    plt.title(
        'Isotonic muscle experiment for tendon forces and contractile velocities with different stimulations'
    )
    plt.xlabel('Muscle contracticle velocity [lopts/s]')
    plt.ylabel('Tension [N]')
    temp_legends = [
        'stimulation = ' + format((temp_stimulation), '.1f')
        for temp_stimulation in muscle_stimulations
    ]
    plt.legend(temp_legends)
    plt.grid()
    plt.show()
Beispiel #16
0
def exercise1d():
    """ Exercise 1d
    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Velocity-tension curve

    # Evalute for various loads
    load_min = 1
    load_max = 301
    N_load = 50
    load_list = np.arange(load_min, load_max, (load_max - load_min) / N_load)

    # Evalute for Stimulation = 1.0
    stimulation = 1.0

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.3
    time_step = 0.001
    time_stabilize = 0.2
    time = np.arange(t_start, t_stop, time_step)

    max_velocity = np.zeros(N_load)
    tendonF = np.zeros(N_load)
    for ind_load, load in enumerate(load_list):
        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               time_stabilize=time_stabilize,
                               stimulation=stimulation,
                               load=load)
        if (result.l_mtc[-1] < (sys.muscle.L_OPT + sys.muscle.L_SLACK)):
            max_velocity[ind_load] = np.max(-result.v_ce)
        else:
            max_velocity[ind_load] = np.min(-result.v_ce)
        tendonF[ind_load] = result.tendon_force[-1]

    # Plotting
    plt.figure('Isotonic Muscle Experiment 1d')
    v_min = np.amin(max_velocity)
    v_max = np.amax(max_velocity)
    plt.plot(max_velocity * 100 / -muscle.V_MAX, tendonF * 100 / muscle.F_MAX)
    plt.axvline(linestyle='--', color='r', linewidth=2)
    plt.text(v_min * 100 / -muscle.V_MAX, 20, r'lengthening', fontsize=14)
    plt.text(v_max * 100 / -muscle.V_MAX * 1 / 3,
             20,
             r'shortening',
             fontsize=14)
    plt.xlabel('Maximal velocity [% of $V_{max}$]')
    plt.ylabel('Tendon Force [% of $F_{max}$]')
    plt.title(
        'Velocity-tension curve for isotonic muscle experiment (Stimulation = 1.0)'
    )
    plt.grid()
Beispiel #17
0
def exercise1d():
    """ Exercise 1d

    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    pylog.warning("Isotonic muscle contraction to be implemented")

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Evalute for a single load
    load = 100.

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]

    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.5
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)

    loads = np.arange(20, 351, 10)

    velocities = []

    for index, load in enumerate(loads):

        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               time_stabilize=time_stabilize,
                               stimulation=muscle_stimulation,
                               load=load)

        if (result.l_mtc[-1] < sys.muscle.L_OPT + sys.muscle.L_SLACK):
            velocities.append(np.max(result.v_ce))
            print('max')
        else:
            velocities.append(np.min(result.v_ce))
            print('min')

    #Muscle contracile Velocity - Tension (load) relationship

    plt.figure('Isotonic muscle experiment')
    plt.title('Isotonic muscle experiment')
    plt.xlabel('Muscle Contractile Velocity [m/s]')
    plt.ylabel('Tension (load) [N]')
    plt.plot(velocities, loads)
    plt.grid()

    #For different stimulations 1.f

    muscle_stimulation = np.arange(0, 1.1, 0.2)
    plt.figure('Isotonic muscle exp with different stimulations')
    plt.title('Isotonic muscle experiment with different stimulations')

    for stim in muscle_stimulation:
        velocities = []
        for index, load in enumerate(loads):
            #    Run the integration
            result = sys.integrate(x0=x0,
                                   time=time,
                                   time_step=time_step,
                                   time_stabilize=time_stabilize,
                                   stimulation=stim,
                                   load=load)

            if (result.l_mtc[-1] < sys.muscle.L_OPT + sys.muscle.L_SLACK):
                velocities.append(np.max(result.v_ce))
            else:
                velocities.append(np.min(result.v_ce))
        plt.xlabel('Muscle Contractile Velocity [m/s]')
        plt.ylabel('Tension (load) [N]')
        plt.plot(velocities, loads)

    plt.legend(('0', '0.2', '0.4', '0.6', '0.8', '1.0'))
    plt.grid()
Beispiel #18
0
def exercise1f():
    """ Exercise 1f """

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # Velocity-tension curve

    # Evalute for various loads
    load_min = 1
    load_max = 501
    N_load = 50
    load_list = np.arange(load_min, load_max, (load_max - load_min) / N_load)

    # Evalute for various muscle stimulation
    N_stim = 4
    muscle_stimulation = np.round(np.arange(N_stim) / (N_stim - 1), 2)

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.3
    time_step = 0.001
    time_stabilize = 0.2
    time = np.arange(t_start, t_stop, time_step)

    max_velocity = np.zeros((N_stim, N_load))
    tendonF = np.zeros((N_stim, N_load))

    for i, stim in enumerate(muscle_stimulation):

        for ind_load, load in enumerate(load_list):
            # Run the integration
            result = sys.integrate(x0=x0,
                                   time=time,
                                   time_step=time_step,
                                   time_stabilize=time_stabilize,
                                   stimulation=stim,
                                   load=load)
            if (result.l_mtc[-1] < (sys.muscle.L_OPT + sys.muscle.L_SLACK)):
                max_velocity[i, ind_load] = np.max(-result.v_ce)
            else:
                max_velocity[i, ind_load] = np.min(-result.v_ce)
            tendonF[i, ind_load] = result.tendon_force[-1]

    # Plotting
    plt.figure('Isotonic Muscle Experiment 1f')
    v_min = np.amin(max_velocity)
    v_max = np.amax(max_velocity)

    for i, stim in enumerate(muscle_stimulation):
        plt.plot(max_velocity[i, :] * 100 / -muscle.V_MAX,
                 tendonF[i, :] * 100 / muscle.F_MAX,
                 label='Tendon Force - Stimulation = {}'.format(stim))
        plt.xlim(v_min * 100 / -muscle.V_MAX, v_max * 100 / -muscle.V_MAX)
        plt.ylim(0, 200)

    plt.axvline(linestyle='--', color='r', linewidth=2)
    plt.text(v_min * 100 / -muscle.V_MAX * 2 / 3,
             170,
             r'lengthening',
             fontsize=16)
    plt.text(v_max * 100 / -muscle.V_MAX * 1 / 8,
             170,
             r'shortening',
             fontsize=16)
    plt.xlabel('Maximal velocity [% of $V_{max}$]')
    plt.ylabel('Tendon Force [% of $F_{max}$]')
    plt.title(
        'Velocity-tension curves for isotonic muscle experiment with various muscle stimulations'
    )
    plt.legend()
    plt.grid()
def exercise1b():
    """ Exercise 1a
    The goal of this exercise is to understand the relationship
    between muscle length and tension.
    Here you will re-create the isometric muscle contraction experiment.
    To do so, you will have to keep the muscle at a constant length and
    observe the force while stimulating the muscle at a constant activation."""

    # Defination of muscles
    parameters = MuscleParameters()
    pylog.warning("Loading default muscle parameters")
    pylog.info(parameters.showParameters())
    pylog.info("Use the parameters object to change the muscle parameters")

    # Create muscle object
    muscle = Muscle(parameters)

    pylog.warning("Isometric muscle contraction to be completed")

    # Instatiate isometric muscle system
    sys = IsometricMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length
    stimulations = np.arange(.0, 1.0, .02)
    stretches = np.arange(.12, .36, .05)  #default length is 0.24

    allStretches = []
    allStims = []
    allActForces = []
    allPassForces = []
    allNetForces = []

    for stretch in stretches:
        # Evalute for a single muscle stretch
        muscle_active_forces = []
        muscle_passive_forces = []
        total_force = []
        l_ce = []
        for stimulation in stimulations:

            # Evalute for a single muscle stimulation
            muscle_stimulation = stimulation

            # Set the initial condition
            x0 = [0.0, sys.muscle.L_OPT]
            # x0[0] --> muscle stimulation intial value
            # x0[1] --> muscle contracticle length initial value

            # Set the time for integration
            t_start = 0.0
            t_stop = 0.3
            time_step = 0.001

            time = np.arange(t_start, t_stop, time_step)

            # Run the integration
            result = sys.integrate(x0=x0,
                                   time=time,
                                   time_step=time_step,
                                   stimulation=muscle_stimulation,
                                   muscle_length=stretch)

            muscle_active_forces.append(result.active_force[-1])
            muscle_passive_forces.append(result.passive_force[-1])
            total_force.append(result.active_force[-1] +
                               result.passive_force[-1])
            l_ce.append(result.l_ce[-1])
            allStretches.append(stretch)
            allStims.append(stimulation)
            allActForces.append(result.active_force[-1])
            allPassForces.append(result.passive_force[-1])
            allNetForces.append(total_force[-1])

#            # Plotting results of individual trials to verify steady state assumption
#            plt.figure('Force over time with different stimulations and lengths %.2f' %stretch)
#            plt.plot(time, result.active_force, label='Active: Stim = %.2f'%stimulation + ' L = %.2f'%stretch)
#            plt.plot(time, result.passive_force, label='Passive: Stim = %.2f'%stimulation + ' L = %.2f'%stretch)
#            plt.plot(time, result.active_force+result.passive_force, label='Net: Stim = %.2f'%stimulation + ' L = %.2f'%stretch)
#            plt.title('Force over time with different stimulations and lengths')
#            plt.xlabel('Time [s]')
#            plt.ylabel('Active Muscle Force [N]')
#            plt.legend(loc='upper right')
#            plt.grid()

# Plotting
        plt.figure('Isometric Muscle: Stimulation vs Force')
        plt.subplot(3, 1, 1)
        plt.plot(stimulations,
                 muscle_active_forces,
                 label='L_mtu = %.2f' % stretch)
        plt.title('Isometric Muscle: Stimulation vs Force')
        plt.xlabel('Stimulation')
        plt.ylabel('Active Force [N]')
        plt.legend(loc='upper right')
        plt.grid()
        plt.subplot(3, 1, 2)
        plt.plot(stimulations,
                 muscle_passive_forces,
                 label='L_mtu = %.2f' % stretch)
        plt.xlabel('Stimulation')
        plt.ylabel('Passive Force [N]')
        plt.legend(loc='upper right')
        plt.grid()

        plt.subplot(3, 1, 3)
        plt.plot(stimulations, total_force, label='L_mtu = %.2f' % stretch)
        plt.xlabel('Stimulation')
        plt.ylabel('Total Force [N]')
        plt.legend(loc='upper right')
        plt.grid()

    allActForces = np.array(allActForces).reshape(
        (stretches.size, stimulations.size))
    allPassForces = np.array(allPassForces).reshape(
        (stretches.size, stimulations.size))
    allNetForces = np.array(allNetForces).reshape(
        (stretches.size, stimulations.size))
    stimulations, stretches = np.meshgrid(stimulations, stretches)

    fig1b = plt.figure('1b. Stim vs Active Force Surface Plot')
    ax = fig1b.gca(projection='3d')
    ax = fig1b.add_subplot(111, projection='3d')
    ax.plot_surface(stimulations,
                    stretches,
                    allActForces,
                    cmap=cm.coolwarm,
                    linewidth=0.5,
                    antialiased=False)
    ax.set_xlabel('Stimulation')
    ax.set_ylabel('Muscle Length (m)')
    ax.set_zlabel('Active Force (N)')
    plt.title('Stimulation vs Active Force')

    fig1b = plt.figure('1b. Stim vs Passive Force Surface Plot')
    ax = fig1b.gca(projection='3d')
    ax = fig1b.add_subplot(111, projection='3d')
    ax.plot_surface(stimulations,
                    stretches,
                    allPassForces,
                    cmap=cm.coolwarm,
                    linewidth=0.5,
                    antialiased=False)
    ax.set_xlabel('Stimulation')
    ax.set_ylabel('Muscle Length (m)')
    ax.set_zlabel('Passive Force (N)')
    plt.title('Stimulation vs Passive Force')

    fig1b = plt.figure('1b. Stim vs Total Force Surface Plot')
    ax = fig1b.gca(projection='3d')
    ax = fig1b.add_subplot(111, projection='3d')
    ax.plot_surface(stimulations,
                    stretches,
                    allNetForces,
                    cmap=cm.coolwarm,
                    linewidth=0.5,
                    antialiased=False)
    ax.set_xlabel('Stimulation')
    ax.set_ylabel('Muscle Length (m)')
    ax.set_zlabel('Net Force (N)')
    plt.title('Stimulation vs Total Force')
Beispiel #20
0
def exercise1d():
    """ Exercise 1d

    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    pylog.warning("Isotonic muscle contraction to be implemented")

    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Evalute for a single load
    #load = 15.

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.35
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)

    ####custom code#####

    load_range = np.arange(1, 361, 5)
    my_velocity = []
    plt.figure('Isotonic muscle experiment')
    for load in load_range:
        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               time_stabilize=time_stabilize,
                               stimulation=muscle_stimulation,
                               load=load)

        my_velocity.append(max(abs(result.v_ce)))

        i, = np.where(result.v_ce == my_velocity[-1])
        if i.shape == (0, ):  #checks for negative velocity
            my_velocity[-1] *= -1

        plt.plot(result.time, result.v_ce, label='Load: %s' % load)

    # Plotting

    #plt.plot(result.time, result.v_ce)
    plt.title('Isotonic muscle experiment')
    plt.xlabel('Time [s]')
    plt.ylabel('Muscle contractilve velocity')
    plt.grid()

    plt.figure('Isotonic Experiment')
    plt.plot(load_range, my_velocity)
    plt.xlabel('Load[Kg]')
    plt.ylabel('Maximal Muscle Contractile Velocity[m/s]')
    plt.grid()
def exercise1a():
    """ Exercise 1a
    The goal of this exercise is to understand the relationship
    between muscle length and tension.
    Here you will re-create the isometric muscle contraction experiment.
    To do so, you will have to keep the muscle at a constant length and
    observe the force while stimulating the muscle at a constant activation."""

    # Defination of muscles
    parameters = MuscleParameters()
    pylog.warning("Loading default muscle parameters")
    pylog.info(parameters.showParameters())
    pylog.info("Use the parameters object to change the muscle parameters")

    # Create muscle object
    muscle = Muscle(parameters)

    pylog.warning("Isometric muscle contraction to be completed")

    # Instatiate isometric muscle system
    sys = IsometricMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length
    muscle_stretches = np.arange(.12, .30, .002)

    #muscle_tendon_forces = []  #Erase or comment
    muscle_active_forces = []
    muscle_passive_forces = []
    total_force = []
    contractile_element_length = []

    # Evalute for a single muscle stretch
    for muscle_stretch in muscle_stretches:

        # Evalute for a single muscle stimulation
        muscle_stimulation = 1.

        # Set the initial condition
        x0 = [0.0, sys.muscle.L_OPT]
        # x0[0] --> muscle stimulation intial value
        # x0[1] --> muscle contracticle length initial value

        # Set the time for integration
        t_start = 0.0
        t_stop = 0.3
        time_step = 0.001

        time = np.arange(t_start, t_stop, time_step)

        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               stimulation=muscle_stimulation,
                               muscle_length=muscle_stretch)

        #        muscle_tendon_forces.append(result.tendon_force[-1])#Erase or comment
        muscle_active_forces.append(result.active_force[-1])
        muscle_passive_forces.append(result.passive_force[-1])
        total_force.append(result.active_force[-1] + result.passive_force[-1])
        contractile_element_length.append(result.l_ce[-1])


#        plotXY(time,result.l_ce,'Time [s]','Contractile Element Length [m]','Active',
#               'Isometric Muscle: Contractile Element Length vs Time',
#               'Isometric Muscle: Contractile Element Length vs Time')

#        plotXY(result.l_ce,result.active_force,'Contractile Element Length [m]','Active Force [N]','Active',
#               'Isometric Muscle: Contractile Element Length vs Force',
#               'Isometric Muscle: Contractile Element Length vs Force')
#        plt.plot(result.l_ce, result.passive_force, label='passive')
#        plt.plot(result.l_ce, result.active_force+result.passive_force, label='total')

# Plotting
    plt.figure('Isometric Muscle: L_ce vs Force')
    plt.plot(contractile_element_length, muscle_active_forces, label='active')
    plt.plot(contractile_element_length,
             muscle_passive_forces,
             label='passive')
    plt.plot(contractile_element_length, total_force, label='total')
    plt.title('Isometric Muscle: Stretch Length vs Force')
    plt.xlabel('Contractile Element Length [m]')
    plt.ylabel('Muscle Force [N]')
    plt.legend(loc='upper right')
    plt.grid()
Beispiel #22
0
def exercise1a():
    """ Exercise 1a
    The goal of this exercise is to understand the relationship
    between muscle length and tension.
    Here you will re-create the isometric muscle contraction experiment.
    To do so, you will have to keep the muscle at a constant length and
    observe the force while stimulating the muscle at a constant activation."""

    # Defination of muscles
    parameters = MuscleParameters()
    pylog.warning("Loading default muscle parameters")
    pylog.info(parameters.showParameters())
    pylog.info("Use the parameters object to change the muscle parameters")

    # Create muscle object
    muscle = Muscle(parameters)

    pylog.warning("Isometric muscle contraction to be completed")

    # Instatiate isometric muscle system
    sys = IsometricMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Evalute for a single muscle stretch
    muscle_stretch = 0.2

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT]
    # x0[0] --> muscle stimulation intial value
    # x0[1] --> muscle contracticle length initial value

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.2
    time_step = 0.001

    time = np.arange(t_start, t_stop, time_step)

    ####custom code#####

    fiber_length = np.arange(0.01, 0.11, 0.01)
    my_velocity = []
    plt.figure('Isotonic muscle experiment')
    for lopt in fiber_length:
        # Run the integration
        sys.muscle.L_OPT = lopt
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               stimulation=muscle_stimulation,
                               muscle_length=muscle_stretch)

        plt.figure('Isometric muscle experiment')
        plt.plot(result.time,
                 result.tendon_force,
                 label='fiber length: %.2f' % lopt)
        plt.title('Isometric muscle experiment')
        plt.xlabel('Time [s]')
        plt.ylabel('Muscle Force')
        plt.legend()

    # Run the integration
    result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           stimulation=muscle_stimulation,
                           muscle_length=muscle_stretch)

    # Plotting
    plt.figure('Isometric muscle experiment')
    plt.plot(result.time, result.tendon_force)
    plt.title('Isometric muscle experiment')
    plt.xlabel('Time [s]')
    plt.ylabel('Muscle Force')
    plt.grid()
def exercise1f():
    """ Exercise 1f

    What happens to the force-velocity relationship when the stimulation is varied
    between [0 - 1]?"""
    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)

    # Instantiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Evaluate for a single load
    load = 100.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 1.25
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)

    # ---------------------------------------------
    # maximum force over stimulation
    # ---------------------------------------------

    # Evaluate for different muscle stimulation
    muscle_stimulation = np.arange(0, 1.1, 0.1)
    max_active_force = []
    max_passive_force = []
    max_sum_force = []

    # Begin plotting
    for s in muscle_stimulation:
        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               time_stabilize=time_stabilize,
                               stimulation=s,
                               load=load)

        if abs(min(result.active_force)) > max(result.active_force):
            max_active_force.append(min(result.active_force))
        else:
            max_active_force.append(max(result.active_force))

        if abs(min(result.passive_force)) > max(result.passive_force):
            max_passive_force.append(min(result.passive_force))
        else:
            max_passive_force.append(max(result.passive_force))

        max_sum_force.append(max_active_force[-1] + max_passive_force[-1])

    plt.figure('Isotonic muscle active force - stimulation [0, 1]')

    plt.plot(muscle_stimulation,
             max_active_force,
             label='maximum active force')
    plt.plot(muscle_stimulation,
             max_passive_force,
             label='maximum passive force')
    plt.plot(muscle_stimulation, max_sum_force, label='maximum sum force')

    plt.xlabel('Stimulation [-]')
    plt.ylabel('Muscle sum forces [N]')
    plt.legend(loc='upper right')
    plt.grid()

    # ---------------------------------------------
    # force - velocity over stimulation
    # ---------------------------------------------
    muscle_stimulation = np.arange(0, 1.1, 0.1)

    # Begin plotting
    for s in muscle_stimulation:
        # Run the integration
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               time_stabilize=time_stabilize,
                               stimulation=s,
                               load=load)

        plt.figure('Isotonic muscle active force - velocity')
        plt.plot(result.v_ce[200:-1],
                 result.active_force[200:-1],
                 label='stimulation {:0.1f}'.format(s))

        plt.figure('Isotonic muscle passive force - velocity')
        plt.plot(result.v_ce[200:-1],
                 result.passive_force[200:-1],
                 label='stimulation {:0.1f}'.format(s))

        plt.figure('Isotonic muscle sum forces - velocity')
        plt.plot(result.v_ce[200:-1],
                 result.active_force[200:-1] + result.passive_force[200:-1],
                 label='stimulation {:0.1f}'.format(s))

    plt.figure('Isotonic muscle active force - velocity')
    plt.xlabel('Velocity contractile element [m/s]')
    plt.ylabel('Active force [N]')
    plt.legend(loc='upper right')
    plt.grid()

    plt.figure('Isotonic muscle passive force - velocity')
    plt.xlabel('Velocity contractile element [m/s]')
    plt.ylabel('Passive force [N]')
    plt.legend(loc='upper right')
    plt.grid()

    plt.figure('Isotonic muscle sum forces - velocity')
    plt.xlabel('Velocity contractile element [m/s]')
    plt.ylabel('Sum forces [N]')
    plt.legend(loc='upper right')
    plt.grid()

    # ---------------------------------------------
    # Plot velocity - tension relation
    # ---------------------------------------------
    muscle_stimulation = np.arange(0, 1.1, 0.25)
    load = np.arange(5, 1500, 20)
    plt.figure('Velocity - Tension')

    # Begin plotting
    for s in muscle_stimulation:
        (max_vce, active_force) = ex1d_for(sys, x0, time, time_step,
                                           time_stabilize, s, load, False)
        plt.plot(load, max_vce, label="stimulation {:0.1f}".format(s))

    plt.title('Velocity [m/s] - Load [N]')
    plt.xlabel('Load [N]')
    plt.ylabel('Velocity [m/s]')
    plt.legend(loc='lower right')
    plt.grid()
Beispiel #24
0
def exercise1d():
    """ Exercise 1d

    Under isotonic conditions external load is kept constant.
    A constant stimulation is applied and then suddenly the muscle
    is allowed contract. The instantaneous velocity at which the muscle
    contracts is of our interest."""

    # Defination of muscles
    muscle_parameters = MuscleParameters()
    print(muscle_parameters.showParameters())

    mass_parameters = MassParameters()
    print(mass_parameters.showParameters())

    # Create muscle object
    muscle = Muscle(muscle_parameters)

    # Create mass object
    mass = Mass(mass_parameters)


    # Instatiate isotonic muscle system
    sys = IsotonicMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # Add the mass to the system
    sys.add_mass(mass)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Evalute for a single load
    load = 100.

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT,
          sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0]
    # x0[0] - -> activation
    # x0[1] - -> contractile length(l_ce)
    # x0[2] - -> position of the mass/load
    # x0[3] - -> velocity of the mass/load

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.3
    time_step = 0.001
    time_stabilize = 0.2

    time = np.arange(t_start, t_stop, time_step)

    # Run the integration
    load_array=np.arange(0.1,3000/sys.mass.parameters.g,5)
    vel_ce=[]
    act_force_int=[]

    stimulation=[0.,0.2,0.4,0.6,0.8,1.]
    colors=['r','g','b','c','m','y']
    for loadx in load_array:
        
        result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           time_stabilize=time_stabilize,
                           stimulation=muscle_stimulation,
                           load=loadx)
        if (loadx==150.1 or loadx==155.1):
            plt.figure("Single Exp")
            plt.title("Result for a single experiment")
            plt.plot(result.time,result.v_ce*(-1))
            plt.xlabel("Time [s]")
            plt.ylabel("Velocity [m/s]")
            plt.legend(('Shortening','Lengthening'))
            pylog.info(result.l_mtc[-1])
            plt.grid()
            plt.show()
            
        if result.l_mtc[-1] < ( muscle_parameters.l_opt + muscle_parameters.l_slack):
            #pylog.info("min condition")
            vel_ce.append(min(result.v_ce[:])*(-1))
            act_force_int.append(max(result.active_force))
        else: 
            vel_ce.append(max(result.v_ce[:])*(-1))
            act_force_int.append(max(result.active_force))
           # pylog.info("max condition")
                
    
    plt.figure('Isotonic muscle experiment')
    plt.plot(vel_ce,load_array*mass_parameters.g)
    plt.plot(vel_ce,act_force_int)
    plt.title('Isotonic Muscle Experiment')
    plt.xlabel('Contractile Element Velocity [m/s]')
    plt.ylabel('Force[N]')
    plt.legend(("External Load","Internal Active Force"))
    plt.grid()
    plt.show()
    plt.figure('Varying Stimulation')
    leg=[] 
    for i,stim in enumerate(stimulation):
        pylog.info("Stim is {}".format(stim))
        vel_ce=[]
        act_force_int=[]
        for loadx in load_array:
            
            result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               time_stabilize=time_stabilize,
                               stimulation=stim,
                               load=loadx)
                
            if result.l_mtc[-1] < ( muscle_parameters.l_opt + muscle_parameters.l_slack):
                #pylog.info("min condition")
                vel_ce.append(min(result.v_ce[:])*(-1))
                act_force_int.append(max(result.active_force))
            else: 
                vel_ce.append(max(result.v_ce[:])*(-1))
                act_force_int.append(max(result.active_force))
        plt.plot(vel_ce,load_array*mass_parameters.g,colors[i],label='Stimulation={}'.format(stim))
        plt.plot(vel_ce,act_force_int,colors[i],linestyle=":",label='Stimulation={}'.format(stim))
        leg.append(("Load-velocity  plot with simulation={}".format(stim))) 
        leg.append(("Force-velocity with simulation={}".format(stim))) 

    plt.title('Varying Stimulation')
    plt.legend(leg)
    plt.xlabel('Contractile Element Velocity [m/s]')
    plt.ylabel('Force[N]')
    
    #("Stimulation = 0","Stimulation = 0.2","Stimulation = 0.4","Stimulation = 0.6","Stimulation = 0.8","Stimulation = 1")
    plt.grid()
Beispiel #25
0
def exercise1a():
    """ Exercise 1a
    The goal of this exercise is to understand the relationship
    between muscle length and tension.
    Here you will re-create the isometric muscle contraction experiment.
    To do so, you will have to keep the muscle at a constant length and
    observe the force while stimulating the muscle at a constant activation."""

    # Defination of muscles
    parameters = MuscleParameters()
    pylog.warning("Loading default muscle parameters")
    pylog.info(parameters.showParameters())
    pylog.info("Use the parameters object to change the muscle parameters")

    # Create muscle object
    muscle = Muscle(parameters)

    pylog.warning("Isometric muscle contraction to be completed")

    # Instatiate isometric muscle system
    sys = IsometricMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Evalute for a single muscle stretch
    muscle_stretch = 0.2

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT]
    # x0[0] --> muscle stimulation intial value
    # x0[1] --> muscle contracticle length initial value

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.2
    time_step = 0.001

    time = np.arange(t_start, t_stop, time_step)

    # Run the integration
    result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           stimulation=muscle_stimulation,
                           muscle_length=muscle_stretch)

    # Plotting
    plt.figure('Isometric muscle experiment')
    plt.plot(result.time, result.tendon_force,label='tendon force')
    plt.plot(result.time, result.passive_force,label='passive force')
    plt.plot(result.time, result.active_force,label='active force')
    plt.plot(result.time, result.l_ce,label='l_ce')
    plt.legend()
    plt.title('Isometric muscle experiment')
    plt.xlabel('Time [s]')
    plt.ylabel('Muscle Force')
    plt.grid()
    
    # Run 1.a and 1.b - relation between l_ce and active/oassive forces 
    ms=np.arange(start=0.0,stop=0.32,step=0.005)
    plotRelationLceAPForces(muscle_stretch=ms,muscle_stimulation=0.1)
    plotRelationLceAPForces(muscle_stretch=ms,muscle_stimulation=0.5)
    plotRelationLceAPForces(muscle_stretch=ms,muscle_stimulation=1.)
    
    # Run 1.c 
    plotRelationLceAPForces(ms,l_opt=0.09)
    plotRelationLceAPForces(ms,l_opt=0.13)
def exercise1a():
    """ Exercise 1a
    The goal of this exercise is to understand the relationship
    between muscle length and tension.
    Here you will re-create the isometric muscle contraction experiment.
    To do so, you will have to keep the muscle at a constant length and
    observe the force while stimulating the muscle at a constant activation."""

    # Defination of muscles
    parameters = MuscleParameters()
    pylog.warning("Loading default muscle parameters")
    pylog.info(parameters.showParameters())
    pylog.info("Use the parameters object to change the muscle parameters")

    # Create muscle object
    muscle = Muscle(parameters)

    pylog.warning("Isometric muscle contraction to be completed")

    # Instatiate isometric muscle system
    sys = IsometricMuscleSystem()

    # Add the muscle to the system
    sys.add_muscle(muscle)

    # You can still access the muscle inside the system by doing
    # >>> sys.muscle.L_OPT # To get the muscle optimal length

    # Evalute for a single muscle stretch
    muscle_stretch = 0.25

    # Evalute for a single muscle stimulation
    muscle_stimulation = 1.

    # Set the initial condition
    x0 = [0.0, sys.muscle.L_OPT]
    # x0[0] --> muscle stimulation intial value
    # x0[1] --> muscle contracticle length initial value

    # Set the time for integration
    t_start = 0.0
    t_stop = 0.2
    time_step = 0.001

    time = np.arange(t_start, t_stop, time_step)

    # Run the integration
    result = sys.integrate(x0=x0,
                           time=time,
                           time_step=time_step,
                           stimulation=muscle_stimulation,
                           muscle_length=muscle_stretch)
    # Plotting
    plt.figure('Isometric muscle experiment')
    plt.plot(result.time, result.tendon_force)
    plt.title('Isometric muscle experiment')
    plt.xlabel('Time [s]')

    plt.ylabel('Tendon Force')
    plt.grid()
    ########################################################################"
    muscle_stretch_listA = range(5, 20)
    muscle_stretch_list = np.array(muscle_stretch_listA)
    muscle_stretch_list = muscle_stretch_list / 50
    active_forces = []
    passive_forces = []
    tendon_forces = []
    # Run the integration
    for muscle_stretch in muscle_stretch_list:
        result = sys.integrate(x0=x0,
                               time=time,
                               time_step=time_step,
                               stimulation=muscle_stimulation,
                               muscle_length=muscle_stretch)
        active_forces.append(result.active_force[-1])
        passive_forces.append(result.passive_force[-1])
        tendon_forces.append(result.tendon_force[-1])

    # Plotting
    plt.figure('Isometric muscle experiment, varying length')
    plt.plot(muscle_stretch_list, active_forces)
    plt.plot(muscle_stretch_list, passive_forces)
    plt.plot(muscle_stretch_list, tendon_forces)
    plt.title('Isometric muscle experiment, varying length')
    plt.xlabel('Muscle stretch')
    plt.ylabel('Active, passive and total tendon forces')
    plt.legend(['active forces', 'passive forces', 'total forces'])
    plt.grid()

    stimulation_listA = range(0, 11)
    stimulation_list = np.array(stimulation_listA)
    stimulation_list = stimulation_list / 10
    plt.figure('Isometric muscle experiment, varying stimulation and length')
    plt.title('Isometric muscle experiment, varying stimulation and length')
    plt.xlabel('Muscle stretch')
    plt.ylabel('Total force')
    legend = []
    for stimul in stimulation_list:
        tendon_forces = []
        for muscle_stretch in muscle_stretch_list:
            result = sys.integrate(x0=x0,
                                   time=time,
                                   time_step=time_step,
                                   stimulation=stimul,
                                   muscle_length=muscle_stretch)
            tendon_forces.append(result.tendon_force[-1])
        plt.plot(muscle_stretch_list, tendon_forces)
        legend.append('Stimulation of ' + str(stimul))
    plt.legend(legend)