def results_retrieval(desc, splt): res = dill.load( open("results/" + desc + "_retrieval_" + splt['name'] + ".p")) print("%s - mAP 10K queries " % (blue(desc.upper()))) n_q = float(len(res.keys())) heads = [''] mAP = dict.fromkeys(['e', 'h', 't']) for k in mAP: mAP[k] = dict.fromkeys(res[0][k]) for psize in mAP[k]: mAP[k][psize] = 0 for qid in res: for k in mAP: for psize in mAP[k]: mAP[k][psize] += res[qid][k][psize]['ap'] results = [] for k in ['e', 'h', 't']: heads = ['Noise'] + sorted(mAP[k]) r = [] for psize in sorted(mAP[k]): r.append(mAP[k][psize] / n_q) results.append([ft[k]] + r) res = np.array(results)[:, 1:].astype(np.float32) results.append(['mean'] + list(np.mean(res, axis=0))) print tb(results, headers=heads)
def process_fits(recipients, params=None): # Read the HEALPix sky map and the FITS header. skymap, header = hp.read_map(params['skymap_fits'], h=True, verbose=False) # Print and save some values from the FITS header. header = dict(header) params['time'] = Time(header['DATE-OBS'], format='isot', scale='utc') time = Time.now() params['Distance'] = str(header['DISTMEAN']) + ' +/- ' + str( header['DISTSTD']) header['GraceID'] = params['GraceID'] with open('./' + params['GraceID'] + '.dat', 'w') as f: data_p = [] tableheaders = ['PARAMETER', 'VALUE'] for prm in interesting_parameters: if prm in list(params.keys()): data_p.append((prm, params[prm])) print(tb(data_p, headers=tableheaders, tablefmt='fancy_grid')) f.write(tb(data_p, headers=tableheaders, tablefmt='html')) # Making a pie chart of the type of event for the email labels = ['BNS', 'NSBH', 'BBH', 'MassGap', 'Terrestrial'] sizes = [float(params[label]) * 100 for label in labels] labels = ['%s (%.1f %%)' % (lab, pct) for lab, pct in zip(labels, sizes)] fig1, ax1 = plt.subplots() patches, texts = ax1.pie(sizes, startangle=90) ax1.legend(patches, labels, loc="best") ax1.axis( 'equal') # Equal aspect ratio ensures that pie is drawn as a circle. plt.savefig('piechart_%s.png' % params['GraceID']) prob, probfull, timetill90, m = prob_observable(skymap, header, time, plot=plotting) params['skymap_array'] = m if timetill90 == -99: print("HET can't observe the source.") return else: print("Source has a {:.1f}% chance of being observable now.".format( int(round(100 * prob)))) print( "Integrated probability over 24 hours (ignoring the sun) is {:.1f}%" .format(int(round(100 * probfull)))) print('{:.1f} hours till you can observe the 90 % prob region.'.format( timetill90)) send_notifications(params, timetill90, text=True, email=False) get_galaxies.write_catalog(params, 'MANGROVE') mincontour = get_LST.get_LST(targf='galaxies%s_%s.dat' % ('MANGROVE', params['GraceID'])) make_phaseii.make_phaseii('LSTs_{}.out'.format(params['GraceID'])) send_notifications(params, timetill90)
def results_verification(desc, splt): v = {'balanced': 'auc', 'imbalanced': 'ap'} res = dill.load( open("results/" + desc + "_verification_" + splt['name'] + ".p")) for r in v: print("%s - %s variant (%s) " % (blue(desc.upper()), r.capitalize(), v[r])) heads = ["Noise", "Inter", "Intra"] results = [] for t in ['e', 'h', 't']: results.append( [ft[t], res[t]['inter'][r][v[r]], res[t]['intra'][r][v[r]]]) print tb(results, headers=heads)
def show(self): text = [] text.append('\nError normalised (Y - F)') text.append(tb([self.norm_error])) text.append('\nError (Y_ - F_))') text.append(tb([self.error])) # text.append('Input data: X') # text.append(tb(np.array(self.datas[:, :self.dim_integral[2]]))) # # text.append('\nInput data: Y') # text.append(tb(np.array(self.datas[:, self.dim_integral[2]:self.dim_integral[3]]))) # # text.append('\nX normalised:') # text.append(tb(np.array(self.data[:, :self.dim_integral[2]]))) # # text.append('\nY normalised:') # text.append(tb(np.array(self.data[:, self.dim_integral[2]:self.dim_integral[3]]))) # # text.append('\nmatrix B:') # text.append(tb(np.array(self.B))) # # # text.append('\nmatrix A:') # # text.append(tb(np.array(self.A))) # # text.append('\nmatrix Lambda:') # text.append(tb(np.array(self.Lamb))) # # for j in range(len(self.Psi)): # s = '\nmatrix Psi%i:' % (j + 1) # text.append(s) # text.append(tb(np.array(self.Psi[j]))) # # text.append('\nmatrix a:') # text.append(tb(self.a.tolist())) # # for j in range(len(self.Fi)): # s = '\nmatrix F%i:' % (j + 1) # text.append(s) # text.append(tb(np.array(self.Fi[j]))) # # text.append('\nmatrix c:') # text.append(tb(np.array(self.c))) # # text.append('\nY rebuilt normalized :') # text.append(tb(np.array(self.F))) # # text.append('\nY rebuilt :') # text.append(tb(self.F_.tolist())) return '\n'.join(text)
def show_table(table): """Prints a table with tabulate 0.7.2. For more information of this module visit: https://pypi.python.org/pypi/tabulate/0.7.2. """ print(tb(table[1:],table[0],"grid")) return 'Thanks tabulate'
def display_results(VICTORY_LIST, GAME_PLAYERS): header = ["Winner1", "winner2", "winner3", "winner4", "winner5"] m_o_h = [] for i in VICTORY_LIST: m_o_h.append(GAME_PLAYERS[i].player_name) m_o_h = [m_o_h] print(tb(m_o_h, header, tablefmt="grid"))
def rc(self): # Selecting the columns from the DataFrame data_df = self.sub_data[['Order', 'Name', 'RC']] data_df.sort_values(by=['RC'], inplace = True, ascending=False) # Returning tabulated data with the column headings return tb(data_df, headers=["Roll Order", "Name", "RC"], tablefmt='grid', showindex='never') #Reference link - https://pypi.org/project/tabulate/
def to_table(df, tablefmt, filename, str_img): """ Export dataframe to a table file with a specific format (see tabulate doc for more information: https://pypi.org/project/tabulate/): - "plain" - "simple" - "grid" - "fancy_grid" - "pipe" - "orgtbl" - "jira" - "presto" - "psql" - "rst" - "mediawiki" - "moinmoin" - "youtrack" - "html" - "latex" - "latex_raw" - "latex_booktabs" - "textile" @param df(dataframe): dataframe with stats and img @tablefmt(str): format of the table @filename(str): path and name to file """ df = df.apply(lambda x: img_str(x, str_img), axis=1) f = open(filename, 'w') f.write(tb(df, headers="keys", showindex=False, tablefmt=tablefmt)) f.close()
def results_retrieval(desc,splt,more_info=False): res = dill.load(open(os.path.join("results", desc+"_retrieval_"+splt['name']+".p"), "rb")) if more_info: print("%s - mAP 10K queries " % (blue(desc.upper()))) n_q= float(len(res.keys())) heads = [''] mAP = dict.fromkeys(['e','h','t']) for k in mAP: mAP[k] = dict.fromkeys(res[0][k]) for psize in mAP[k]: mAP[k][psize] = 0 for qid in res: for k in mAP: for psize in mAP[k]: mAP[k][psize] += res[qid][k][psize]['ap'] results = [] for k in ['e','h','t']: heads = ['Noise']+sorted(mAP[k]) r = [] for psize in sorted(mAP[k]): r.append(mAP[k][psize]/n_q) results.append([ft[k]]+r) res = np.array(results)[:,1:].astype(np.float32) results.append(['mean']+list(np.mean(res,axis=0))) if more_info: print(tb(results,headers=heads)) mAP = np.asarray(results[-1][1:]).mean() print('Mean Average Precision is {:f}'.format(mAP))
def analyzer_printer(i, ign_val=70): exp = [] print("\n\n") exp.append(["Dataype", df[i].dtype]) exp.append(["Total value", len(df[i])]) exp.append(["Total Null", df[i].isnull().sum()]) exp.append(["Total Uniques", df[i].nunique()]) # exp.append(['Minimum value', min(df[i])]) # exp.append(['Maximum value', max(df[i])]) exp.append([ "Percent Uniques\n[Round Figure]", round(df[i].nunique() / len(df[i]) * 100) ]) exp.append([ "Might be categorical", "Yes" if round(df[i].nunique() / len(df[i]) * 100) <= 10 else "No", ]) exp.append([ "Column might be ignored\n[based on uniqueness]", "Yes" if round(df[i].nunique() / len(df[i]) * 100) >= ign_val else "No", ]) print(tb(exp, headers=["Cloumn name", i], tablefmt="fancy_grid"))
def math(self): # Selecting the columns from the DataFrame data_df = self.sub_data[['Order', 'Name', 'Math']] data_df.sort_values(by=['Math'], inplace = True, ascending=False) # Returning tabulated data with the column headings return tb(data_df, headers=["Roll Order", "Name", "Math"], tablefmt='grid', showindex='never')
def results_matching(desc, splt): res = dill.load( open("results/" + desc + "_matching_" + splt['name'] + ".p")) mAP = {'e': 0, 'h': 0, 't': 0} k_mAP = 0 heads = [ft['e'], ft['h'], ft['t'], 'mean'] for seq in res: for t in ['e', 'h', 't']: for idx in range(1, 6): mAP[t] += res[seq][t][idx]['ap'] k_mAP += 1 k_mAP = k_mAP / 3.0 print("%s - mAP " % (blue(desc.upper()))) results = [mAP['e'] / k_mAP, mAP['h'] / k_mAP, mAP['t'] / k_mAP] results.append(sum(results) / float(len(results))) print tb([results], headers=heads) print("\n")
def counter(html): tags = [] res = {} soup = BS(html, 'html.parser') for tag in soup.findAll(): tags.append(tag.name) uniq = list(set(tags)) for tag in uniq: res[tag] = tags.count(tag) sort=sorted(res.items(), key=lambda x:(x[1],x[0])) restb=tb(sort, headers=['Tags', 'Numbers'], tablefmt='psql') print(restb) return res, restb
def results_verification(desc,splt,more_info=False): v = {'imbalanced':'ap'} res = dill.load(open(os.path.join("results", desc+"_verification_"+splt['name']+".p"), "rb")) for r in v: if more_info: print("%s - %s variant (%s) " % (blue(desc.upper()),r.capitalize(),v[r])) heads = ["Noise","Inter","Intra"] results = [] for t in ['e','h','t']: results.append([ft[t], res[t]['inter'][r][v[r]],res[t]['intra'][r][v[r]]]) if more_info: print(tb(results,headers=heads)) mAP = np.asarray(list(map(lambda x: x[1:], results))).mean() print('Mean Average Precision is {:f}'.format(mAP))
def counter(html): """ Here is implemented the main functionality. This function counts tags in HTML page and provide sorted output in table format. """ tags = [] res = {} soup = BS(html, 'html.parser') for tag in soup.findAll(): tags.append(tag.name) uniq = list(set(tags)) for tag in uniq: res[tag] = tags.count(tag) sort=sorted(res.items(), key=lambda x:(x[1],x[0])) restb=tb(sort, headers=['Tags', 'Numbers'], tablefmt='psql') print(restb) return res, restb
def show_agreement_types(): agmt_name = input('What agreement? ') sql = """ select AgreementTypes.Title ,AgreementTypes.ID from CircleOne..AgreementTypes where 1=1 and AgreementTypes.Title like '%{}%' """ cxn = engine.connect() p = pd.read_sql_query(sql.format(agmt_name), cxn) cxn.close() print(tb(p, headers='keys'))
def tabulate(): try: request_dict = request.get_json() jsonstr = request_dict['jsonStr'] jsonstr = json.dumps(jsonstr) df = pd.read_json(eval(jsonstr), orient='split') headers = 'keys' tableformat = 'orgtbl' tabulated_df = tb(df, headers=headers, tablefmt=tableformat) response = app.response_class(response=tabulated_df, status=200, mimetype='application/json') except: exception = ExceptionHelpers.format_exception(sys.exc_info()) response = app.response_class(response=exception, status=400, mimetype='application/json') return response
def marks(self, class_call=None): self.class_call = class_call # Selecting the columns to be displayed data_df = pd.DataFrame(self.stu_data, columns = ['Order', 'Name', 'RC', 'Listening', 'Writing', 'Math']) # Searching for the entire or part of student name in the 'Name' column of the DataFrame using the name entered by the user data_df = data_df[data_df['Name'].str.contains(self.stu_name)] # Reference link - https://davidhamann.de/2017/06/26/pandas-select-elements-by-string/ if data_df.empty == True: # Reference link - https://pandas.pydata.org/pandas-docs/version/0.18/generated/pandas.DataFrame.empty.html return 'No student found!' # Checking to see if data is requested from another class or for tabulating and displaying the DataFrame elif class_call == None: return tb(data_df, headers=["Roll Order", "Name", "RC", "Listening", "Writing", "Math"], tablefmt='grid', showindex='never') # If data requested from another class then DataFrame is sent directly without tabulating it else: return data_df
def results_matching(desc,splt,more_info=False): res = dill.load(open(os.path.join("results", desc+"_matching_"+splt['name']+".p"), "rb")) mAP = {'e':0,'h':0,'t':0} k_mAP = 0 heads = [ft['e'],ft['h'],ft['t'],'mean'] for seq in res: for t in ['e','h','t']: for idx in range(1,6): mAP[t] += res[seq][t][idx]['ap'] k_mAP+=1 k_mAP = k_mAP / 3.0 if more_info: print("%s - mAP " % (blue(desc.upper()))) results = [mAP['e']/k_mAP,mAP['h']/k_mAP,mAP['t']/k_mAP] results.append(sum(results)/float(len(results))) if more_info: print(tb([results],headers=heads)) print('Mean Average Precision is {:f}'.format(results[-1])) print("\n")
# Correlation matrix toyota.corr() np.mean(toyota) toyota['Price'].mean() toyota['Price'].median() toyota['Price'].mode() toyota['Price'].var() toyota['Price'].std() print(toyota.describe()) descriptive = toyota.describe() from tabulate import tabulate as tb print(tb(descriptive, toyota.columns)) ######### boxplots ########### plt.boxplot(toyota.Price) plt.xticks([ 1, ], ['Price']) plt.boxplot(toyota.Age_08_04) plt.xticks([ 1, ], ['Age']) plt.boxplot(toyota.KM) plt.xticks([ 1, ], ['KM'])
#!/usr/bin/python3 import sys sys.path.append('../') import argparse from exchange.exchange import create_exchange from tabulate import tabulate as tb import pprint if __name__ == "__main__": parser = argparse.ArgumentParser(description='account') parser.add_argument('-e', help='exchange, eg: binance, binance_margin') args = parser.parse_args() # print(args) if not (args.e): parser.print_help() exit(1) exchange = create_exchange(args.e) if not exchange: print("exchange error!") exit(1) account = exchange.get_account() print("account info:" ) #pprint.pprint(account) print(tb(account['balances']))
# Correlation matrix Computer_Data.corr() np.mean(Computer_Data) Computer_Data['price'].mean() Computer_Data['price'].median() Computer_Data['price'].mode() Computer_Data['price'].var() Computer_Data['price'].std() print(Computer_Data.describe()) descriptive = Computer_Data.describe() from tabulate import tabulate as tb print(tb(descriptive, Computer_Data.columns)) ######### boxplots ########### import seaborn as sns plt.boxplot(Computer_Data.price) plt.xticks([ 1, ], ['price']) plt.boxplot(Computer_Data.speed) plt.xticks([ 1, ], ['speed']) plt.boxplot(Computer_Data.hd) plt.xticks([
def _printiso(tsd, date_format=None, sep=',', float_format='%g', showindex="never", headers="keys", tablefmt="csv"): """Separate so can use in tests.""" sys.tracebacklimit = 1000 if isinstance(tsd, (pd.DataFrame, pd.Series)): if isinstance(tsd, pd.Series): tsd = pd.DataFrame(tsd) if len(tsd.columns) == 0: tsd = pd.DataFrame(index=tsd.index) # Not perfectly true, but likely will use showindex for indices # that are not time stamps. if showindex is True: if not tsd.index.name: tsd.index.name = 'UniqueID' else: if not tsd.index.name: tsd.index.name = 'Datetime' print_index = True if tsd.index.is_all_dates is True: if tsd.index.name is None: tsd.index.name = 'Datetime' # Someone made the decision about the name # This is how I include time zone info by tacking on to the # index.name. elif 'datetime' not in tsd.index.name.lower(): tsd.index.name = 'Datetime' else: # This might be overkill, but tstoolbox is for time-series. # Revisit if necessary. print_index = False if tsd.index.name == 'UniqueID': print_index = False if showindex in ['always', 'default']: print_index = True elif isinstance(tsd, (int, float, tuple, pd.np.ndarray)): tablefmt = None if tablefmt in ["csv", "tsv", "csv_nos", "tsv_nos"]: sep = { "csv": ",", "tsv": "\\t", "csv_nos": ",", "tsv_nos": "\\t" }[tablefmt] if isinstance(tsd, pd.DataFrame): try: tsd.to_csv(sys.stdout, float_format=float_format, date_format=date_format, sep=sep, index=print_index) return except IOError: return else: fmt = simple_separated_format(sep) else: fmt = tablefmt if fmt is None: print(str(list(tsd))[1:-1]) elif tablefmt in ['csv_nos', 'tsv_nos']: print( tb(tsd, tablefmt=fmt, showindex=showindex, headers=headers).replace(' ', '')) else: print(tb(tsd, tablefmt=fmt, showindex=showindex, headers=headers))
sns.heatmap(heat1, xticklabels=bank_conti.columns, yticklabels=bank_conti.columns, annot=True) # Scatter plot between the variables along with histograms sns.pairplot(bank_conti) # usage lambda and apply function # apply function => we use to apply custom function operation on # each column # lambda just an another syntax to apply a function on each value # without using for loop bank.isnull().sum() from tabulate import tabulate as tb print(tb(descriptive,bank.columns)) bank.apply(lambda x:x.mean()) bank.mean() bank.dtypes bank.columns job_dum = pd.get_dummies(bank.job,drop_first = True) df_dummies = pd.get_dummies(bank, columns = ['job', 'marital', 'education','default','housing','loan','contact','month','poutcome','y'], drop_first = True) bank = df_dummies bank_total_dum = pd.get_dummies(bank_ori, columns = ['job', 'marital', 'education','default','housing','loan','contact','month','poutcome','y'], drop_first = False) #Removing special characters from the dataframe
def show(self): text = [] text.append('Введенные данные: X') text.append(tb(np.array(self.datas[:, :self.dim_integral[2]]))) text.append('\nВведенные данные: Y') text.append(tb(np.array(self.datas[:, self.dim_integral[2]:self.dim_integral[3]]))) text.append('\nX нормализованные:') text.append(tb(np.array(self.data[:, :self.dim_integral[2]]))) text.append('\nY нормализованные:') text.append(tb(np.array(self.data[:, self.dim_integral[2]:self.dim_integral[3]]))) text.append('\nматр B:') text.append(tb(np.array(self.B))) # text.append('\nmatrix A:') # text.append(tb(np.array(self.A))) text.append('\nматр Lambda:') text.append(tb(np.array(self.Lamb))) for j in range(len(self.Psi)): s = '\nматр Psi%i:' % (j + 1) text.append(s) text.append(tb(np.array(self.Psi[j]))) text.append('\nматр a:') text.append(tb(self.a.tolist())) for j in range(len(self.Fi)): s = '\nматр F%i:' % (j + 1) text.append(s) text.append(tb(np.array(self.Fi[j]))) text.append('\nматр c:') text.append(tb(np.array(self.c))) text.append('\nY построенное нормализованное :') text.append(tb(np.array(self.F))) text.append('\nY построенное:') text.append(tb(self.F_.tolist())) text.append('\nНормализованная невязка(max) (Y - Ф)') text.append(tb([self.norm_error])) text.append('\nНормализованная невязка(avg) (Y - Ф)') text.append(tb([self.norm_error_a])) text.append('\nНевязка(max) (Y_ - Ф_))') text.append(tb([self.error])) text.append('\nНевязка(avg) (Y_ - Ф_))') text.append(tb([self.error_a])) return '\n'.join(text)
def _printiso( tsd, date_format=None, sep=',', float_format='%g', showindex='never', headers='keys', tablefmt='csv', ): """Separate so can use in tests.""" sys.tracebacklimit = 1000 if isinstance(tsd, (pd.DataFrame, pd.Series)): if isinstance(tsd, pd.Series): tsd = pd.DataFrame(tsd) if tsd.columns.empty: tsd = pd.DataFrame(index=tsd.index) # Not perfectly true, but likely will use showindex for indices # that are not time stamps. if showindex is True: if not tsd.index.name: tsd.index.name = 'UniqueID' else: if not tsd.index.name: tsd.index.name = 'Datetime' print_index = True if tsd.index.is_all_dates is True: if not tsd.index.name: tsd.index.name = 'Datetime' # Someone made the decision about the name # This is how I include time zone info by tacking on to the # index.name. elif 'datetime' not in tsd.index.name.lower(): tsd.index.name = 'Datetime' else: # This might be overkill, but tstoolbox is for time-series. # Revisit if necessary. print_index = False if tsd.index.name == 'UniqueID': print_index = False if showindex in ['always', 'default']: print_index = True elif isinstance(tsd, (int, float, tuple, pd.np.ndarray)): tablefmt = None if tablefmt in ['csv', 'tsv', 'csv_nos', 'tsv_nos']: sep = {'csv': ',', 'tsv': '\t', 'csv_nos': ',', 'tsv_nos': '\t'}[tablefmt] if isinstance(tsd, pd.DataFrame): try: tsd.to_csv(sys.stdout, float_format=float_format, date_format=date_format, sep=sep, index=print_index) return except IOError: return else: fmt = simple_separated_format(sep) else: fmt = tablefmt if fmt is None: print(str(list(tsd))[1:-1]) elif tablefmt in ['csv_nos', 'tsv_nos']: print(tb(tsd, tablefmt=fmt, showindex=showindex, headers=headers).replace(' ', '')) else: print(tb(tsd, tablefmt=fmt, showindex=showindex, headers=headers))
def show(self): text = [] text.append('Вводные данные: X') text.append(tb(np.array(self.datas[:, :self.degf[2]]))) text.append('\nВводные данные: Y') text.append(tb(np.array(self.datas[:, self.degf[2]:self.degf[3]]))) text.append('\nX нормализованный:') text.append(tb(np.array(self.data[:, :self.degf[2]]))) text.append('\nY нормализованный:') text.append(tb(np.array(self.data[:, self.degf[2]:self.degf[3]]))) text.append('\nматрица B:') text.append(tb(np.array(self.B))) text.append('\nматрица A:') text.append(tb(np.array(self.A))) text.append('\nматрица Lambda:') text.append(tb(np.array(self.Lamb))) for j in range(len(self.Psi)): s = '\nматрица Psi%i:' % (j + 1) text.append(s) text.append(tb(np.array(self.Psi[j]))) text.append('\nматрица a:') text.append(tb(self.a.tolist())) for j in range(len(self.Fi)): s = '\nматрица Ф%i:' % (j + 1) text.append(s) text.append(tb(np.array(self.Fi[j]))) text.append('\nматрица c:') text.append(tb(np.array(self.c))) text.append('\nY перестроенное нормализованное :') text.append(tb(np.array(self.F))) text.append('\nY перестроенное :') text.append(tb(self.F_.tolist())) text.append('\nНормализованная невязка(max) (Y - Ф)') text.append(tb([self.norm_error])) text.append('\nНормализованная невязка(avg) (Y - Ф)') text.append(tb([self.norm_error_a])) text.append('\nНевязка(max) (Y_ - Ф_))') text.append(tb([self.error])) text.append('\nНевязка(avg) (Y_ - Ф_))') text.append(tb([self.error_a])) return '\n'.join(text)
# Correlation matrix startup50.corr() np.mean(startup50) startup50['Profit'].mean() startup50['Profit'].median() startup50['Profit'].mode() startup50['Profit'].var() startup50['Profit'].std() print(startup50.describe()) descriptive = startup50.describe() from tabulate import tabulate as tb print(tb(descriptive,startup50.columns)) ######### boxplots ########### import seaborn as sns plt.boxplot(startup50.Profit) plt.xticks([1,], ['Profit']) plt.boxplot(startup50.RandDSpend) plt.xticks([1,], ['R&D Spend']) plt.boxplot(startup50.Administration) plt.xticks([1,], ['Administration']) plt.boxplot(startup50.MarketingSpend) plt.xticks([1,], ['MarketingSpend']) plt.boxplot(startup50.State) plt.xticks([1,], ['State'])
error = np.zeros(len(x[0])) for limit, i in zip(x[0], range(0, len(x[0]))): inte[i] = quad(f, 0, limit)[ 0] #integration now doing(quad returns integral and error value) inte_def = np.arctan(x[0]) error = abs(inte_def - inte) li = list() #------------tabulating----------- for ve, i_d, tan in zip(x[0], inte_def, inte): l_temp = [ve, i_d, tan] li.append(l_temp) first_row = ["x-values", "arctan function", "Integral defined values"] li.insert(0, first_row) print(tb(li, tablefmt='psql', headers="firstrow")) #-------------First plot--------- mpt.figure(1) mpt.plot(x[0], inte, 'ro') mpt.plot(x[0], inte_def, color='black', linewidth=2) mpt.xlabel("x") mpt.ylabel("arctan") mpt.title(r"Plot of $\int_{0}^{x} dt/{1+t^{2}}$") mpt.legend(('Integral value', 'Arctan')) #------------Ending plot 1-------------- #-------------Second subplot---------- mpt.figure(2) mpt.plot(x[0], error, 'ro') mpt.yscale("log")
balances = exchange.get_all_balances() print(" %s balances info:" % (args.exchange) ) #print(tb(balances)) if exchange.kline_data_type == kl.KLINE_DATA_TYPE_LIST: closeseat = exchange.kline_idx_close else: closeseat = exchange.kline_key_close total_value = 0 for item in balances: amount = max(get_balance_free(item), get_balance_frozen(item)) if amount < 0: continue coin = get_balance_coin(item) if coin.upper() == args.basecoin.upper(): value = amount else: #print(coin) symbol = creat_symbol(coin, args.basecoin) klines = exchange.get_klines_1min(symbol, size=1) price = float(klines[-1][closeseat]) value = price * amount total_value += value item['value'] = value print(tb(balances)) print("total value: %s %s" % (total_value, args.basecoin))
# print(Fore.RED+"[MENU]" # "\nItem 1 [Cheese Burger]: $6" # "\nItem 2 [Fries]: $3" # "\nItem 3 [Tenders]: $4" # "\nItem 4 [Soda]: $2") mntbl = { 'Item #': list(range(1, numOrderList + 1)), 'Item Name': OrderList, 'Item Price': ItemP } mntblDF = pd.DataFrame(mntbl, columns=['Item #', 'Item Name', 'Item Price']) print(Fore.RED + "[MENU]") print(tb(mntblDF, headers='keys', tablefmt='psql')) #Make list for VALUES through user input OrderQuant = [] for a in range(1, numOrderList + 1): print(Fore.BLACK + "How many of Item", a, "would you like to order?") quant = int(input("Please indicate the quantity here:")) OrderQuant.append(quant) #Merge two lists above to make dictionary for order_n merge = {OrderList[i]: OrderQuant[i] for i in range(len(OrderList))} #Calculating subtotals #Repeat order back to customer & Record sales in form of receipt print(Fore.BLUE + "Thank you for dining with us.\nPlease confirm your order.")
causas={1:'EMBRIAGUEZ O DROGA',2:'MAL REBASAMIENTO INVADIR CARRIL',3:'EXCESO VELOCIDAD',4:'IMPERICIA E IMPRUDENCIA DEL CONDUCTOR',\ 5:'IMPRUDENCIA DEL PEATÓN',6:'DAÑOS MECÁNICOS',7:'NO RESPETA LAS SEÑALES DE TRÁNSITO',\ 8:'FACTORES CLIMÁTICOS',9:'MAL ESTADO DE LA VÍA',10:'OTRAS CAUSAS'} zonas = {2: 'RURAL', 1: 'URBANA'} data = [] f = open('Datanew.csv', 'r') for line in f: line = line.strip() provincia, canton, mes, dia, hora, clase, causa, zona, nh, nf, tv = line.split( ',') l=[cantones[int(canton[1::])],zonas[int(zona)],clases[int(clase)],causas[int(causa)],meses[int(mes)],\ dias[int(dia)],horas[int(hora)],nh,nf,tv] data.append(l) columnas = [ 'Canton', 'Zona', 'Clase', 'Causa', 'Mes', 'Dia', 'Hora', 'Heridos', 'Fallecidos', 'Total' ] d1 = pd.DataFrame(data, columns=columnas) #print(tb(d1,tablefmt='grid',stralign='center',showindex=False,headers=columnas)) #d2=d1.groupby(['Clase']) f2 = open('Data.txt', 'w') f2.write( tb(d1, tablefmt='grid', stralign='center', showindex=False, headers=columnas)) f2.close()
def show(self): text = [] text.append('Inputed : X') text.append(tb(np.array(self.datas[:, :self.degf[2]]))) text.append('\nInputed : Y') text.append(tb(np.array(self.datas[:, self.degf[2]:self.degf[3]]))) text.append('\nNormalised X:') text.append(tb(np.array(self.data[:, :self.degf[2]]))) text.append('\nNormalised Y:') text.append(tb(np.array(self.data[:, self.degf[2]:self.degf[3]]))) text.append('\nmatrix A:') text.append(tb(np.array(self.A))) text.append('\nmatrix B:') text.append(tb(np.array(self.B))) text.append('\nmatrix Lambda:') text.append(tb(np.array(self.Lamb))) for j in range(len(self.Psi)): s = '\nmatrix Psi%i:' % (j + 1) text.append(s) text.append(tb(np.array(self.Psi[j]))) text.append('\nmatrix a:') text.append(tb(self.a.tolist())) for j in range(len(self.Fi)): s = '\nmatrix F%i:' % (j + 1) text.append(s) text.append(tb(np.array(self.Fi[j]))) text.append('\nmatrix c:') text.append(tb(np.array(self.c))) text.append('\nY rebuilt normalized :') text.append(tb(np.array(self.F))) text.append('\nY rebuilt :') text.append(tb(self.F_.tolist())) text.append('\nError normalised (Y - F)') text.append(tb([self.norm_error])) text.append('\nError (Y - F)') text.append(tb([self.error])) return '\n'.join(text)