Beispiel #1
0
def convert_struct_field(column: StructField) -> TableDefinition.Column:
    """Converts a Spark StructField to a Tableau Hyper SqlType"""
    if column.dataType == IntegerType():
        sql_type = SqlType.int()
    elif column.dataType == LongType():
        sql_type = SqlType.big_int()
    elif column.dataType == ShortType():
        sql_type = SqlType.small_int()
    elif column.dataType == DoubleType():
        sql_type = SqlType.double()
    elif column.dataType == FloatType():
        sql_type = SqlType.double()
    elif column.dataType == BooleanType():
        sql_type = SqlType.bool()
    elif column.dataType == DateType():
        sql_type = SqlType.date()
    elif column.dataType == TimestampType():
        sql_type = SqlType.timestamp()
    elif column.dataType == StringType():
        sql_type = SqlType.text()
    else:
        # Trap the DecimalType case
        if str(column.dataType).startswith("DecimalType"):
            # Max precision is only up to 18 decimal places in Tableau Hyper API
            precision = column.dataType.precision if column.dataType.precision <= 18 else 18
            scale = column.dataType.scale
            sql_type = SqlType.numeric(precision, scale)
        else:
            raise ValueError(f'Invalid StructField datatype for column `{column.name}` : {column.dataType}')
    nullable = NULLABLE if column.nullable else NOT_NULLABLE
    return TableDefinition.Column(name=column.name, type=sql_type, nullability=nullable)
Beispiel #2
0
    def __init__(self):
        """
        Handler for conversion of storage types between DSS and Tableau Hyper

        DSS storage types:

        "string","date","geopoint","geometry","array","map","object","double",
        "boolean","float","bigint","int","smallint","tinyint"

        Tableau Hyper storage types:

        TypeTag.BOOL, TypeTag.BIG_INT, TypeTag.SMALL_INT, TypeTag.INT, TypeTag.NUMERIC,
        TypeTag.DOUBLE, TypeTag.OID, TypeTag.BYTES, TypeTag.TEXT, TypeTag.VARCHAR, TypeTag.CHAR,
        TypeTag.JSON, TypeTag.DATE, TypeTag.INTERVAL, TypeTag.TIME, TypeTag.TIMESTAMP,
        TypeTag.TIMESTAMP_TZ, TypeTag.GEOGRAPHY

        """
        handle_null = lambda f: lambda x: None if pd.isna(x) else f(x)

        # Mapping DSS to Tableau Hyper types
        self.mapping_dss_to_hyper = {
            'array': (SqlType.text(), handle_null(str)),
            'bigint': (SqlType.big_int(), handle_null(int)),
            'boolean': (SqlType.bool(), handle_null(bool)),
            'date': (SqlType.timestamp(), handle_null(to_hyper_timestamp)),
            'double': (SqlType.double(), handle_null(float)),
            'float': (SqlType.double(), handle_null(float)),
            'geometry': (SqlType.text(), handle_null(str)),
            'geopoint': (SqlType.geography(), handle_null(to_hyper_geography)),
            'int': (SqlType.int(), handle_null(int)),
            'map': (SqlType.text(), handle_null(str)),
            'object': (SqlType.text(), handle_null(str)),
            'smallint': (SqlType.small_int(), handle_null(int)),
            'string': (SqlType.text(), handle_null(str)),
            'tinyint': (SqlType.small_int(), handle_null(int)),
        }

        # Mapping Tableau Hyper to DSS types
        self.mapping_hyper_to_dss = {
            TypeTag.BIG_INT: ('bigint', handle_null(int)),
            TypeTag.BYTES: ('string', handle_null(str)),
            TypeTag.BOOL: ('boolean', handle_null(bool)),
            TypeTag.CHAR: ('string', handle_null(str)),
            TypeTag.DATE: ('date', handle_null(to_dss_date)),
            TypeTag.DOUBLE: ('double', handle_null(float)),
            TypeTag.GEOGRAPHY: ('geopoint', handle_null(to_dss_geopoint)),
            TypeTag.INT: ('int', handle_null(int)),
            TypeTag.INTERVAL: ('string', handle_null(str)),
            TypeTag.JSON: ('string', handle_null(str)),
            TypeTag.NUMERIC: ('double', handle_null(float)),
            TypeTag.OID: ('string', handle_null(str)),
            TypeTag.SMALL_INT: ('smallint', handle_null(int)),
            TypeTag.TEXT: ('string', handle_null(str)),
            TypeTag.TIME: ('string', handle_null(str)),
            TypeTag.TIMESTAMP: ('date', handle_null(to_dss_timestamp)),
            TypeTag.TIMESTAMP_TZ: ('string', handle_null(str)),
            TypeTag.VARCHAR: ('string', handle_null(str))
        }
def df_to_extract(df, output_path):
    '''
    Converts a Pandas dataframe to a Tableau Extract.

    Parameters
    ----------
    df (pandas dataframe): Dataframe to turn into a Tableau extract
    output_path (str): Where to create the Tableau extract
    ''' 

    # Replace nan's with 0
    df = df.replace(np.nan, 0.0, regex=True)

    print('Creating Tableau data extract...')
    with HyperProcess(telemetry=Telemetry.DO_NOT_SEND_USAGE_DATA_TO_TABLEAU) as hyper:
        with Connection(hyper.endpoint, output_path, CreateMode.CREATE_AND_REPLACE) as connection:
            
            # Create schema
            connection.catalog.create_schema('Extract')

            # Create list of column definitions, based on the datatypes in pandas dataframe
            dtype_map = {
                'int32': SqlType.int(),
                'int64': SqlType.big_int(),
                'float32': SqlType.double(),
                'float64': SqlType.double(),
                'datetime64[ns]': SqlType.date(),
                'object': SqlType.text() 
            }
            table_def = []

            # Get column headers to loop through them
            df_columns = list(df)

            for col_header in df_columns:
                dtype_str = str(df[col_header].dtype)

                # Use dtype_str to lookup appropiate SqlType from dtype_map and append new column to table definition
                table_def.append(TableDefinition.Column(col_header, dtype_map[dtype_str]))
                
            # Define table
            extract_table = TableDefinition(TableName('Extract', 'Extract'), table_def)

            # Create table
            connection.catalog.create_table(extract_table)

            # Insert data
            with Inserter(connection, extract_table) as inserter:
                for idx, row in df.iterrows():
                    inserter.add_row(row)
                
                inserter.execute() 
    def test_get_table_def(self):
        data = [
            (1001, 1, "Jane", "Doe", "2000-05-01", 29.0, False),
            (1002, 2, "John", "Doe", "1988-05-03", 33.0, False),
            (2201, 3, "Elonzo", "Smith", "1990-05-03", 21.0, True),
            (None, None, None, None, None, None, None)  # Test Nulls
        ]
        df = get_spark_session()\
            .createDataFrame(data, ["id", "dept_id", "first_name", "last_name", "dob", "age", "is_temp"])\
            .createOrReplaceTempView("employees")
        df = get_spark_session().sql(
            "select id, cast(dept_id as short), first_name, "
            "last_name, dob, age, is_temp from employees")
        table_def = get_table_def(df, "Extract", "Extract")

        # Ensure that the Table Name matches
        assert (table_def.table_name.name == Name("Extract"))

        # Ensure that the the TableDefinition column names match
        assert (table_def.get_column(0).name == Name("id"))
        assert (table_def.get_column(1).name == Name("dept_id"))
        assert (table_def.get_column(2).name == Name("first_name"))
        assert (table_def.get_column(3).name == Name("last_name"))
        assert (table_def.get_column(4).name == Name("dob"))
        assert (table_def.get_column(5).name == Name("age"))
        assert (table_def.get_column(6).name == Name("is_temp"))

        # Ensure that the column data types were converted correctly
        assert (table_def.get_column(0).type == SqlType.big_int())
        assert (table_def.get_column(1).type == SqlType.small_int())
        assert (table_def.get_column(2).type == SqlType.text())
        assert (table_def.get_column(3).type == SqlType.text())
        assert (table_def.get_column(4).type == SqlType.text())
        assert (table_def.get_column(5).type == SqlType.double())
        assert (table_def.get_column(6).type == SqlType.bool())
def convert_datatype(coldatatype):
    """
    [summary]
        This converts the datatype of the column of a given dataframe.
    
    Args:
        Datatype of the column in string format
    
    Returns:
        The tableau hyper extract compatible datatype after converting the dataframe datatype and a default value for NaN cases
    """

    datatype = SqlType.text()
    def_value = ''

    if 'datetime' in coldatatype.lower():
        datatype = SqlType.timestamp()
    elif 'str' in coldatatype.lower():
        datatype = SqlType.text()
    elif 'boolean' in coldatatype.lower():
        datatype = SqlType.bool()
    elif 'int' in coldatatype.lower():
        datatype = SqlType.int()
        def_value = 0
    elif 'float' in coldatatype.lower():
        datatype = SqlType.double()
        def_value = 0
    elif 'period' in coldatatype.lower():
        datatype = SqlType.interval()
    elif 'object' in coldatatype.lower():
        datatype = SqlType.text()
    else:
        datatype = SqlType.text()

    return (datatype, def_value)
 def fn_convert_to_hyper_types(given_type):
     switcher = {
         'empty': SqlType.text(),
         'bool': SqlType.bool(),
         'int': SqlType.big_int(),
         'float-dot': SqlType.double(),
         'date-YMD': SqlType.date(),
         'date-MDY': SqlType.date(),
         'date-DMY': SqlType.date(),
         'time-24': SqlType.time(),
         'time-12': SqlType.time(),
         'datetime-24-YMD': SqlType.timestamp(),
         'datetime-12-MDY': SqlType.timestamp(),
         'datetime-24-DMY': SqlType.timestamp(),
         'str': SqlType.text()
     }
     identified_type = switcher.get(given_type)
     if identified_type is None:
         identified_type = SqlType.text()
     return identified_type
Beispiel #7
0
    def _hyper_sql_type(self, source_column):
        """
        Finds the correct Hyper column type for source_column

        source_column (obj): Source column (Instance of google.cloud.bigquery.schema.SchemaField)

        Returns a tableauhyperapi.SqlType Object
        """

        source_column_type = source_column.field_type
        return_sql_type = {
            "BOOL": SqlType.bool(),
            "BYTES": SqlType.bytes(),
            "DATE": SqlType.date(),
            "DATETIME": SqlType.timestamp(),
            "INT64": SqlType.big_int(),
            "INTEGER": SqlType.int(),
            "NUMERIC": SqlType.numeric(18, 9),
            "FLOAT64": SqlType.double(),
            "STRING": SqlType.text(),
            "TIME": SqlType.time(),
            "TIMESTAMP": SqlType.timestamp_tz(),
        }.get(source_column_type)

        if return_sql_type is None:
            error_message = "No Hyper SqlType defined for BigQuery source type: {}".format(
                source_column_type
            )
            logger.error(error_message)
            raise LookupError(error_message)

        logger.debug(
            "Translated source column type {} to Hyper SqlType {}".format(
                source_column_type, return_sql_type
            )
        )
        return return_sql_type
Beispiel #8
0
        # default schema name is "public"
        # define table
        drinks_table = TableDefinition(
            table_name="drinks",
            columns=[
                TableDefinition.Column("country", SqlType.text(),
                                       NOT_NULLABLE),
                TableDefinition.Column("beer_servings", SqlType.big_int(),
                                       NOT_NULLABLE),
                TableDefinition.Column("spirit_servings", SqlType.big_int(),
                                       NOT_NULLABLE),
                TableDefinition.Column("wine_servings", SqlType.big_int(),
                                       NOT_NULLABLE),
                TableDefinition.Column("total_litres_of_pure_alcohol",
                                       SqlType.double(), NOT_NULLABLE),
                TableDefinition.Column("continent", SqlType.text(),
                                       NOT_NULLABLE)
            ])

        # create tables
        connection.catalog.create_table(drinks_table)

        path_to_csv = "drinks.csv"
        print(drinks_table.table_name)

        count_in_drinks_table = connection.execute_command(
            command=
            f"COPY drinks FROM 'drinks.csv' (format csv, delimiter ',', header)"
            # f"(format csv, NULL 'NULL', delimiter ',', header)"
        )
    Telemetry,
    Connection,
    SqlType,
    TableDefinition,
    CreateMode,
    TableName,
    Inserter,
)

dtype_mapper = {
    "string": SqlType.text(),
    "str": SqlType.text(),
    "object": SqlType.text(),
    "O": SqlType.text(),
    "int64": SqlType.big_int(),
    "float64": SqlType.double(),
    "bool": SqlType.bool(),
    "datetime64[ns]": SqlType.timestamp(),
    "timedelta[ns]": SqlType.interval(),
    "category": SqlType.text(),
}


def read_hyper(path_to_hyper_file, custom_schema="Extract"):
    """Read a Tableau Hyper file and turn it into a Pandas DataFrame.

    Currently can only read single table extracts, which is Tableau's
    default way of creating an extract.

    Args:
        path_to_hyper_file: Specify the path to the .hyper file
Beispiel #10
0
from pathlib import Path

from tableauhyperapi import HyperProcess, Telemetry, \
    Connection, CreateMode, \
    NOT_NULLABLE, NULLABLE, SqlType, TableDefinition, \
    Inserter, \
    escape_name, escape_string_literal, \
    HyperException

product_table = TableDefinition(
    # Since the table name is not prefixed with an explicit schema name, the table will reside in the default "public" namespace.
    table_name="Products",
    columns=[
        TableDefinition.Column("category", SqlType.text(), NOT_NULLABLE),
        TableDefinition.Column("title", SqlType.text(), NOT_NULLABLE),
        TableDefinition.Column("price", SqlType.double(), NOT_NULLABLE),
        TableDefinition.Column("available_quantity", SqlType.big_int(),
                               NOT_NULLABLE),
        TableDefinition.Column("sold_quantity", SqlType.big_int(),
                               NOT_NULLABLE),
        TableDefinition.Column("permalink", SqlType.text(), NOT_NULLABLE)
    ])


def call_mlapi_to_dict(SearchCategory):

    print("Start call_mlapi_to_dict.")

    try:
        query = {'1': SearchCategory, 'limit': '50'}
        response = requests.get(
from pathlib import Path

from tableauhyperapi import HyperProcess, Telemetry, \
    Connection, CreateMode, \
    NOT_NULLABLE, NULLABLE, SqlType, TableDefinition, \
    Inserter, \
    escape_name, escape_string_literal, \
    HyperException

data_table = TableDefinition(
    # Since the table name is not prefixed with an explicit schema name, the table will reside in the default "public" namespace.
    table_name="COVID-19",
    columns=[
        TableDefinition.Column("Country/Region", SqlType.text(), NOT_NULLABLE),
        TableDefinition.Column("Province/State", SqlType.text(), NULLABLE),
        TableDefinition.Column("Latitude", SqlType.double(), NOT_NULLABLE),
        TableDefinition.Column("Longitude", SqlType.double(), NOT_NULLABLE),
        TableDefinition.Column("Case_Type", SqlType.text(), NOT_NULLABLE),
        TableDefinition.Column("Date", SqlType.date(), NOT_NULLABLE),
        TableDefinition.Column("Cases", SqlType.big_int(), NOT_NULLABLE),
        TableDefinition.Column("Difference", SqlType.big_int(), NOT_NULLABLE),
        TableDefinition.Column("Last_Update_Date", SqlType.date(),
                               NOT_NULLABLE),
    ])


def run_create_hyper_file_from_csv():
    """
    An example demonstrating loading data from a csv into a new Hyper file
    """
    print("EXAMPLE - Load data from CSV into table in new Hyper file")
Beispiel #12
0
with HyperProcess(Telemetry.SEND_USAGE_DATA_TO_TABLEAU, 'myapp' ) as hyper:

# Step 2:  Create the the .hyper file, replace it if it already exists
    with Connection(endpoint=hyper.endpoint, 
                    create_mode=CreateMode.CREATE_AND_REPLACE,
                    database=path_to_hyper) as connection:

# Step 3: Create the schema
        connection.catalog.create_schema('Extract')

# Step 4: Create the table definition
        schema = TableDefinition(table_name=TableName('Extract','Extract'),
            columns=[
            TableDefinition.Column('name', SqlType.text()),
            TableDefinition.Column('date', SqlType.date()),
            TableDefinition.Column('temperature', SqlType.double()),
            TableDefinition.Column('chance_precipitation', SqlType.double()),
            TableDefinition.Column('precipitation', SqlType.double()),
            TableDefinition.Column('wind_speed', SqlType.double()),
            TableDefinition.Column('wind_gust', SqlType.double()),
            TableDefinition.Column('visiblity', SqlType.double()),
            TableDefinition.Column('cloud_cover', SqlType.double()),
            TableDefinition.Column('relative_humidity', SqlType.double()),
            TableDefinition.Column('moon_phase', SqlType.double()),
            TableDefinition.Column('condition', SqlType.text()),
         ])
    
# Step 5: Create the table in the connection catalog
        connection.catalog.create_table(schema)
    
        with Inserter(connection, schema) as inserter:
line_items_table = TableDefinition(
    # Since the table name is not prefixed with an explicit schema name, the table will reside in the default "public" namespace.
    table_name="Line Items",
    columns=[
        TableDefinition.Column(name="Line Item ID",
                               type=SqlType.big_int(),
                               nullability=NOT_NULLABLE),
        TableDefinition.Column(name="Order ID",
                               type=SqlType.text(),
                               nullability=NOT_NULLABLE),
        TableDefinition.Column(name="Product ID",
                               type=SqlType.text(),
                               nullability=NOT_NULLABLE),
        TableDefinition.Column(name="Sales",
                               type=SqlType.double(),
                               nullability=NOT_NULLABLE),
        TableDefinition.Column(name="Quantity",
                               type=SqlType.small_int(),
                               nullability=NOT_NULLABLE),
        TableDefinition.Column(name="Discount",
                               type=SqlType.double(),
                               nullability=NULLABLE),
        TableDefinition.Column(name="Profit",
                               type=SqlType.double(),
                               nullability=NOT_NULLABLE)
    ])


def run_insert_data_into_multiple_tables():
    """
def sparkConnect():
    # fetching DF from spark filestore
    if cf.file_type == 'csv':
        df = spark.read.format(cf.file_type) \
            .option("inferSchema", cf.infer_schema) \
            .option("header", cf.first_row_is_header) \
            .option("sep", cf.delimiter) \
            .load(cf.input_file_path)
        # print('\n', cf.input_file_path, '\n', cf.schema, '\n')

    # fetching table from db from databricks
    elif cf.file_type == 'jdbc':
        df = spark.read.format("jdbc") \
            .option("driver", cf.driver) \
            .option("url", cf.url) \
            .option("dbtable", cf.table) \
            .option("user", cf.user) \
            .option("password", cf.password) \
            .option("inferSchema", cf.infer_schema) \
            .option("header", cf.first_row_is_header) \
            .load()

        df.write.format("csv") \
            .option("enoding", cf.charset) \
            .option("header", cf.first_row_is_header) \
            .option("sep", cf.delimiter) \
            .save('/home/hari/HyperConverter/test')

        # pdf = df.select('*').toPandas()
        # path = '/home/hari/HyperConverter/test.csv'
        # pdf.to_csv(path, sep=',', index=False)

        path = glob.glob('/home/hari/HyperConverter/test/part*.csv')
        cf.input_file_path = path[0]
        cf.input_file_path = path
        print('\n', cf.input_file_path, '\n')

    col = list(df.dtypes)
    print(col)
    print(len(col))
    for i in range(len(col)):
        col[i] = list(col[i])
        col[i][1] = type_[col[i][1]]
    # print('\n', col, '\n')

    x = []
    for i, j in col:
        print(i, j)
        if j == 'varchar':
            max_length = df.agg({i: "max"}).collect()[0]
            #print(max_length)
            xyz = max_length["max({})".format(i)]

            if xyz != None:
                max_length = len(xyz)
                if 19 <= max_length <= 40:
                    max_length = 100
                else:
                    max_length = 30
            else:
                max_length = 35
            print(max_length)
            x.append(
                TableDefinition.Column(i, SqlType.varchar(max_length),
                                       NULLABLE))
        elif j == 'int':
            x.append(TableDefinition.Column(i, SqlType.int(), NULLABLE))
        elif j == 'date':
            x.append(TableDefinition.Column(i, SqlType.date(), NULLABLE))
        elif j == 'numeric':
            x.append(
                TableDefinition.Column(i, SqlType.numeric(10, 4), NULLABLE))
        elif j == 'bool':
            x.append(TableDefinition.Column(i, SqlType.bool(), NULLABLE))
        elif j == 'big_int':
            x.append(TableDefinition.Column(i, SqlType.big_int(), NULLABLE))
        elif j == 'double':
            x.append(TableDefinition.Column(i, SqlType.double(), NULLABLE))
        elif j == 'text':
            print("this is culprate", i, j)
            x.append(TableDefinition.Column(i, SqlType.text(), NULLABLE))
    print(x)
    print(len(x))
    return x
def Full_refresh(result):
    LogFileWrite("Running Full refresh")
    try:
        with HyperProcess(telemetry=Telemetry.DO_NOT_SEND_USAGE_DATA_TO_TABLEAU) as hyperprocess:
            print("The HyperProcess has started.")
            LogFileWrite("The HyperProcess has started.")
            print(hyperprocess.is_open)
            if hyperprocess.is_open==True:
                with Connection(hyperprocess.endpoint, 'Facebook_campaigns.hyper', CreateMode.CREATE_AND_REPLACE,) as connection: 
                    if connection.is_open==True:
                        print("The connection to the Hyper file is open.")
                        LogFileWrite("The connection to the Hyper file is open.")
                        connection.catalog.create_schema('Extract')
                        DataTable = TableDefinition(TableName('Extract','Campaign_data'),[
                        ############Below Columns are extracted from Report data API
                        TableDefinition.Column('Row_ID', SqlType.big_int()),
                        TableDefinition.Column('Inserted Date', SqlType.date()),
                        TableDefinition.Column('Date', SqlType.date()),
                        TableDefinition.Column('Account Id', SqlType.varchar(50)),
                        TableDefinition.Column('Account Name', SqlType.text()),
                        TableDefinition.Column('Campaign Id', SqlType.varchar(50)),
                        TableDefinition.Column('Campaign Name', SqlType.text()),
                        TableDefinition.Column('Impressions', SqlType.big_int()),
                        TableDefinition.Column('Clicks', SqlType.big_int()),
                        TableDefinition.Column('Reach', SqlType.big_int()),
                        TableDefinition.Column('Spend', SqlType.double()),
                        TableDefinition.Column('Frequency', SqlType.double()),
                        ])
                        print("The table is defined.")
                        LogFileWrite("Successfully Facebook Campaign Table is defined")
                        connection.catalog.create_table(DataTable)
                       # print(Campaign_df["Id"].dtype)
                        #print(range(len(Campaign_df["Id"])))
                        
                        with Inserter(connection, TableName('Extract','Campaign_data')) as inserter:
                            inserted_rows=1
                            row_id=1
                            for i in range(0,len(result["Campaign Id"])):
                                #print(str(result.loc[i,"CampaignId"]))
                                #print(result.loc[i,"Date"])
                                inserter.add_row([
                                int(row_id),
                                datetime.today(),
                                (datetime.strptime(result.loc[i,"Date"], '%Y-%m-%d')),
                                #(datetime.date(result.loc[i,"Date"])),#, "%Y-%m-%d")),
                                str(result.loc[i,"Account Id"]),
                                str(result.loc[i,"Account Name"]),
                                str(result.loc[i,"Campaign Id"]),
                                str(result.loc[i,"Campaign Name"]),
                                int(result.loc[i,"Impressions"]),
                                int(result.loc[i,"Clicks"]),
                                int(result.loc[i,"Reach"]),
                                float(result.loc[i,"Spend"]),
                                float(result.loc[i,"Frequency"])
                                ])
                                #print("instered")
                                row_id=row_id+1
                                inserted_rows=inserted_rows+1
                            inserter.execute()
                            print("Instered Rows are " +str(inserted_rows))
                            LogFileWrite("Instered Rows are " +str(inserted_rows))
                        table_name=TableName('Extract','Campaign_data')
                        Delet_query=f"DELETE FROM {table_name} WHERE " +'"'+ 'Row_ID'+'"'+" NOT IN("
                        Delet_query+="SELECT MAX("+'"'+'Row_ID'+'"'+f") FROM {table_name} "
                        Delet_query+="GROUP BY " +'"'+'Date'+'",'+'"'+'Campaign Id'+'",'+'"'+'Campaign Name'+'",'
                        Delet_query+='"'+'Account Id'+'",'+'"'+'Impressions'+'",'
                        Delet_query+='"'+'Clicks'+'",'+'"'+'Account Name'+'",'+'"'+'Reach'+'",'+'"'+'Spend'+'",'
                        Delet_query+='"'+'Frequency'+'")'
                        #print(Delet_query)
                        
                        connection.execute_command(Delet_query)
                        print("Deleted Duplicate rows")
                        LogFileWrite("Successfully deleted Duplicate rows")
                    else:
                        print("unable to open connection to hyper file")
                        LogFileWrite("unable to open connection to hyper file")
                if connection.is_open==True:
                    connection.close()
                    print("Connection to Hyper file closed")
                    LogFileWrite("Connection to Hyper file closed")
                else:
                    print("Connection to Hyper file closed")
                    LogFileWrite("Connection to Hyper file closed")
                    print("Connection is open or closed" + str(connection.is_open))
            else:
                print("Unable to start the Hyper process ")
                LogFileWrite("Unable to start the Hyper process ")
        if hyperprocess.is_open==True:
            hyperprocess.close()
            print("Forcefully shutted down the Hyper Process")
            LogFileWrite("Forcefully shutted down the Hyper Process")
        else:
            print("Hyper process is shutted down")
            LogFileWrite("Hyper process is shutted down")
            print("Connection is open or closed" + str(connection.is_open))
            print("process is open or closed" + str(hyperprocess.is_open))
    except HyperException as ex:
        LogFileWrite("There is exception in starting Tableau Hyper Process. Exiting...")
        LogFileWrite(str(ex))
        connection.close()
        hyperprocess.close()
        SendEmailMessage()
        sys.exit()
Beispiel #16
0
import os
import json
import sys

from tableauhyperapi import HyperProcess, Telemetry, Connection, CreateMode, NOT_NULLABLE, NULLABLE, SqlType, TableDefinition, escape_string_literal

# SqlTypeをdictで参照
sql_type_dict = {}
sql_type_dict['BIG_INT'] = SqlType.big_int()
sql_type_dict['TEXT'] = SqlType.text()
sql_type_dict['DOUBLE'] = SqlType.double()
sql_type_dict['DATE'] = SqlType.date()
sql_type_dict['TIMESTAMP'] = SqlType.timestamp()
# NULLABLEをdictで参照
nullable_dict = {}
nullable_dict['YES'] = NULLABLE
nullable_dict['NO'] = NOT_NULLABLE


def create_column_def(table_def_dict: dict):

    column_def = []
    for key in table_def_dict.keys():
        column_def.append(
            TableDefinition.Column(
                key, sql_type_dict[table_def_dict[key]['type']],
                nullable_dict[table_def_dict[key]['nullable']]))

    return column_def

Beispiel #17
0
    columns=[
        TableDefinition.Column(name="Category", type=SqlType.text(), nullability=NOT_NULLABLE),
        TableDefinition.Column(name="Product ID", type=SqlType.text(), nullability=NOT_NULLABLE),
        TableDefinition.Column(name="Product Name", type=SqlType.text(), nullability=NOT_NULLABLE),
        TableDefinition.Column(name="Sub-Category", type=SqlType.text(), nullability=NOT_NULLABLE)
    ]
)

line_items_table = TableDefinition(
    # Since the table name is not prefixed with an explicit schema name, the table will reside in the default "public" namespace.
    table_name="Line Items",
    columns=[
        TableDefinition.Column(name="Line Item ID", type=SqlType.big_int(), nullability=NOT_NULLABLE),
        TableDefinition.Column(name="Order ID", type=SqlType.text(), nullability=NOT_NULLABLE),
        TableDefinition.Column(name="Product ID", type=SqlType.text(), nullability=NOT_NULLABLE),
        TableDefinition.Column(name="Sales", type=SqlType.double(), nullability=NOT_NULLABLE),
        TableDefinition.Column(name="Quantity", type=SqlType.small_int(), nullability=NOT_NULLABLE),
        TableDefinition.Column(name="Discount", type=SqlType.double(), nullability=NULLABLE),
        TableDefinition.Column(name="Profit", type=SqlType.double(), nullability=NOT_NULLABLE)
    ]
)



#//

def run_insert_data_into_multiple_tables():
    """
    An example of how to create and insert data into a multi-table Hyper file where tables have different types
    """
    print("EXAMPLE - Insert data into multiple tables within a new Hyper file")