def apply_indicators(df: pd.DataFrame):

    # ADX
    df['adx'] = ta.ADX(df)

    # EMA
    df['ema_5'] = ta.EMA(df, 5)
    df['ema_10'] = ta.EMA(df, 10)
    df['ema_20'] = ta.EMA(df, 20)
    df['ema_50'] = ta.EMA(df, 50)
    df['ema_100'] = ta.EMA(df, 100)
    df['ema_200'] = ta.EMA(df, 200)

    # MACD
    macd = ta.MACD(df)
    df['macd'] = macd['macd']
    df['macdsignal'] = macd['macdsignal']
    df['macdhist'] = macd['macdhist']

    # inverse Fisher rsi/ RSI
    df['rsi'] = ta.RSI(df)
    rsi = 0.1 - (df['rsi'] - 50)
    df['i_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)

    # Stoch fast
    stoch_fast = ta.STOCHF(df)
    df['fastd'] = stoch_fast['fastd']
    df['fastk'] = stoch_fast['fastk']

    # Stock slow
    stoch_slow = ta.STOCH(df)
    df['slowd'] = stoch_slow['slowd']
    df['slowk'] = stoch_slow['slowk']

    # Bollinger bands
    bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(df),
                                        window=20,
                                        stds=2)
    df['bb_lowerband'] = bollinger['lower']
    df['bb_middleband'] = bollinger['mid']
    df['bb_upperband'] = bollinger['upper']

    # ROC
    df['roc'] = ta.ROC(df, 10)

    # CCI
    df['cci'] = ta.CCI(df, 14)

    # on balance volume
    df['obv'] = ta.OBV(df)

    # Average True Range
    df['atr'] = ta.ATR(df, 14)

    df = ichimoku(df)

    return df
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:

        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']
        dataframe['cci'] = ta.CCI(dataframe)

        return dataframe
Beispiel #3
0
 def technical_index(self):
     df = self.max_min_price()
     df2 = self.institutional_investors()
     df['RSI'] = abstract.RSI(df) / 100
     df['CMO'] =(abstract.CMO(df)+100) / (2 *100)
     df['MACD'] =(abstract.MACD(df)['macd']+abstract.MACD(df)['macd'].max()) / (2 *abstract.MACD(df)['macd'].max())
     df['WILLR'] =(abstract.WILLR(df)+100) / (2 *100)
     df['WMA'] =abstract.WMA(df) / abstract.WMA(df).max()
     df['PPO'] =(abstract.PPO(df)+abstract.PPO(df).max()) / (2 *abstract.PPO(df).max())
     df['EMA'] =abstract.EMA(df) / abstract.EMA(df).max()
     df['ROC'] =(abstract.ROC(df)+abstract.ROC(df).max()) / (2 *abstract.ROC(df).max())
     df['SMA'] =abstract.SMA(df) / abstract.SMA(df).max()
     df['TEMA'] =abstract.TEMA(df) / abstract.TEMA(df).max()
     df['CCI'] =(abstract.CCI(df)+abstract.CCI(df).max()) / (2 *abstract.CCI(df).max())
     df['investment_trust'] = (df2['investment_trust'] + df2['investment_trust'].max()) / (2*df2['investment_trust'].max())
     df['foreign_investor'] = (df2['foreign_investor'] + df2['foreign_investor'].max()) / (2*df2['foreign_investor'].max())
     df = df.drop(columns=['volume', 'open', 'high', 'low', 'close', 'close_max', 'close_min'])
     df = df.dropna()
     return df
Beispiel #4
0
    def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
        macd = ta.MACD(dataframe)
        dataframe["macd"] = macd["macd"]
        dataframe["macdsignal"] = macd["macdsignal"]

        for cciTime in cciTimeRange:
            cciName = "cci-" + str(cciTime)
            dataframe[cciName] = ta.CCI(dataframe, timeperiod=cciTime)

        return dataframe
Beispiel #5
0
 def CCI(self):
     CCI = tb.CCI(self.dataframe, timeperiod=20)
     value = CCI[len(CCI) - 1]
     preValue = CCI[len(CCI) - 2]
     if (value > cciUpperLimit):
         return "sell"
     elif (value < cciLowerLimit):
         return "buy"
     else:
         return "neutral"
    def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
        macd = ta.MACD(dataframe)
        dataframe = CCIStrategy.resample(dataframe, self.ticker_interval, 5)

        dataframe['cci_one'] = ta.CCI(dataframe, timeperiod=170)
        dataframe['cci_two'] = ta.CCI(dataframe, timeperiod=34)
        dataframe['rsi'] = ta.RSI(dataframe)
        dataframe['mfi'] = ta.MFI(dataframe)

        dataframe['cmf'] = self.chaikin_mf(dataframe)

        # required for graphing
        bollinger = qtpylib.bollinger_bands(dataframe['close'],
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe['bb_middleband'] = bollinger['mid']

        return dataframe
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:

        dataframe['hma'] = hull_moving_average(dataframe, 14, 'close')
        dataframe['cci'] = ta.CCI(dataframe, timeperiod=14)
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)

        rsi = 0.1 * (dataframe['rsi'] - 50)
        dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)

        return dataframe
Beispiel #8
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        dataframe = self.resample(dataframe, self.timeframe, 5)

        dataframe["cci_one"] = ta.CCI(dataframe, timeperiod=170)
        dataframe["cci_two"] = ta.CCI(dataframe, timeperiod=34)
        dataframe["rsi"] = ta.RSI(dataframe)
        dataframe["mfi"] = ta.MFI(dataframe)

        dataframe["cmf"] = self.chaikin_mf(dataframe)

        # required for graphing
        bollinger = qtpylib.bollinger_bands(dataframe["close"],
                                            window=20,
                                            stds=2)
        dataframe["bb_lowerband"] = bollinger["lower"]
        dataframe["bb_upperband"] = bollinger["upper"]
        dataframe["bb_middleband"] = bollinger["mid"]

        return dataframe
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:

        bollinger = qtpylib.bollinger_bands(dataframe['close'],
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe['bb_width'] = (
            (dataframe['bb_upperband'] - dataframe['bb_lowerband']) /
            dataframe['bb_middleband'])
        dataframe['bb_bottom_cross'] = qtpylib.crossed_below(
            dataframe['close'], dataframe['bb_lowerband']).astype('int')

        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=10)

        dataframe['plus_di'] = ta.PLUS_DI(dataframe)
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)

        dataframe['cci'] = ta.CCI(dataframe, 30)

        dataframe['mfi'] = ta.MFI(dataframe, timeperiod=14)

        dataframe['cmf'] = chaikin_mf(dataframe)

        dataframe['rmi'] = RMI(dataframe, length=8, mom=4)

        stoch = ta.STOCHRSI(dataframe, 15, 20, 2, 2)
        dataframe['srsi_fk'] = stoch['fastk']
        dataframe['srsi_fd'] = stoch['fastd']

        dataframe['fastEMA'] = ta.EMA(dataframe['volume'], timeperiod=12)
        dataframe['slowEMA'] = ta.EMA(dataframe['volume'], timeperiod=26)
        dataframe['pvo'] = ((dataframe['fastEMA'] - dataframe['slowEMA']) /
                            dataframe['slowEMA']) * 100

        dataframe['is_dip'] = ((dataframe['rmi'] < 20)
                               & (dataframe['cci'] <= -150)
                               & (dataframe['srsi_fk'] < 20)
                               # Maybe comment mfi and cmf to make more trades
                               & (dataframe['mfi'] < 25)
                               & (dataframe['cmf'] <= -0.1)).astype('int')

        dataframe['is_break'] = (
            (dataframe['bb_width'] > 0.025)
            & (dataframe['bb_bottom_cross'].rolling(10).sum() > 1)
            & (dataframe['close'] < 0.99 * dataframe['bb_lowerband'])
        ).astype('int')

        dataframe['buy_signal'] = ((dataframe['is_dip'] > 0)
                                   & (dataframe['is_break'] > 0)).astype('int')

        return dataframe
Beispiel #10
0
    def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
        macd = ta.MACD(dataframe, fastperiod=12, slowperiod=26, signalperiod=9)
        dataframe['macdhist'] = macd['macdhist']
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']

        for cciTime in cciTimeRange:

            cciName = "cci-" + str(cciTime)
            dataframe[cciName] = ta.CCI(dataframe, timeperiod=cciTime)

        return dataframe
Beispiel #11
0
    def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
        """
        Dynamic TA indicators
        Used so hyperopt can optimized around the period of various indicators
        """
        for kshort in range(kshortStart, (kshortEnd + 1)):
            dataframe[f'kama-short({kshort})'] = ta.KAMA(dataframe,
                                                         timeperiod=kshort)

        for klong in range(klongStart, (klongEnd + 1)):
            dataframe[f'kama-long({klong})'] = ta.KAMA(dataframe,
                                                       timeperiod=klong)

        for klong in range(klongStart, (klongEnd + 1)):
            dataframe[f'kama-long-slope({klong})'] = (
                dataframe[f'kama-long({klong})'] /
                dataframe[f'kama-long({klong})'].shift())

        for ccip in range(cciStart, (cciEnd + 1)):
            dataframe[f'cci({ccip})'] = ta.CCI(dataframe, timeperiod=ccip)

        for rsip in range(rsiStart, (rsiEnd + 1)):
            dataframe[f'rsi({rsip})'] = ta.RSI(dataframe, timeperiod=rsip)
        """
        Static TA indicators.
        Only used when --spaces does not include buy or sell
        """
        dataframe['cci'] = ta.CCI(dataframe, timeperiod=cciStatic)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=rsiStatic)

        # KAMA - Kaufman Adaptive Moving Average
        dataframe['kama-short'] = ta.KAMA(dataframe,
                                          timeperiod=kamaShortStatic)
        dataframe['kama-long'] = ta.KAMA(dataframe, timeperiod=kamaLongStatic)
        dataframe['kama-long-slope'] = (dataframe['kama-long'] /
                                        dataframe['kama-long'].shift())

        return dataframe
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        """
        Dynamic TA indicators
        Used so hyperopt can optimized around the period of various indicators
        """
        dataframe['kama-short'] = ta.KAMA(dataframe, timeperiod=5)
        dataframe['kama-long'] = ta.KAMA(dataframe, timeperiod=20)

        dataframe['cci'] = ta.CCI(dataframe, timeperiod=21)
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)

        return dataframe
    def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:

        for cciTime in cciTimeRange:

            cciName = "cci-" + str(cciTime)
            dataframe[cciName] = ta.CCI(dataframe, timeperiod=cciTime)

        for rsiTime in rsiTimeRange:

            rsiName = "rsi-" + str(rsiTime)
            dataframe[rsiName] = ta.RSI(dataframe, timeperiod=rsiTime)

        return dataframe
Beispiel #14
0
def populate_indicators(dataframe: DataFrame) -> DataFrame:
    """
    Adds several different TA indicators to the given DataFrame
    """
    dataframe['sar'] = ta.SAR(dataframe)
    dataframe['adx'] = ta.ADX(dataframe)
    stoch = ta.STOCHF(dataframe)
    dataframe['fastd'] = stoch['fastd']
    dataframe['fastk'] = stoch['fastk']
    dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
    dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
    dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
    dataframe['mfi'] = ta.MFI(dataframe)
    dataframe['cci'] = ta.CCI(dataframe)
    return dataframe
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        dataframe = self.resample(dataframe, self.ticker_interval,
                                  self.resample_factor)

        ##################################################################################
        # buy and sell indicators

        dataframe['ema_{}'.format(self.EMA_SHORT_TERM)] = ta.EMA(
            dataframe, timeperiod=self.EMA_SHORT_TERM)
        dataframe['ema_{}'.format(self.EMA_MEDIUM_TERM)] = ta.EMA(
            dataframe, timeperiod=self.EMA_MEDIUM_TERM)
        dataframe['ema_{}'.format(self.EMA_LONG_TERM)] = ta.EMA(
            dataframe, timeperiod=self.EMA_LONG_TERM)

        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']

        dataframe['min'] = ta.MIN(dataframe, timeperiod=self.EMA_MEDIUM_TERM)
        dataframe['max'] = ta.MAX(dataframe, timeperiod=self.EMA_MEDIUM_TERM)

        dataframe['cci'] = ta.CCI(dataframe)
        dataframe['mfi'] = ta.MFI(dataframe)
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=7)

        dataframe['average'] = (dataframe['close'] + dataframe['open'] +
                                dataframe['high'] + dataframe['low']) / 4

        ##################################################################################
        # required for graphing
        bollinger = qtpylib.bollinger_bands(dataframe['close'],
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe['bb_middleband'] = bollinger['mid']

        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        return dataframe
Beispiel #16
0
    def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        """

        # Commodity Channel Index: values Oversold:<-100, Overbought:>100
        dataframe['cci'] = ta.CCI(dataframe)

        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)
		
		# CMO
        dataframe['cmo'] = ta.CMO(dataframe)

        return dataframe
Beispiel #17
0
def TA_processing(dataframe):
    bias(dataframe, days=[3, 6, 10, 25])
    moving_average(dataframe, days=[5, 10, 20])
    dataframe['ROC'] = abstract.ROC(dataframe, timeperiod=10)
    dataframe['MACD'] = abstract.MACD(dataframe, fastperiod=12, slowperiod=26, signalperiod=9)['macd']
    dataframe['MACD_signal'] = abstract.MACD(dataframe, fastperiod=12, slowperiod=26, signalperiod=9)['macdsignal']
    dataframe['UBBANDS'] = abstract.BBANDS(dataframe, timeperiod=20, nbdevup=2, nbdevdn=2, matype=0)['upperband']
    dataframe['MBBANDS'] = abstract.BBANDS(dataframe, timeperiod=20, nbdevup=2, nbdevdn=2, matype=0)['middleband']
    dataframe['LBBANDS'] = abstract.BBANDS(dataframe, timeperiod=20, nbdevup=2, nbdevdn=2, matype=0)['lowerband']
    dataframe['%K'] = abstract.STOCH(dataframe, fastk_period=9)['slowk']/100
    dataframe['%D'] = abstract.STOCH(dataframe, fastk_period=9)['slowd']/100
    dataframe['W%R'] = abstract.WILLR(dataframe, timeperiod=14)/100
    dataframe['RSI9'] = abstract.RSI(dataframe, timeperiod = 9)/100
    dataframe['RSI14'] = abstract.RSI(dataframe, timeperiod = 14)/100
    dataframe['CCI'] = abstract.CCI(dataframe, timeperiod=14)/100
    counter_daily_potential(dataframe)
    dataframe['MOM'] = abstract.MOM(dataframe, timeperiod=10)
    dataframe['DX'] = abstract.DX(dataframe, timeperiod=14)/100
    psy_line(dataframe)
    volumn_ratio(dataframe, d=26)
    on_balance_volume(dataframe)
    def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
        dataframe = self.resample(dataframe, self.ticker_interval, self.resample_factor)

        dataframe['ema_high'] = ta.EMA(dataframe, timeperiod=5, price='high')
        dataframe['ema_close'] = ta.EMA(dataframe, timeperiod=5, price='close')
        dataframe['ema_low'] = ta.EMA(dataframe, timeperiod=5, price='low')
        stoch_fast = ta.STOCHF(dataframe, 5.0, 3.0, 0.0, 3.0, 0.0)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']
        dataframe['adx'] = ta.ADX(dataframe)
        dataframe['cci'] = ta.CCI(dataframe, timeperiod=20)
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
        dataframe['mfi'] = ta.MFI(dataframe)

        # required for graphing
        bollinger = qtpylib.bollinger_bands(dataframe['close'], window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe['bb_middleband'] = bollinger['mid']

        return dataframe
Beispiel #19
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        """

        # ADX
        dataframe['adx'] = ta.ADX(dataframe)
        dataframe['slowadx'] = ta.ADX(dataframe, 35)

        # Commodity Channel Index: values Oversold:<-100, Overbought:>100
        dataframe['cci'] = ta.CCI(dataframe)

        # Stoch
        stoch = ta.STOCHF(dataframe, 5)
        dataframe['fastd'] = stoch['fastd']
        dataframe['fastk'] = stoch['fastk']
        dataframe['fastk-previous'] = dataframe.fastk.shift(1)
        dataframe['fastd-previous'] = dataframe.fastd.shift(1)

        # Slow Stoch
        slowstoch = ta.STOCHF(dataframe, 50)
        dataframe['slowfastd'] = slowstoch['fastd']
        dataframe['slowfastk'] = slowstoch['fastk']
        dataframe['slowfastk-previous'] = dataframe.slowfastk.shift(1)
        dataframe['slowfastd-previous'] = dataframe.slowfastd.shift(1)

        # EMA - Exponential Moving Average
        dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)

        dataframe['mean-volume'] = dataframe['volume'].mean()

        return dataframe
Beispiel #20
0
def TKE(dataframe, *, length=14, emaperiod=5):
    """
    Source: https://www.tradingview.com/script/Pcbvo0zG/
    Author: Dr Yasar ERDINC

    The calculation is simple:
    TKE=(RSI+STOCHASTIC+ULTIMATE OSCILLATOR+MFI+WIILIAMS %R+MOMENTUM+CCI)/7
    Buy signal: when TKE crosses above 20 value
    Oversold region: under 20 value
    Overbought region: over 80 value

    Another usage of TKE is with its EMA ,
    the default value is defined as 5 bars of EMA of the TKE line,
    Go long: when TKE crosses above EMALine
    Go short: when TKE crosses below EMALine

    Usage:
        `dataframe['TKE'], dataframe['TKEema'] = TKE1(dataframe)`
    """
    import talib.abstract as ta
    df = dataframe.copy()
    # TKE=(RSI+STOCHASTIC+ULTIMATE OSCILLATOR+MFI+WIILIAMS %R+MOMENTUM+CCI)/7
    df["rsi"] = ta.RSI(df, timeperiod=length)
    df['stoch'] = (100 *
                   (df['close'] - df['low'].rolling(window=length).min()) /
                   (df['high'].rolling(window=length).max() -
                    df['low'].rolling(window=length).min()))

    df["ultosc"] = ta.ULTOSC(df, timeperiod1=7, timeperiod2=14, timeperiod3=28)
    df["mfi"] = ta.MFI(df, timeperiod=length)
    df["willr"] = ta.WILLR(df, timeperiod=length)
    df["mom"] = ta.ROCR100(df, timeperiod=length)
    df["cci"] = ta.CCI(df, timeperiod=length)
    df['TKE'] = df[['rsi', 'stoch', 'ultosc', 'mfi', 'willr', 'mom',
                    'cci']].mean(axis='columns')
    df["TKEema"] = ta.EMA(df["TKE"], timeperiod=emaperiod)
    return df["TKE"], df["TKEema"]
Beispiel #21
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        # Momentum Indicators
        # ------------------------------------

        # ADX
        dataframe['adx'] = ta.ADX(dataframe)

        # Plus Directional Indicator / Movement
        dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
        dataframe['plus_di'] = ta.PLUS_DI(dataframe)

        # # Minus Directional Indicator / Movement
        dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)

        # Aroon, Aroon Oscillator
        aroon = ta.AROON(dataframe)
        dataframe['aroonup'] = aroon['aroonup']
        dataframe['aroondown'] = aroon['aroondown']
        dataframe['aroonosc'] = ta.AROONOSC(dataframe)

        # Awesome Oscillator
        dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)

        # # Keltner Channel
        # keltner = qtpylib.keltner_channel(dataframe)
        # dataframe["kc_upperband"] = keltner["upper"]
        # dataframe["kc_lowerband"] = keltner["lower"]
        # dataframe["kc_middleband"] = keltner["mid"]
        # dataframe["kc_percent"] = (
        #     (dataframe["close"] - dataframe["kc_lowerband"]) /
        #     (dataframe["kc_upperband"] - dataframe["kc_lowerband"])
        # )
        # dataframe["kc_width"] = (
        #     (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"]
        # )

        # Ultimate Oscillator
        dataframe['uo'] = ta.ULTOSC(dataframe)

        # Commodity Channel Index: values [Oversold:-100, Overbought:100]
        dataframe['cci'] = ta.CCI(dataframe)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        rsi = 0.1 * (dataframe['rsi'] - 50)
        dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)

        # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy)
        dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)

        # Stochastic Slow
        stoch = ta.STOCH(dataframe)
        dataframe['slowd'] = stoch['slowd']
        dataframe['slowk'] = stoch['slowk']

        # Stochastic Fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']

        # Stochastic RSI
        stoch_rsi = ta.STOCHRSI(dataframe)
        dataframe['fastd_rsi'] = stoch_rsi['fastd']
        dataframe['fastk_rsi'] = stoch_rsi['fastk']

        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)

        # # ROC
        dataframe['roc'] = ta.ROC(dataframe)

        # Overlap Studies
        # ------------------------------------

        # # Bollinger Bands
        # bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        # dataframe['bb_lowerband'] = bollinger['lower']
        # dataframe['bb_middleband'] = bollinger['mid']
        # dataframe['bb_upperband'] = bollinger['upper']
        # dataframe["bb_percent"] = (
        #     (dataframe["close"] - dataframe["bb_lowerband"]) /
        #     (dataframe["bb_upperband"] - dataframe["bb_lowerband"])
        # )
        # dataframe["bb_width"] = (
        #     (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"]
        # )

        # # Bollinger Bands - Weighted (EMA based instead of SMA)
        # weighted_bollinger = qtpylib.weighted_bollinger_bands(
        #     qtpylib.typical_price(dataframe), window=20, stds=2
        # )
        # dataframe["wbb_upperband"] = weighted_bollinger["upper"]
        # dataframe["wbb_lowerband"] = weighted_bollinger["lower"]
        # dataframe["wbb_middleband"] = weighted_bollinger["mid"]
        # dataframe["wbb_percent"] = (
        #     (dataframe["close"] - dataframe["wbb_lowerband"]) /
        #     (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"])
        # )
        # dataframe["wbb_width"] = (
        #     (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) /
        #     dataframe["wbb_middleband"]
        # )

        # # EMA - Exponential Moving Average
        # dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
        # dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
        # dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
        # dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21)
        # dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
        # dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)

        # # SMA - Simple Moving Average
        # dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3)
        # dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5)
        # dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10)
        # dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21)
        # dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50)
        # dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100)

        # Parabolic SAR
        # dataframe['sar'] = ta.SAR(dataframe)

        # TEMA - Triple Exponential Moving Average
        # dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        # # Cycle Indicator
        # # ------------------------------------
        # # Hilbert Transform Indicator - SineWave
        # hilbert = ta.HT_SINE(dataframe)
        # dataframe['htsine'] = hilbert['sine']
        # dataframe['htleadsine'] = hilbert['leadsine']

        # # Pattern Recognition - Bullish candlestick patterns
        # # ------------------------------------
        # # Hammer: values [0, 100]
        # dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
        # # Inverted Hammer: values [0, 100]
        # dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
        # # Dragonfly Doji: values [0, 100]
        # dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
        # # Piercing Line: values [0, 100]
        # dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
        # # Morningstar: values [0, 100]
        # dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
        # # Three White Soldiers: values [0, 100]
        # dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]

        # # Pattern Recognition - Bearish candlestick patterns
        # # ------------------------------------
        # # Hanging Man: values [0, 100]
        # dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
        # # Shooting Star: values [0, 100]
        # dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
        # # Gravestone Doji: values [0, 100]
        # dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
        # # Dark Cloud Cover: values [0, 100]
        # dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
        # # Evening Doji Star: values [0, 100]
        # dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
        # # Evening Star: values [0, 100]
        # dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)

        # # Pattern Recognition - Bullish/Bearish candlestick patterns
        # # ------------------------------------
        # # Three Line Strike: values [0, -100, 100]
        # dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
        # # Spinning Top: values [0, -100, 100]
        # dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
        # # Engulfing: values [0, -100, 100]
        # dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
        # # Harami: values [0, -100, 100]
        # dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
        # # Three Outside Up/Down: values [0, -100, 100]
        # dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
        # # Three Inside Up/Down: values [0, -100, 100]
        # dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]

        # # Chart type
        # # ------------------------------------
        # # Heikin Ashi Strategy
        # heikinashi = qtpylib.heikinashi(dataframe)
        # dataframe['ha_open'] = heikinashi['open']
        # dataframe['ha_close'] = heikinashi['close']
        # dataframe['ha_high'] = heikinashi['high']
        # dataframe['ha_low'] = heikinashi['low']

        # Retrieve best bid and best ask from the orderbook
        # ------------------------------------
        """
        # first check if dataprovider is available
        if self.dp:
            if self.dp.runmode in ('live', 'dry_run'):
                ob = self.dp.orderbook(metadata['pair'], 1)
                dataframe['best_bid'] = ob['bids'][0][0]
                dataframe['best_ask'] = ob['asks'][0][0]
        """

        return dataframe
Beispiel #22
0
def populate_indicators(dataframe: DataFrame) -> DataFrame:
    """
    Adds several different TA indicators to the given DataFrame
    """
    dataframe['sar'] = ta.SAR(dataframe)
    dataframe['adx'] = ta.ADX(dataframe)
    stoch = ta.STOCHF(dataframe)
    dataframe['fastd'] = stoch['fastd']
    dataframe['fastk'] = stoch['fastk']
    dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2,
                                    nbdevdn=2)['lowerband']
    dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
    dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
    dataframe['mfi'] = ta.MFI(dataframe)
    dataframe['cci'] = ta.CCI(dataframe)
    dataframe['rsi'] = ta.RSI(dataframe)
    dataframe['mom'] = ta.MOM(dataframe)
    dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
    dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
    dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
    dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
    dataframe['ao'] = awesome_oscillator(dataframe)
    macd = ta.MACD(dataframe)
    dataframe['macd'] = macd['macd']
    dataframe['macdsignal'] = macd['macdsignal']
    dataframe['macdhist'] = macd['macdhist']

    # add volatility indicators
    dataframe['natr'] = ta.NATR(dataframe)

    # add volume indicators
    dataframe['obv'] = ta.OBV(dataframe)

    # add more momentum indicators
    dataframe['rocp'] = ta.ROCP(dataframe)

    # add some pattern recognition
    dataframe['CDL2CROWS'] = ta.CDL2CROWS(dataframe)
    dataframe['CDL3BLACKCROWS'] = ta.CDL3BLACKCROWS(dataframe)
    dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe)
    dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
    dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe)
    dataframe['CDL3STARSINSOUTH'] = ta.CDL3STARSINSOUTH(dataframe)
    dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe)
    dataframe['CDLADVANCEBLOCK'] = ta.CDLADVANCEBLOCK(dataframe)
    dataframe['CDLBELTHOLD'] = ta.CDLBELTHOLD(dataframe)
    dataframe['CDLBREAKAWAY'] = ta.CDLBREAKAWAY(dataframe)
    dataframe['CDLDOJI'] = ta.CDLDOJI(dataframe)
    dataframe['CDLDOJISTAR'] = ta.CDLDOJISTAR(dataframe)
    dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
    dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe)
    dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
    dataframe['CDLBREAKAWAY'] = ta.CDLBREAKAWAY(dataframe)
    dataframe['CDLBREAKAWAY'] = ta.CDLBREAKAWAY(dataframe)

    # enter categorical time
    hour = datetime.strptime(str(dataframe['date'][len(dataframe) - 1]),
                             "%Y-%m-%d %H:%M:%S").hour
    for h in range(24):
        dataframe['hour_{0:02}'.format(h)] = int(h == hour)

    return dataframe
Beispiel #23
0
    def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        :param dataframe: Dataframe with data from the exchange
        :param metadata: Additional information, like the currently traded pair
        :return: a Dataframe with all mandatory indicators for the strategies
        """


        #divergences
        #     - -   - -
        #         -
        #     4 3 2 1 0

        #src[4] > src[2] and src[3] > src[2] and src[2] < src[1] and src[2] < src[0]
        dataframe['bullish_div'] = (
                                        ( dataframe['close'].shift(4) > dataframe['close'].shift(2) ) & 
                                        ( dataframe['close'].shift(3) > dataframe['close'].shift(2) ) & 
                                        ( dataframe['close'].shift(2) < dataframe['close'].shift(1) ) & 
                                        ( dataframe['close'].shift(2) < dataframe['close'] )
                                   ) 

        


        #queremos el volumen medio de las ultimas 24 velas, si es mayor queremos comprar, si es que no es volumen a la baja, esto habria que compararlo tomando el precio unas horas antes
        dataframe['mean24volume'] = dataframe.volume.rolling(24).mean() 

        dataframe['mean68close'] = dataframe.close.rolling(68).mean() 
        
        #         -
        #     - -   - -
        #     4 3 2 1 0
        #src[4] < src[2] and src[3] < src[2] and src[2] > src[1] and src[2] > src[0]

        dataframe['bearish_div'] = (
                                        ( dataframe['close'].shift(4) < dataframe['close'].shift(2) ) & 
                                        ( dataframe['close'].shift(3) < dataframe['close'].shift(2) ) & 
                                        ( dataframe['close'].shift(2) > dataframe['close'].shift(1) ) & 
                                        ( dataframe['close'].shift(2) > dataframe['close'] )
                                    )

        dataframe['cci_one'] = ta.CCI(dataframe, timeperiod=170)
        dataframe['cci_two'] = ta.CCI(dataframe, timeperiod=34)

        # Momentum Indicators
        # ------------------------------------

        # ADX
        dataframe['adx'] = ta.ADX(dataframe)

        # # Plus Directional Indicator / Movement
        # dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
        # dataframe['plus_di'] = ta.PLUS_DI(dataframe)

        # # Minus Directional Indicator / Movement
        # dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
        # dataframe['minus_di'] = ta.MINUS_DI(dataframe)

        # # Aroon, Aroon Oscillator
        # aroon = ta.AROON(dataframe)
        # dataframe['aroonup'] = aroon['aroonup']
        # dataframe['aroondown'] = aroon['aroondown']
        # dataframe['aroonosc'] = ta.AROONOSC(dataframe)

        # # Awesome Oscillator
        # dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)

        # # Keltner Channel
        # keltner = qtpylib.keltner_channel(dataframe)
        # dataframe["kc_upperband"] = keltner["upper"]
        # dataframe["kc_lowerband"] = keltner["lower"]
        # dataframe["kc_middleband"] = keltner["mid"]
        # dataframe["kc_percent"] = (
        #     (dataframe["close"] - dataframe["kc_lowerband"]) /
        #     (dataframe["kc_upperband"] - dataframe["kc_lowerband"])
        # )
        # dataframe["kc_width"] = (
        #     (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"]
        # )

        # # Ultimate Oscillator
        # dataframe['uo'] = ta.ULTOSC(dataframe)

        # # Commodity Channel Index: values [Oversold:-100, Overbought:100]
        dataframe['cci'] = ta.CCI(dataframe)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        # rsi = 0.1 * (dataframe['rsi'] - 50)
        # dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)

        # # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy)
        # dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)

        # # Stochastic Slow
        # stoch = ta.STOCH(dataframe)
        # dataframe['slowd'] = stoch['slowd']
        # dataframe['slowk'] = stoch['slowk']

        # Stochastic Fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']

        # # Stochastic RSI
        # Please read https://github.com/freqtrade/freqtrade/issues/2961 before using this.
        # STOCHRSI is NOT aligned with tradingview, which may result in non-expected results.
        # stoch_rsi = ta.STOCHRSI(dataframe)
        # dataframe['fastd_rsi'] = stoch_rsi['fastd']
        # dataframe['fastk_rsi'] = stoch_rsi['fastk']

        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)

        # # ROC
        # dataframe['roc'] = ta.ROC(dataframe)

        # Overlap Studies
        # ------------------------------------

        # Bollinger Bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe["bb_percent"] = (
            (dataframe["close"] - dataframe["bb_lowerband"]) /
            (dataframe["bb_upperband"] - dataframe["bb_lowerband"])
        )
        dataframe["bb_width"] = (
            (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"]
        )

        # Bollinger Bands - Weighted (EMA based instead of SMA)
        # weighted_bollinger = qtpylib.weighted_bollinger_bands(
        #     qtpylib.typical_price(dataframe), window=20, stds=2
        # )
        # dataframe["wbb_upperband"] = weighted_bollinger["upper"]
        # dataframe["wbb_lowerband"] = weighted_bollinger["lower"]
        # dataframe["wbb_middleband"] = weighted_bollinger["mid"]
        # dataframe["wbb_percent"] = (
        #     (dataframe["close"] - dataframe["wbb_lowerband"]) /
        #     (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"])
        # )
        # dataframe["wbb_width"] = (
        #     (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) /
        #     dataframe["wbb_middleband"]
        # )

        # # EMA - Exponential Moving Average
        dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
        dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
        dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
        dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21)
        dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
        dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
        dataframe['ema200'] = ta.EMA(dataframe, timeperiod=200)

        # # SMA - Simple Moving Average
        # dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3)
        # dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5)
        # dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10)
        # dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21)
        # dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50)
        # dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100)

        # Parabolic SAR
        dataframe['sar'] = ta.SAR(dataframe)

        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        # Cycle Indicator
        # ------------------------------------
        # Hilbert Transform Indicator - SineWave
        hilbert = ta.HT_SINE(dataframe)
        dataframe['htsine'] = hilbert['sine']
        dataframe['htleadsine'] = hilbert['leadsine']

        # Pattern Recognition - Bullish candlestick patterns
        # ------------------------------------
        # # Hammer: values [0, 100]
        # dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
        # # Inverted Hammer: values [0, 100]
        # dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
        # # Dragonfly Doji: values [0, 100]
        # dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
        # # Piercing Line: values [0, 100]
        # dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
        # # Morningstar: values [0, 100]
        # dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
        # # Three White Soldiers: values [0, 100]
        # dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]

        # Pattern Recognition - Bearish candlestick patterns
        # ------------------------------------
        # # Hanging Man: values [0, 100]
        # dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
        # # Shooting Star: values [0, 100]
        # dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
        # # Gravestone Doji: values [0, 100]
        # dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
        # # Dark Cloud Cover: values [0, 100]
        # dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
        # # Evening Doji Star: values [0, 100]
        # dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
        # # Evening Star: values [0, 100]
        # dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)

        # Pattern Recognition - Bullish/Bearish candlestick patterns
        # ------------------------------------
        # # Three Line Strike: values [0, -100, 100]
        # dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
        # # Spinning Top: values [0, -100, 100]
        # dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
        # # Engulfing: values [0, -100, 100]
        # dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
        # # Harami: values [0, -100, 100]
        # dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
        # # Three Outside Up/Down: values [0, -100, 100]
        # dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
        # # Three Inside Up/Down: values [0, -100, 100]
        # dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]

        # # Chart type
        # # ------------------------------------
        # Heikin Ashi Strategy
        heikinashi = qtpylib.heikinashi(dataframe)
        dataframe['ha_open'] = heikinashi['open']
        dataframe['close'] = heikinashi['close']
        dataframe['ha_high'] = heikinashi['high']
        dataframe['ha_low'] = heikinashi['low']

        dataframe['haclosestrat'] = (dataframe['ha_open'] + dataframe['ha_high'] + dataframe['ha_low'] + dataframe['close']) / 4
        dataframe['haopenstrat'] = (dataframe['ha_open'] + dataframe['close']) / 2

        dataframe['highstrat']  = max(dataframe['ha_high'] , max(dataframe['ha_open'], dataframe['close'] ))
        dataframe['lowstrat']  = min(dataframe['haLow'] , min(dataframe['ha_open'], dataframe['close'] ))
        # Retrieve best bid and best ask from the orderbook
        # ------------------------------------
        return dataframe
Beispiel #24
0
while True:
    cci_total_today_buy = []
    cci_total_yesterday_buy = []

    df_sell = []
    print("START")
    try:
        for i in range(len(coin_buy)):
            df_buy = pyupbit.get_ohlcv(coin_buy[i])
            #print(df_buy)
            high_buy = df_buy['high']
            #print(high_buy)
            low_buy = df_buy['low']
            close_buy = df_buy['close']
            cci_buy = ta.CCI(high_buy, low_buy, close_buy, timeperiod=20)
            print(coin_buy[i], cci_buy[-1])
            cci_total_today_buy.append(int(cci_buy[-1]))
            cci_total_yesterday_buy.append(int(cci_buy[-2]))
            time.sleep(0.1)

            if cci_total_yesterday_buy[i] <= 50 < cci_total_today_buy[i]:
                print("매수시작")
                my_coin_buy = []
                coin_list = []
                for j in range(len(upbit.get_balances()[0])):
                    coin_list.append(upbit.get_balances()[0][j])
                    my_coin_buy.append("KRW-" + coin_list[j].get('currency'))
                if my_coin_buy != "KRW-BTC":
                    if my_coin_buy.count(coin_buy[i]) == 0:
                        upbit.buy_market_order(coin_buy[i], 5000)
    def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
        # resampled dataframe to establish if we are in an uptrend, downtrend or sideways trend
        dataframe = StrategyHelper.resample(dataframe, self.ticker_interval, self.resample_factor)

        ##################################################################################
        # required for entry and exit
        # CCI
        dataframe['cci'] = ta.CCI(dataframe, timeperiod=20)
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
        dataframe['adx'] = ta.ADX(dataframe)
        dataframe['mfi'] = ta.MFI(dataframe)
        dataframe['mfi_smooth'] = ta.EMA(dataframe, timeperiod=11, price='mfi')
        dataframe['cci_smooth'] = ta.EMA(dataframe, timeperiod=11, price='cci')
        dataframe['rsi_smooth'] = ta.EMA(dataframe, timeperiod=11, price='rsi')

        ##################################################################################
        # required for graphing
        bollinger = qtpylib.bollinger_bands(dataframe['close'], window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe['bb_middleband'] = bollinger['mid']

        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        ##################################################################################
        # required for entry
        bollinger = qtpylib.bollinger_bands(dataframe['close'], window=20, stds=1.6)
        dataframe['entry_bb_lowerband'] = bollinger['lower']
        dataframe['entry_bb_upperband'] = bollinger['upper']
        dataframe['entry_bb_middleband'] = bollinger['mid']

        dataframe['bpercent'] = (dataframe['close'] - dataframe['bb_lowerband']) / (
                dataframe['bb_upperband'] - dataframe['bb_lowerband']) * 100

        dataframe['bsharp'] = (dataframe['bb_upperband'] - dataframe['bb_lowerband']) / (
            dataframe['bb_middleband'])

        # these seem to be kind useful to measure when bands widen
        # but than they are directly based on the moving average
        dataframe['bsharp_slow'] = ta.SMA(dataframe, price='bsharp', timeperiod=11)
        dataframe['bsharp_medium'] = ta.SMA(dataframe, price='bsharp', timeperiod=8)
        dataframe['bsharp_fast'] = ta.SMA(dataframe, price='bsharp', timeperiod=5)

        ##################################################################################
        # rsi and mfi are slightly weighted
        dataframe['mfi_rsi_cci_smooth'] = (dataframe['rsi_smooth'] * 1.125 + dataframe['mfi_smooth'] * 1.125 +
                                           dataframe[
                                               'cci_smooth']) / 3

        dataframe['mfi_rsi_cci_smooth'] = ta.TEMA(dataframe, timeperiod=21, price='mfi_rsi_cci_smooth')

        # playgound
        dataframe['candle_size'] = (dataframe['close'] - dataframe['open']) * (
                dataframe['close'] - dataframe['open']) / 2

        # helps with pattern recognition
        dataframe['average'] = (dataframe['close'] + dataframe['open'] + dataframe['high'] + dataframe['low']) / 4
        dataframe['sma_slow'] = ta.SMA(dataframe, timeperiod=200, price='close')
        dataframe['sma_medium'] = ta.SMA(dataframe, timeperiod=100, price='close')
        dataframe['sma_fast'] = ta.SMA(dataframe, timeperiod=50, price='close')

        return dataframe
Beispiel #26
0
    def populate_indicators(dataframe: DataFrame) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame
        """
        dataframe['adx'] = ta.ADX(dataframe)
        dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
        dataframe['cci'] = ta.CCI(dataframe)
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']
        dataframe['mfi'] = ta.MFI(dataframe)
        dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)
        dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
        dataframe['plus_di'] = ta.PLUS_DI(dataframe)
        dataframe['roc'] = ta.ROC(dataframe)
        dataframe['rsi'] = ta.RSI(dataframe)
        # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        rsi = 0.1 * (dataframe['rsi'] - 50)
        dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
        # Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
        dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
        # Stoch
        stoch = ta.STOCH(dataframe)
        dataframe['slowd'] = stoch['slowd']
        dataframe['slowk'] = stoch['slowk']
        # Stoch fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']
        # Stoch RSI
        stoch_rsi = ta.STOCHRSI(dataframe)
        dataframe['fastd_rsi'] = stoch_rsi['fastd']
        dataframe['fastk_rsi'] = stoch_rsi['fastk']
        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']
        # EMA - Exponential Moving Average
        dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
        dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
        dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
        dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
        dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
        # SAR Parabolic
        dataframe['sar'] = ta.SAR(dataframe)
        # SMA - Simple Moving Average
        dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
        # Hilbert Transform Indicator - SineWave
        hilbert = ta.HT_SINE(dataframe)
        dataframe['htsine'] = hilbert['sine']
        dataframe['htleadsine'] = hilbert['leadsine']

        # Pattern Recognition - Bullish candlestick patterns
        # ------------------------------------
        """
        # Hammer: values [0, 100]
        dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
        # Inverted Hammer: values [0, 100]
        dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
        # Dragonfly Doji: values [0, 100]
        dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
        # Piercing Line: values [0, 100]
        dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
        # Morningstar: values [0, 100]
        dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
        # Three White Soldiers: values [0, 100]
        dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
        """

        # Pattern Recognition - Bearish candlestick patterns
        # ------------------------------------
        """
        # Hanging Man: values [0, 100]
        dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
        # Shooting Star: values [0, 100]
        dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
        # Gravestone Doji: values [0, 100]
        dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
        # Dark Cloud Cover: values [0, 100]
        dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
        # Evening Doji Star: values [0, 100]
        dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
        # Evening Star: values [0, 100]
        dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
        """

        # Pattern Recognition - Bullish/Bearish candlestick patterns
        # ------------------------------------
        """
        # Three Line Strike: values [0, -100, 100]
        dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
        # Spinning Top: values [0, -100, 100]
        dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
        # Engulfing: values [0, -100, 100]
        dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
        # Harami: values [0, -100, 100]
        dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
        # Three Outside Up/Down: values [0, -100, 100]
        dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
        # Three Inside Up/Down: values [0, -100, 100]
        dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
        """

        # Chart type
        # ------------------------------------
        # Heikinashi stategy
        heikinashi = qtpylib.heikinashi(dataframe)
        dataframe['ha_open'] = heikinashi['open']
        dataframe['ha_close'] = heikinashi['close']
        dataframe['ha_high'] = heikinashi['high']
        dataframe['ha_low'] = heikinashi['low']

        return dataframe
Beispiel #27
0
 def cal_cci(self, period=14):
     self.analysis_data['cci'] = ta.CCI(self.high,
                                        self.low,
                                        self.close,
                                        timeperiod=period)
Beispiel #28
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        """

        dataframe['ema20'] = ta.EMA(dataframe, timeperiod=20)
        dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
        dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)

        heikinashi = qtpylib.heikinashi(dataframe)
        dataframe['ha_open'] = heikinashi['open']
        dataframe['ha_close'] = heikinashi['close']

        dataframe['adx'] = ta.ADX(dataframe)
        dataframe['rsi'] = ta.RSI(dataframe)
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        bollinger = ta.BBANDS(dataframe,
                              timeperiod=20,
                              nbdevup=2.0,
                              nbdevdn=2.0)
        dataframe['bb_lowerband'] = bollinger['lowerband']
        dataframe['bb_middleband'] = bollinger['middleband']
        dataframe['bb_upperband'] = bollinger['upperband']

        # Stoch
        stoch = ta.STOCH(dataframe)
        dataframe['slowk'] = stoch['slowk']

        # Commodity Channel Index: values Oversold:<-100, Overbought:>100
        dataframe['cci'] = ta.CCI(dataframe)

        # Stoch
        stoch = ta.STOCHF(dataframe, 5)
        dataframe['fastd'] = stoch['fastd']
        dataframe['fastk'] = stoch['fastk']
        dataframe['fastk-previous'] = dataframe.fastk.shift(1)
        dataframe['fastd-previous'] = dataframe.fastd.shift(1)

        # Slow Stoch
        slowstoch = ta.STOCHF(dataframe, 50)
        dataframe['slowfastd'] = slowstoch['fastd']
        dataframe['slowfastk'] = slowstoch['fastk']
        dataframe['slowfastk-previous'] = dataframe.slowfastk.shift(1)
        dataframe['slowfastd-previous'] = dataframe.slowfastd.shift(1)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        rsi = 0.1 * (dataframe['rsi'] - 50)
        dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) -
                                   1) / (numpy.exp(2 * rsi) + 1)

        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']

        # SAR Parabol
        dataframe['sar'] = ta.SAR(dataframe)

        # Hammer: values [0, 100]
        dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)

        # SMA - Simple Moving Average
        dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)

        return dataframe
Beispiel #29
0
    def CCI(self):  #14
        cci = abstract.CCI(self.company_stock, timeperiod=14)

        self.company_stock['CCI'] = cci
Beispiel #30
0
 def __countCCI(self):
   self.cci = ta.CCI(self.stock.inputs)