def wclprice( client, symbol, timeframe="6m", opencol="open", highcol="high", lowcol="low", closecol="close", ): """This will return a dataframe of weighted close price for the given symbol across the given timeframe Args: client (pyEX.Client): Client symbol (string): Ticker timeframe (string): timeframe to use, for pyEX.chart highcol (string): column to use to calculate lowcol (string): column to use to calculate closecol (string): column to use to calculate Returns: DataFrame: result """ df = client.chartDF(symbol, timeframe) wcl = t.WCLPRICE(df[highcol].values, df[lowcol].values, df[closecol].values) return pd.DataFrame({ highcol: df[highcol].values, lowcol: df[lowcol].values, closecol: df[closecol].values, "wclprice": wcl, })
def getData(code,start,end): data = pandasData.DataReader(code,'yahoo',start,end) # print len(data) f_ema = ta.EMA(data['Close'].values, timeperiod=30).tolist() # print f_ema f_ma = ta.MA(data['Close'].values, timeperiod=30, matype=0).tolist() f_wma = ta.WMA(data['Close'].values, timeperiod=30).tolist() f_momentum = ta.MOM(data['Close'].values, timeperiod=10).tolist() f_roc = ta.ROC(data['Close'].values, timeperiod=10).tolist() # f_cycle = ta.HT_DCPERIOD(data['Close'].values).tolist() f_price = ta.WCLPRICE(data['High'].values, data['Low'].values, data['Close'].values).tolist() f_natr = ta.NATR(data['High'].values, data['Low'].values, data['Close'].values, timeperiod=14).tolist() f_stddev = ta.STDDEV(data['Close'].values, timeperiod=5, nbdev=1).tolist() X = pd.DataFrame( pd.np.array([f_ema, f_ma, f_wma, f_momentum, f_roc, f_price, f_natr, f_stddev]).T[32:] ,columns=['f_ema','f_ma','f_wma','f_momentum','f_roc','f_price','f_natr','f_stddev']) # print X['f_ema'].size # print X data = data['Close'].tolist() finaldata = [[] for i in range(2)] for i in range(0, len(data) - 1): temp = (data[i + 1] - data[i]) / data[i] finaldata[0].append(temp) if (temp > 0): finaldata[1].append(1) else: finaldata[1].append(0) # print len(data) data = data[31:len(data) - 1] # print data Y = pd.DataFrame(pd.np.array(finaldata).T, columns=['change', 'label']) X = X.join(Y) return X
def test_wc(self): """ Test weighted close. """ wc_qufilab = qufilab.wc(self.high, self.low, self.close) wc_talib = talib.WCLPRICE(self.high, self.low, self.close) np.testing.assert_allclose(wc_qufilab, wc_talib, rtol=self.tolerance)
def PriceLoc(close, high, low, period = [6, 11, 22, 43, 65, 130]): close = np.array(close) high = np.array(high) low = np.array(low) WCP = ta.WCLPRICE(high, low, close) sma_cl = [] for p in period: sma_cl.append(ta.SMA(close, timeperiod=p)) sma_wcl = [] for p in period: sma_wcl.append(ta.SMA(WCP, timeperiod=p)) period.reverse() period_r = np.array([period]) wsma_cl = np.sum(period_r.T * sma_cl, axis=0) / sum(period) wsma_wcl = np.sum(period_r.T * sma_wcl, axis=0) / sum(period) space = [] space.append((WCP - wsma_cl) / wsma_cl) space.append((WCP - wsma_wcl) / wsma_wcl) for i in range(len(sma_cl)): space.append((WCP - sma_cl[i]) / sma_cl[i]) for i in range(len(sma_wcl)): space.append((WCP - sma_wcl[i]) / sma_wcl[i]) return space
def compWCLPRICE(self): wcl = talib.WCLPRICE(self.high,self.low,self.close) self.removeNullID(wcl) self.rawFeatures['WCLPRICE'] = wcl FEATURE_SIZE_DICT['WCLPRICE'] = 1 return
def update(self, data, N): self.clear() self.series.attachAxis(self.chart.ax) self.series.attachAxis(self.chart.ay) price_weighted = talib.WCLPRICE(data[2], data[3], data[4]) for i, val in enumerate(price_weighted[-N:]): self.series.append(i + 0.5, val)
def WCLPRICE(high, low, close): ''' Weighted Close Price 加权收盘价 分组: Price Transform 价格指标 简介: real = WCLPRICE(high, low, close) ''' return talib.WCLPRICE(high, low, close)
def getPriceTransforms(df): high = df['High'] low = df['Low'] close = df['Close'] open = df['Open'] volume = df['Volume'] df['AVGPRICE'] = ta.AVGPRICE(open, high, low, close) df['MEDPRICE'] = ta.MEDPRICE(high, low) df['TYPPRICE'] = ta.TYPPRICE(high, low, close) df['WCLPRICE'] = ta.WCLPRICE(high, low, close)
def add_technical_indicators(dataframe): # Overlap Studies Functions dataframe["SMA"] = talib.SMA(dataframe["Close"]) dataframe["BBANDS_up"], dataframe["BBANDS_md"], dataframe[ "BBANDS_dw"] = talib.BBANDS(dataframe["Close"], timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) dataframe["EMA"] = talib.EMA(dataframe["Close"], timeperiod=30) dataframe["HT_TRENDLINE"] = talib.HT_TRENDLINE(dataframe["Close"]) dataframe["WMA"] = talib.WMA(dataframe["Close"], timeperiod=30) # Momentum Indicator Functions dataframe["ADX"] = talib.ADX(dataframe["High"], dataframe["Low"], dataframe["Close"], timeperiod=14) dataframe["MACD"], _, _ = talib.MACD(dataframe["Close"], fastperiod=12, slowperiod=26, signalperiod=9) dataframe["MOM"] = talib.MOM(dataframe["Close"], timeperiod=5) dataframe["RSI"] = talib.RSI(dataframe["Close"], timeperiod=14) # Volume Indicator Functions # dataframe["OBV"] = talib.OBV(dataframe["Close"], dataframe["Volume"]) # Volatility Indicator Functions dataframe["ATR"] = talib.ATR(dataframe["High"], dataframe["Low"], dataframe["Close"], timeperiod=14) dataframe["TRANGE"] = talib.TRANGE(dataframe["High"], dataframe["Low"], dataframe["Close"]) # Price Transform Functions dataframe["AVGPRICE"] = talib.AVGPRICE(dataframe["Open"], dataframe["High"], dataframe["Low"], dataframe["Close"]) dataframe["MEDPRICE"] = talib.MEDPRICE(dataframe["High"], dataframe["Low"]) dataframe["WCLPRICE"] = talib.WCLPRICE(dataframe["High"], dataframe["Low"], dataframe["Close"]) # Statistic Functions dataframe["LINEARREG_SLOPE"] = talib.LINEARREG_SLOPE(dataframe["Close"], timeperiod=14) dataframe["STDDEV"] = talib.STDDEV(dataframe["Close"], timeperiod=5, nbdev=1) dataframe = dataframe.dropna() return dataframe
def get_price_studies(open, low, high, close, df): # https://mrjbq7.github.io/ta-lib/func_groups/price_transform.html df["AVGPRICE"] = talib.AVGPRICE(open, high, low, close) df["MEDPRICE"] = talib.MEDPRICE(high, low) df["TYPPRICE"] = talib.TYPPRICE(high, low, close) df["WCLPRICE"] = talib.WCLPRICE(high, low, close) df["ATR-5"] = talib.ATR(high, low, close, timeperiod=5) df["ATR-10"] = talib.ATR(high, low, close, timeperiod=10) df["ATR-20"] = talib.ATR(high, low, close, timeperiod=20) df["ATR-50"] = talib.ATR(high, low, close, timeperiod=50) df["ATR-200"] = talib.ATR(high, low, close, timeperiod=200)
def main(): # read csv file and transform it to datafeed (df): df = pd.read_csv(current_dir+"/"+base_dir+"/"+in_dir+"/"+in_dir+'_'+stock_symbol+'.csv') # set numpy datafeed from df: df_numpy = { 'Date': np.array(df['date']), 'Open': np.array(df['open'], dtype='float'), 'High': np.array(df['high'], dtype='float'), 'Low': np.array(df['low'], dtype='float'), 'Close': np.array(df['close'], dtype='float'), 'Volume': np.array(df['volume'], dtype='float') } date = df_numpy['Date'] openp = df_numpy['Open'] high = df_numpy['High'] low = df_numpy['Low'] close = df_numpy['Close'] volume = df_numpy['Volume'] ######################################### ##### Price Transform Functions ##### ######################################### #AVGPRICE - Average Price avgprice = ta.AVGPRICE(openp, high, low, close) #MEDPRICE - Median Price medprice = ta.MEDPRICE(high, low) #TYPPRICE - Typical Price typprice = ta.TYPPRICE(high, low, close) #WCLPRICE - Weighted Close Price wclprice = ta.WCLPRICE(high, low, close) df_save = pd.DataFrame(data ={ 'date': np.array(df['date']), 'avgprice':avgprice, 'medprice':medprice, 'typprice':typprice, 'wclprice':wclprice }) df_save.to_csv(current_dir+"/"+base_dir+"/"+out_dir+'/'+stock_symbol+"/"+out_dir+'_ta_price_transform_'+stock_symbol+'.csv',index=False)
def test_wcp(self): result = pandas_ta.wcp(self.high, self.low, self.close) self.assertIsInstance(result, Series) self.assertEqual(result.name, "WCP") try: expected = tal.WCLPRICE(self.high, self.low, self.close) pdt.assert_series_equal(result, expected, check_names=False) except AssertionError as ae: try: corr = pandas_ta.utils.df_error_analysis(result, expected, col=CORRELATION) self.assertGreater(corr, CORRELATION_THRESHOLD) except Exception as ex: error_analysis(result, CORRELATION, ex)
def wclprice(candles: np.ndarray, sequential: bool = False) -> Union[float, np.ndarray]: """ WCLPRICE - Weighted Close Price :param candles: np.ndarray :param sequential: bool - default: False :return: float | np.ndarray """ candles = slice_candles(candles, sequential) res = talib.WCLPRICE(candles[:, 3], candles[:, 4], candles[:, 2]) return res if sequential else res[-1]
def get_additional_factors(open, high, low, close, volume): # Overlap Studies Functions mat = get_all_factors(open, high, low, close, volume) mat = np.column_stack((mat, talib.HT_TRENDLINE(close))) ## close mat = np.column_stack((mat, talib.KAMA(close, timeperiod=30))) ##close #Momentum Indicator Functions mat = np.column_stack((mat, talib.ADX(high, low, close, timeperiod=14))) mat = np.column_stack((mat, talib.ADXR(high, low, close, timeperiod=14))) mat = np.column_stack( (mat, talib.APO(close, fastperiod=12, slowperiod=26, matype=0))) mat = np.column_stack((mat, talib.AROONOSC(high, low, timeperiod=14))) mat = np.column_stack((mat, talib.BOP(open, high, low, close))) mat = np.column_stack((mat, talib.MOM(close, timeperiod=10))) #Volume Indicator Functions mat = np.column_stack((mat, talib.AD(high, low, close, volume))) mat = np.column_stack( (mat, talib.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10))) mat = np.column_stack((mat, talib.OBV(close, volume))) #Volatility Indicator Functions mat = np.column_stack((mat, talib.NATR(high, low, close, timeperiod=14))) mat = np.column_stack((mat, talib.TRANGE(high, low, close))) #Price Transform Functions mat = np.column_stack((mat, talib.AVGPRICE(open, high, low, close))) mat = np.column_stack((mat, talib.MEDPRICE(high, low))) mat = np.column_stack((mat, talib.TYPPRICE(high, low, close))) mat = np.column_stack((mat, talib.WCLPRICE(high, low, close))) #Cycle Indicator Functions mat = np.column_stack((mat, talib.HT_DCPERIOD(close))) mat = np.column_stack((mat, talib.HT_DCPHASE(close))) mat = np.column_stack((mat, talib.HT_TRENDMODE(close))) # 20 return mat
def init_state(indata, test=False): openn = indata['open'].values close = indata['close'].values high = indata['high'].values low = indata['low'].values volume = indata['volume'].values diff = np.diff(close) diff = np.insert(diff, 0, 0) sma30 = talib.SMA(close, 30) sma60 = talib.SMA(close, timeperiod=60) rsi = talib.RSI(close, timeperiod=14) atr = talib.ATR(high, low, close, timeperiod=14) trange = talib.TRANGE(high, low, close) macd, macdsignal, macdhist = talib.MACD(close, 12, 26, 9) upper, middle, lower = talib.BBANDS(close, 20, 2, 2) ema = talib.EMA(close, 30) ma = talib.MA(close, 30) wma = talib.WMA(close, timeperiod=30) tema = talib.TEMA(close, 30) obv = talib.OBV(close, np.asarray(volume, dtype='float')) adx = talib.ADX(high, low, close, 14) apo = talib.APO(close, 12, 2, 0) bop = talib.BOP(openn, high, low, close) mom = talib.MOM(close,10) ppo = talib.PPO(close, 12, 26, 0) slowk, slowd = talib.STOCH(high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) ad = talib.AD(high, low, close, np.asarray(volume, dtype='float')) wcl = talib.WCLPRICE(high, low, close) #--- Preprocess data xdata = np.column_stack((close, diff, sma30, sma60, rsi, atr, macd, macdsignal, macdhist, lower, middle, upper, ema, ma, wma, adx, apo, bop, mom, ppo, slowk, slowd, trange, wcl)) xdata = np.nan_to_num(xdata) if test == False: scaler = preprocessing.StandardScaler() xdata = np.expand_dims(scaler.fit_transform(xdata), axis=1) joblib.dump(scaler, 'data/scaler.pkl') elif test == True: scaler = joblib.load('data/scaler.pkl') xdata = np.expand_dims(scaler.fit_transform(xdata), axis=1) state = xdata[0:1, 0:1, :] return state, xdata, close
def wclprice(candles: np.ndarray, sequential: bool = False) -> Union[float, np.ndarray]: """ WCLPRICE - Weighted Close Price :param candles: np.ndarray :param sequential: bool - default=False :return: float | np.ndarray """ if not sequential and len(candles) > 240: candles = candles[-240:] res = talib.WCLPRICE(candles[:, 3], candles[:, 4], candles[:, 2]) if sequential: return res else: return None if np.isnan(res[-1]) else res[-1]
def add_price_transform_indicators(data_list): for data in data_list: # 1) AVGPRICE - Average Price real = talib.AVGPRICE(data.Open, data.High, data.Low, data.Close) data['AVERAGE'] = real # 2) MEDPRICE - Median Price real = talib.MEDPRICE(data.High, data.Low) data['MEDPRICE'] = real # 3) TYPPRICE - Typical Price real = talib.TYPPRICE(data.High, data.Low, data.Close) data['TYPPRICE'] = real # 4) WCLPRICE - Weighted Close Price real = talib.WCLPRICE(data.High, data.Low, data.Close) data['WCLPRICE'] = real return data_list
def Price_Transform(dataframe): """ Price Transform AVGPRICE Average Price MEDPRICE Median Price TYPPRICE Typical Price WCLPRICE Weighted Close Price """ #Price Transform Functions #AVGPRICE - Average Price df[f'{ratio}_AVGPRICE'] = talib.AVGPRICE(Open, High, Low, Close) #MEDPRICE - Median Price df[f'{ratio}_MEDPRICE'] = talib.MEDPRICE(High, Low) #TYPPRICE - Typical Price df[f'{ratio}_TYPPRICE'] = talib.TYPPRICE(High, Low, Close) #WCLPRICE - Weighted Close Price df[f'{ratio}_WCLPRICE'] = talib.WCLPRICE(High, Low, Close) return
def wclprice(candles: np.ndarray, sequential: bool = False) -> Union[float, np.ndarray]: """ WCLPRICE - Weighted Close Price :param candles: np.ndarray :param sequential: bool - default=False :return: float | np.ndarray """ warmup_candles_num = get_config('env.data.warmup_candles_num', 240) if not sequential and len(candles) > warmup_candles_num: candles = candles[-warmup_candles_num:] res = talib.WCLPRICE(candles[:, 3], candles[:, 4], candles[:, 2]) if sequential: return res else: return None if np.isnan(res[-1]) else res[-1]
def handle_price_transform(args, kax, klines_df, close_times, display_count): os_key = 'AVGPRICE' if args.AVGPRICE: real = talib.AVGPRICE(klines_df["open"], klines_df["high"], klines_df["low"], klines_df["close"]) kax.plot(close_times, real[-display_count:], "y", label=os_key) os_key = 'MEDPRICE' if args.MEDPRICE: real = talib.MEDPRICE(klines_df["high"], klines_df["low"]) kax.plot(close_times, real[-display_count:], "y", label=os_key) os_key = 'TYPPRICE' if args.TYPPRICE: real = talib.TYPPRICE(klines_df["high"], klines_df["low"], klines_df["close"]) kax.plot(close_times, real[-display_count:], "y", label=os_key) os_key = 'WCLPRICE' if args.WCLPRICE: real = talib.WCLPRICE(klines_df["high"], klines_df["low"], klines_df["close"]) kax.plot(close_times, real[-display_count:], "y", label=os_key)
def WCLPRICE(data, **kwargs): _check_talib_presence() popen, phigh, plow, pclose, pvolume = _extract_ohlc(data) return talib.WCLPRICE(phigh, plow, pclose, **kwargs)
def calculate(self, para): self.t = self.inputdata[:, 0] self.op = self.inputdata[:, 1] self.high = self.inputdata[:, 2] self.low = self.inputdata[:, 3] self.close = self.inputdata[:, 4] #adjusted close self.close1 = self.inputdata[:, 5] self.volume = self.inputdata[:, 6] #Overlap study #Overlap Studies #Overlap Studies if para is 'BBANDS': #Bollinger Bands upperband, middleband, lowerband = ta.BBANDS(self.close, timeperiod=self.tp, nbdevup=2, nbdevdn=2, matype=0) self.output = [upperband, middleband, lowerband] elif para is 'DEMA': #Double Exponential Moving Average self.output = ta.DEMA(self.close, timeperiod=self.tp) elif para is 'EMA': #Exponential Moving Average self.output = ta.EMA(self.close, timeperiod=self.tp) elif para is 'HT_TRENDLINE': #Hilbert Transform - Instantaneous Trendline self.output = ta.HT_TRENDLINE(self.close) elif para is 'KAMA': #Kaufman Adaptive Moving Average self.output = ta.KAMA(self.close, timeperiod=self.tp) elif para is 'MA': #Moving average self.output = ta.MA(self.close, timeperiod=self.tp, matype=0) elif para is 'MAMA': #MESA Adaptive Moving Average mama, fama = ta.MAMA(self.close, fastlimit=0, slowlimit=0) elif para is 'MAVP': #Moving average with variable period self.output = ta.MAVP(self.close, periods=10, minperiod=self.tp, maxperiod=self.tp1, matype=0) elif para is 'MIDPOINT': #MidPoint over period self.output = ta.MIDPOINT(self.close, timeperiod=self.tp) elif para is 'MIDPRICE': #Midpoint Price over period self.output = ta.MIDPRICE(self.high, self.low, timeperiod=self.tp) elif para is 'SAR': #Parabolic SAR self.output = ta.SAR(self.high, self.low, acceleration=0, maximum=0) elif para is 'SAREXT': #Parabolic SAR - Extended self.output = ta.SAREXT(self.high, self.low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) elif para is 'SMA': #Simple Moving Average self.output = ta.SMA(self.close, timeperiod=self.tp) elif para is 'T3': #Triple Exponential Moving Average (T3) self.output = ta.T3(self.close, timeperiod=self.tp, vfactor=0) elif para is 'TEMA': #Triple Exponential Moving Average self.output = ta.TEMA(self.close, timeperiod=self.tp) elif para is 'TRIMA': #Triangular Moving Average self.output = ta.TRIMA(self.close, timeperiod=self.tp) elif para is 'WMA': #Weighted Moving Average self.output = ta.WMA(self.close, timeperiod=self.tp) #Momentum Indicators elif para is 'ADX': #Average Directional Movement Index self.output = ta.ADX(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'ADXR': #Average Directional Movement Index Rating self.output = ta.ADXR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'APO': #Absolute Price Oscillator self.output = ta.APO(self.close, fastperiod=12, slowperiod=26, matype=0) elif para is 'AROON': #Aroon aroondown, aroonup = ta.AROON(self.high, self.low, timeperiod=self.tp) self.output = [aroondown, aroonup] elif para is 'AROONOSC': #Aroon Oscillator self.output = ta.AROONOSC(self.high, self.low, timeperiod=self.tp) elif para is 'BOP': #Balance Of Power self.output = ta.BOP(self.op, self.high, self.low, self.close) elif para is 'CCI': #Commodity Channel Index self.output = ta.CCI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'CMO': #Chande Momentum Oscillator self.output = ta.CMO(self.close, timeperiod=self.tp) elif para is 'DX': #Directional Movement Index self.output = ta.DX(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'MACD': #Moving Average Convergence/Divergence macd, macdsignal, macdhist = ta.MACD(self.close, fastperiod=12, slowperiod=26, signalperiod=9) self.output = [macd, macdsignal, macdhist] elif para is 'MACDEXT': #MACD with controllable MA type macd, macdsignal, macdhist = ta.MACDEXT(self.close, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0) self.output = [macd, macdsignal, macdhist] elif para is 'MACDFIX': #Moving Average Convergence/Divergence Fix 12/26 macd, macdsignal, macdhist = ta.MACDFIX(self.close, signalperiod=9) self.output = [macd, macdsignal, macdhist] elif para is 'MFI': #Money Flow Index self.output = ta.MFI(self.high, self.low, self.close, self.volume, timeperiod=self.tp) elif para is 'MINUS_DI': #Minus Directional Indicator self.output = ta.MINUS_DI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'MINUS_DM': #Minus Directional Movement self.output = ta.MINUS_DM(self.high, self.low, timeperiod=self.tp) elif para is 'MOM': #Momentum self.output = ta.MOM(self.close, timeperiod=10) elif para is 'PLUS_DI': #Plus Directional Indicator self.output = ta.PLUS_DI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'PLUS_DM': #Plus Directional Movement self.output = ta.PLUS_DM(self.high, self.low, timeperiod=self.tp) elif para is 'PPO': #Percentage Price Oscillator self.output = ta.PPO(self.close, fastperiod=12, slowperiod=26, matype=0) elif para is 'ROC': #Rate of change : ((price/prevPrice)-1)*100 self.output = ta.ROC(self.close, timeperiod=10) elif para is 'ROCP': #Rate of change Percentage: (price-prevPrice)/prevPrice self.output = ta.ROCP(self.close, timeperiod=10) elif para is 'ROCR': #Rate of change ratio: (price/prevPrice) self.output = ta.ROCR(self.close, timeperiod=10) elif para is 'ROCR100': #Rate of change ratio 100 scale: (price/prevPrice)*100 self.output = ta.ROCR100(self.close, timeperiod=10) elif para is 'RSI': #Relative Strength Index self.output = ta.RSI(self.close, timeperiod=self.tp) elif para is 'STOCH': #Stochastic slowk, slowd = ta.STOCH(self.high, self.low, self.close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) self.output = [slowk, slowd] elif para is 'STOCHF': #Stochastic Fast fastk, fastd = ta.STOCHF(self.high, self.low, self.close, fastk_period=5, fastd_period=3, fastd_matype=0) self.output = [fastk, fastd] elif para is 'STOCHRSI': #Stochastic Relative Strength Index fastk, fastd = ta.STOCHRSI(self.close, timeperiod=self.tp, fastk_period=5, fastd_period=3, fastd_matype=0) self.output = [fastk, fastd] elif para is 'TRIX': #1-day Rate-Of-Change (ROC) of a Triple Smooth EMA self.output = ta.TRIX(self.close, timeperiod=self.tp) elif para is 'ULTOSC': #Ultimate Oscillator self.output = ta.ULTOSC(self.high, self.low, self.close, timeperiod1=self.tp, timeperiod2=self.tp1, timeperiod3=self.tp2) elif para is 'WILLR': #Williams' %R self.output = ta.WILLR(self.high, self.low, self.close, timeperiod=self.tp) # Volume Indicators : # elif para is 'AD': #Chaikin A/D Line self.output = ta.AD(self.high, self.low, self.close, self.volume) elif para is 'ADOSC': #Chaikin A/D Oscillator self.output = ta.ADOSC(self.high, self.low, self.close, self.volume, fastperiod=3, slowperiod=10) elif para is 'OBV': #On Balance Volume self.output = ta.OBV(self.close, self.volume) # Volatility Indicators: # elif para is 'ATR': #Average True Range self.output = ta.ATR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'NATR': #Normalized Average True Range self.output = ta.NATR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'TRANGE': #True Range self.output = ta.TRANGE(self.high, self.low, self.close) #Price Transform : # elif para is 'AVGPRICE': #Average Price self.output = ta.AVGPRICE(self.op, self.high, self.low, self.close) elif para is 'MEDPRICE': #Median Price self.output = ta.MEDPRICE(self.high, self.low) elif para is 'TYPPRICE': #Typical Price self.output = ta.TYPPRICE(self.high, self.low, self.close) elif para is 'WCLPRICE': #Weighted Close Price self.output = ta.WCLPRICE(self.high, self.low, self.close) #Cycle Indicators : # elif para is 'HT_DCPERIOD': #Hilbert Transform - Dominant Cycle Period self.output = ta.HT_DCPERIOD(self.close) elif para is 'HT_DCPHASE': #Hilbert Transform - Dominant Cycle Phase self.output = ta.HT_DCPHASE(self.close) elif para is 'HT_PHASOR': #Hilbert Transform - Phasor Components inphase, quadrature = ta.HT_PHASOR(self.close) self.output = [inphase, quadrature] elif para is 'HT_SINE': #Hilbert Transform - SineWave #2 sine, leadsine = ta.HT_SINE(self.close) self.output = [sine, leadsine] elif para is 'HT_TRENDMODE': #Hilbert Transform - Trend vs Cycle Mode self.integer = ta.HT_TRENDMODE(self.close) #Pattern Recognition : # elif para is 'CDL2CROWS': #Two Crows self.integer = ta.CDL2CROWS(self.op, self.high, self.low, self.close) elif para is 'CDL3BLACKCROWS': #Three Black Crows self.integer = ta.CDL3BLACKCROWS(self.op, self.high, self.low, self.close) elif para is 'CDL3INSIDE': #Three Inside Up/Down self.integer = ta.CDL3INSIDE(self.op, self.high, self.low, self.close) elif para is 'CDL3LINESTRIKE': #Three-Line Strike self.integer = ta.CDL3LINESTRIKE(self.op, self.high, self.low, self.close) elif para is 'CDL3OUTSIDE': #Three Outside Up/Down self.integer = ta.CDL3OUTSIDE(self.op, self.high, self.low, self.close) elif para is 'CDL3STARSINSOUTH': #Three Stars In The South self.integer = ta.CDL3STARSINSOUTH(self.op, self.high, self.low, self.close) elif para is 'CDL3WHITESOLDIERS': #Three Advancing White Soldiers self.integer = ta.CDL3WHITESOLDIERS(self.op, self.high, self.low, self.close) elif para is 'CDLABANDONEDBABY': #Abandoned Baby self.integer = ta.CDLABANDONEDBABY(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLBELTHOLD': #Belt-hold self.integer = ta.CDLBELTHOLD(self.op, self.high, self.low, self.close) elif para is 'CDLBREAKAWAY': #Breakaway self.integer = ta.CDLBREAKAWAY(self.op, self.high, self.low, self.close) elif para is 'CDLCLOSINGMARUBOZU': #Closing Marubozu self.integer = ta.CDLCLOSINGMARUBOZU(self.op, self.high, self.low, self.close) elif para is 'CDLCONCEALBABYSWALL': #Concealing Baby Swallow self.integer = ta.CDLCONCEALBABYSWALL(self.op, self.high, self.low, self.close) elif para is 'CDLCOUNTERATTACK': #Counterattack self.integer = ta.CDLCOUNTERATTACK(self.op, self.high, self.low, self.close) elif para is 'CDLDARKCLOUDCOVER': #Dark Cloud Cover self.integer = ta.CDLDARKCLOUDCOVER(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLDOJI': #Doji self.integer = ta.CDLDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLDOJISTAR': #Doji Star self.integer = ta.CDLDOJISTAR(self.op, self.high, self.low, self.close) elif para is 'CDLDRAGONFLYDOJI': #Dragonfly Doji self.integer = ta.CDLDRAGONFLYDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLENGULFING': #Engulfing Pattern self.integer = ta.CDLENGULFING(self.op, self.high, self.low, self.close) elif para is 'CDLEVENINGDOJISTAR': #Evening Doji Star self.integer = ta.CDLEVENINGDOJISTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLEVENINGSTAR': #Evening Star self.integer = ta.CDLEVENINGSTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLGAPSIDESIDEWHITE': #Up/Down-gap side-by-side white lines self.integer = ta.CDLGAPSIDESIDEWHITE(self.op, self.high, self.low, self.close) elif para is 'CDLGRAVESTONEDOJI': #Gravestone Doji self.integer = ta.CDLGRAVESTONEDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLHAMMER': #Hammer self.integer = ta.CDLHAMMER(self.op, self.high, self.low, self.close) elif para is 'CDLHANGINGMAN': #Hanging Man self.integer = ta.CDLHANGINGMAN(self.op, self.high, self.low, self.close) elif para is 'CDLHARAMI': #Harami Pattern self.integer = ta.CDLHARAMI(self.op, self.high, self.low, self.close) elif para is 'CDLHARAMICROSS': #Harami Cross Pattern self.integer = ta.CDLHARAMICROSS(self.op, self.high, self.low, self.close) elif para is 'CDLHIGHWAVE': #High-Wave Candle self.integer = ta.CDLHIGHWAVE(self.op, self.high, self.low, self.close) elif para is 'CDLHIKKAKE': #Hikkake Pattern self.integer = ta.CDLHIKKAKE(self.op, self.high, self.low, self.close) elif para is 'CDLHIKKAKEMOD': #Modified Hikkake Pattern self.integer = ta.CDLHIKKAKEMOD(self.op, self.high, self.low, self.close) elif para is 'CDLHOMINGPIGEON': #Homing Pigeon self.integer = ta.CDLHOMINGPIGEON(self.op, self.high, self.low, self.close) elif para is 'CDLIDENTICAL3CROWS': #Identical Three Crows self.integer = ta.CDLIDENTICAL3CROWS(self.op, self.high, self.low, self.close) elif para is 'CDLINNECK': #In-Neck Pattern self.integer = ta.CDLINNECK(self.op, self.high, self.low, self.close) elif para is 'CDLINVERTEDHAMMER': #Inverted Hammer self.integer = ta.CDLINVERTEDHAMMER(self.op, self.high, self.low, self.close) elif para is 'CDLKICKING': #Kicking self.integer = ta.CDLKICKING(self.op, self.high, self.low, self.close) elif para is 'CDLKICKINGBYLENGTH': #Kicking - bull/bear determined by the longer marubozu self.integer = ta.CDLKICKINGBYLENGTH(self.op, self.high, self.low, self.close) elif para is 'CDLLADDERBOTTOM': #Ladder Bottom self.integer = ta.CDLLADDERBOTTOM(self.op, self.high, self.low, self.close) elif para is 'CDLLONGLEGGEDDOJI': #Long Legged Doji self.integer = ta.CDLLONGLEGGEDDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLLONGLINE': #Long Line Candle self.integer = ta.CDLLONGLINE(self.op, self.high, self.low, self.close) elif para is 'CDLMARUBOZU': #Marubozu self.integer = ta.CDLMARUBOZU(self.op, self.high, self.low, self.close) elif para is 'CDLMATCHINGLOW': #Matching Low self.integer = ta.CDLMATCHINGLOW(self.op, self.high, self.low, self.close) elif para is 'CDLMATHOLD': #Mat Hold self.integer = ta.CDLMATHOLD(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLMORNINGDOJISTAR': #Morning Doji Star self.integer = ta.CDLMORNINGDOJISTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLMORNINGSTAR': #Morning Star self.integer = ta.CDLMORNINGSTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLONNECK': #On-Neck Pattern self.integer = ta.CDLONNECK(self.op, self.high, self.low, self.close) elif para is 'CDLPIERCING': #Piercing Pattern self.integer = ta.CDLPIERCING(self.op, self.high, self.low, self.close) elif para is 'CDLRICKSHAWMAN': #Rickshaw Man self.integer = ta.CDLRICKSHAWMAN(self.op, self.high, self.low, self.close) elif para is 'CDLRISEFALL3METHODS': #Rising/Falling Three Methods self.integer = ta.CDLRISEFALL3METHODS(self.op, self.high, self.low, self.close) elif para is 'CDLSEPARATINGLINES': #Separating Lines self.integer = ta.CDLSEPARATINGLINES(self.op, self.high, self.low, self.close) elif para is 'CDLSHOOTINGSTAR': #Shooting Star self.integer = ta.CDLSHOOTINGSTAR(self.op, self.high, self.low, self.close) elif para is 'CDLSHORTLINE': #Short Line Candle self.integer = ta.CDLSHORTLINE(self.op, self.high, self.low, self.close) elif para is 'CDLSPINNINGTOP': #Spinning Top self.integer = ta.CDLSPINNINGTOP(self.op, self.high, self.low, self.close) elif para is 'CDLSTALLEDPATTERN': #Stalled Pattern self.integer = ta.CDLSTALLEDPATTERN(self.op, self.high, self.low, self.close) elif para is 'CDLSTICKSANDWICH': #Stick Sandwich self.integer = ta.CDLSTICKSANDWICH(self.op, self.high, self.low, self.close) elif para is 'CDLTAKURI': #Takuri (Dragonfly Doji with very long lower shadow) self.integer = ta.CDLTAKURI(self.op, self.high, self.low, self.close) elif para is 'CDLTASUKIGAP': #Tasuki Gap self.integer = ta.CDLTASUKIGAP(self.op, self.high, self.low, self.close) elif para is 'CDLTHRUSTING': #Thrusting Pattern self.integer = ta.CDLTHRUSTING(self.op, self.high, self.low, self.close) elif para is 'CDLTRISTAR': #Tristar Pattern self.integer = ta.CDLTRISTAR(self.op, self.high, self.low, self.close) elif para is 'CDLUNIQUE3RIVER': #Unique 3 River self.integer = ta.CDLUNIQUE3RIVER(self.op, self.high, self.low, self.close) elif para is 'CDLUPSIDEGAP2CROWS': #Upside Gap Two Crows self.integer = ta.CDLUPSIDEGAP2CROWS(self.op, self.high, self.low, self.close) elif para is 'CDLXSIDEGAP3METHODS': #Upside/Downside Gap Three Methods self.integer = ta.CDLXSIDEGAP3METHODS(self.op, self.high, self.low, self.close) #Statistic Functions : # elif para is 'BETA': #Beta self.output = ta.BETA(self.high, self.low, timeperiod=5) elif para is 'CORREL': #Pearson's Correlation Coefficient (r) self.output = ta.CORREL(self.high, self.low, timeperiod=self.tp) elif para is 'LINEARREG': #Linear Regression self.output = ta.LINEARREG(self.close, timeperiod=self.tp) elif para is 'LINEARREG_ANGLE': #Linear Regression Angle self.output = ta.LINEARREG_ANGLE(self.close, timeperiod=self.tp) elif para is 'LINEARREG_INTERCEPT': #Linear Regression Intercept self.output = ta.LINEARREG_INTERCEPT(self.close, timeperiod=self.tp) elif para is 'LINEARREG_SLOPE': #Linear Regression Slope self.output = ta.LINEARREG_SLOPE(self.close, timeperiod=self.tp) elif para is 'STDDEV': #Standard Deviation self.output = ta.STDDEV(self.close, timeperiod=5, nbdev=1) elif para is 'TSF': #Time Series Forecast self.output = ta.TSF(self.close, timeperiod=self.tp) elif para is 'VAR': #Variance self.output = ta.VAR(self.close, timeperiod=5, nbdev=1) else: print('You issued command:' + para)
def main(): ohlcv = api_ohlcv('20191017') open, high, low, close, volume, timestamp = [], [], [], [], [], [] for i in ohlcv: open.append(int(i[0])) high.append(int(i[1])) low.append(int(i[2])) close.append(int(i[3])) volume.append(float(i[4])) time_str = str(i[5]) timestamp.append( datetime.fromtimestamp(int( time_str[:10])).strftime('%Y/%m/%d %H:%M:%M')) date_time_index = pd.to_datetime( timestamp) # convert to DateTimeIndex type df = pd.DataFrame( { 'open': open, 'high': high, 'low': low, 'close': close, 'volume': volume }, index=date_time_index) # df.index += pd.offsets.Hour(9) # adjustment for JST if required print(df.shape) print(df.columns) # pct_change f = lambda x: 1 if x > 0.0001 else -1 if x < -0.0001 else 0 if -0.0001 <= x <= 0.0001 else np.nan y = df.rename(columns={ 'close': 'y' }).loc[:, 'y'].pct_change(1).shift(-1).fillna(0) X = df.copy() y_ = pd.DataFrame(y.map(f), columns=['y']) y = df.rename(columns={'close': 'y'}).loc[:, 'y'].pct_change(1).fillna(0) df_ = pd.concat([X, y_], axis=1) # check the shape print( '----------------------------------------------------------------------------------------' ) print('X shape: (%i,%i)' % X.shape) print('y shape: (%i,%i)' % y_.shape) print( '----------------------------------------------------------------------------------------' ) print(y_.groupby('y').size()) print('y=1 up, y=0 stay, y=-1 down') print( '----------------------------------------------------------------------------------------' ) # feature calculation open = pd.Series(df['open']) high = pd.Series(df['high']) low = pd.Series(df['low']) close = pd.Series(df['close']) volume = pd.Series(df['volume']) # pct_change for new column X['diff'] = y # Exponential Moving Average ema = talib.EMA(close, timeperiod=3) ema = ema.fillna(ema.mean()) # Momentum momentum = talib.MOM(close, timeperiod=5) momentum = momentum.fillna(momentum.mean()) # RSI rsi = talib.RSI(close, timeperiod=14) rsi = rsi.fillna(rsi.mean()) # ADX adx = talib.ADX(high, low, close, timeperiod=14) adx = adx.fillna(adx.mean()) # ADX change adx_change = adx.pct_change(1).shift(-1) adx_change = adx_change.fillna(adx_change.mean()) # AD ad = talib.AD(high, low, close, volume) ad = ad.fillna(ad.mean()) X_ = pd.concat([X, ema, momentum, rsi, adx_change, ad], axis=1).drop(['open', 'high', 'low', 'close'], axis=1) X_.columns = ['volume', 'diff', 'ema', 'momentum', 'rsi', 'adx', 'ad'] X_.join(y_).head(10) # default parameter models X_train, X_test, y_train, y_test = train_test_split(X_, y_, test_size=0.33, random_state=42) print('X_train shape: {}'.format(X_train.shape)) print('X_test shape: {}'.format(X_test.shape)) print('y_train shape: {}'.format(y_train.shape)) print('y_test shape: {}'.format(y_test.shape)) pipe_knn = Pipeline([('scl', StandardScaler()), ('est', KNeighborsClassifier(n_neighbors=3))]) pipe_logistic = Pipeline([('scl', StandardScaler()), ('est', LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=39))]) pipe_rf = Pipeline([('scl', StandardScaler()), ('est', RandomForestClassifier(random_state=39))]) pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_names = ['KNN', 'Logistic', 'RandomForest', 'GradientBoosting'] pipe_lines = [pipe_knn, pipe_logistic, pipe_rf, pipe_gb] for (i, pipe) in enumerate(pipe_lines): pipe.fit(X_train, y_train.values.ravel()) print(pipe) print('%s: %.3f' % (pipe_names[i] + ' Train Accuracy', accuracy_score(y_train.values.ravel(), pipe.predict(X_train)))) print('%s: %.3f' % (pipe_names[i] + ' Test Accuracy', accuracy_score(y_test.values.ravel(), pipe.predict(X_test)))) print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score', f1_score(y_train.values.ravel(), pipe.predict(X_train), average='micro'))) print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score', f1_score(y_test.values.ravel(), pipe.predict(X_test), average='micro'))) for (i, pipe) in enumerate(pipe_lines): predict = pipe.predict(X_test) cm = confusion_matrix(y_test.values.ravel(), predict, labels=[-1, 0, 1]) print('{} Confusion Matrix'.format(pipe_names[i])) print(cm) ## Overlap Studies Functions # DEMA - Double Exponential Moving Average dema = talib.DEMA(close, timeperiod=3) dema = dema.fillna(dema.mean()) print('DEMA - Double Exponential Moving Average shape: {}'.format( dema.shape)) # EMA - Exponential Moving Average ema = talib.EMA(close, timeperiod=3) ema = ema.fillna(ema.mean()) print('EMA - Exponential Moving Average shape: {}'.format(ema.shape)) # HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline hilbert = talib.HT_TRENDLINE(close) hilbert = hilbert.fillna(hilbert.mean()) print( 'HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline shape: {}'. format(hilbert.shape)) # KAMA - Kaufman Adaptive Moving Average kama = talib.KAMA(close, timeperiod=3) kama = kama.fillna(kama.mean()) print('KAMA - Kaufman Adaptive Moving Average shape: {}'.format( kama.shape)) # MA - Moving average ma = talib.MA(close, timeperiod=3, matype=0) ma = ma.fillna(ma.mean()) print('MA - Moving average shape: {}'.format(kama.shape)) # MIDPOINT - MidPoint over period midpoint = talib.MIDPOINT(close, timeperiod=7) midpoint = midpoint.fillna(midpoint.mean()) print('MIDPOINT - MidPoint over period shape: {}'.format(midpoint.shape)) # MIDPRICE - Midpoint Price over period midprice = talib.MIDPRICE(high, low, timeperiod=7) midprice = midprice.fillna(midprice.mean()) print('MIDPRICE - Midpoint Price over period shape: {}'.format( midprice.shape)) # SAR - Parabolic SAR sar = talib.SAR(high, low, acceleration=0, maximum=0) sar = sar.fillna(sar.mean()) print('SAR - Parabolic SAR shape: {}'.format(sar.shape)) # SAREXT - Parabolic SAR - Extended sarext = talib.SAREXT(high, low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) sarext = sarext.fillna(sarext.mean()) print('SAREXT - Parabolic SAR - Extended shape: {}'.format(sarext.shape)) # SMA - Simple Moving Average sma = talib.SMA(close, timeperiod=3) sma = sma.fillna(sma.mean()) print('SMA - Simple Moving Average shape: {}'.format(sma.shape)) # T3 - Triple Exponential Moving Average (T3) t3 = talib.T3(close, timeperiod=5, vfactor=0) t3 = t3.fillna(t3.mean()) print('T3 - Triple Exponential Moving Average shape: {}'.format(t3.shape)) # TEMA - Triple Exponential Moving Average tema = talib.TEMA(close, timeperiod=3) tema = tema.fillna(tema.mean()) print('TEMA - Triple Exponential Moving Average shape: {}'.format( tema.shape)) # TRIMA - Triangular Moving Average trima = talib.TRIMA(close, timeperiod=3) trima = trima.fillna(trima.mean()) print('TRIMA - Triangular Moving Average shape: {}'.format(trima.shape)) # WMA - Weighted Moving Average wma = talib.WMA(close, timeperiod=3) wma = wma.fillna(wma.mean()) print('WMA - Weighted Moving Average shape: {}'.format(wma.shape)) ## Momentum Indicator Functions # ADX - Average Directional Movement Index adx = talib.ADX(high, low, close, timeperiod=14) adx = adx.fillna(adx.mean()) print('ADX - Average Directional Movement Index shape: {}'.format( adx.shape)) # ADXR - Average Directional Movement Index Rating adxr = talib.ADXR(high, low, close, timeperiod=7) adxr = adxr.fillna(adxr.mean()) print('ADXR - Average Directional Movement Index Rating shape: {}'.format( adxr.shape)) # APO - Absolute Price Oscillator apo = talib.APO(close, fastperiod=12, slowperiod=26, matype=0) apo = apo.fillna(apo.mean()) print('APO - Absolute Price Oscillator shape: {}'.format(apo.shape)) # AROONOSC - Aroon Oscillator aroon = talib.AROONOSC(high, low, timeperiod=14) aroon = aroon.fillna(aroon.mean()) print('AROONOSC - Aroon Oscillator shape: {}'.format(apo.shape)) # BOP - Balance Of Power bop = talib.BOP(open, high, low, close) bop = bop.fillna(bop.mean()) print('BOP - Balance Of Power shape: {}'.format(apo.shape)) # CCI - Commodity Channel Index cci = talib.CCI(high, low, close, timeperiod=7) cci = cci.fillna(cci.mean()) print('CCI - Commodity Channel Index shape: {}'.format(cci.shape)) # CMO - Chande Momentum Oscillator cmo = talib.CMO(close, timeperiod=7) cmo = cmo.fillna(cmo.mean()) print('CMO - Chande Momentum Oscillator shape: {}'.format(cmo.shape)) # DX - Directional Movement Index dx = talib.DX(high, low, close, timeperiod=7) dx = dx.fillna(dx.mean()) print('DX - Directional Movement Index shape: {}'.format(dx.shape)) # MFI - Money Flow Index mfi = talib.MFI(high, low, close, volume, timeperiod=7) mfi = mfi.fillna(mfi.mean()) print('MFI - Money Flow Index shape: {}'.format(mfi.shape)) # MINUS_DI - Minus Directional Indicator minusdi = talib.MINUS_DI(high, low, close, timeperiod=14) minusdi = minusdi.fillna(minusdi.mean()) print('MINUS_DI - Minus Directional Indicator shape: {}'.format( minusdi.shape)) # MINUS_DM - Minus Directional Movement minusdm = talib.MINUS_DM(high, low, timeperiod=14) minusdm = minusdm.fillna(minusdm.mean()) print('MINUS_DM - Minus Directional Movement shape: {}'.format( minusdm.shape)) # MOM - Momentum mom = talib.MOM(close, timeperiod=5) mom = mom.fillna(mom.mean()) print('MOM - Momentum shape: {}'.format(mom.shape)) # PLUS_DI - Plus Directional Indicator plusdi = talib.PLUS_DI(high, low, close, timeperiod=14) plusdi = plusdi.fillna(plusdi.mean()) print('PLUS_DI - Plus Directional Indicator shape: {}'.format( plusdi.shape)) # PLUS_DM - Plus Directional Movement plusdm = talib.PLUS_DM(high, low, timeperiod=14) plusdm = plusdm.fillna(plusdm.mean()) print('PLUS_DM - Plus Directional Movement shape: {}'.format(plusdi.shape)) # PPO - Percentage Price Oscillator ppo = talib.PPO(close, fastperiod=12, slowperiod=26, matype=0) ppo = ppo.fillna(ppo.mean()) print('PPO - Percentage Price Oscillator shape: {}'.format(ppo.shape)) # ROC - Rate of change:((price/prevPrice)-1)*100 roc = talib.ROC(close, timeperiod=10) roc = roc.fillna(roc.mean()) print('ROC - Rate of change : ((price/prevPrice)-1)*100 shape: {}'.format( roc.shape)) # RSI - Relative Strength Index rsi = talib.RSI(close, timeperiod=14) rsi = rsi.fillna(rsi.mean()) print('RSI - Relative Strength Index shape: {}'.format(rsi.shape)) # TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA trix = talib.TRIX(close, timeperiod=30) trix = trix.fillna(trix.mean()) print('TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA shape: {}'. format(trix.shape)) # ULTOSC - Ultimate Oscillator ultosc = talib.ULTOSC(high, low, close, timeperiod1=7, timeperiod2=14, timeperiod3=28) ultosc = ultosc.fillna(ultosc.mean()) print('ULTOSC - Ultimate Oscillator shape: {}'.format(ultosc.shape)) # WILLR - Williams'%R willr = talib.WILLR(high, low, close, timeperiod=7) willr = willr.fillna(willr.mean()) print("WILLR - Williams'%R shape: {}".format(willr.shape)) ## Volume Indicator Functions # AD - Chaikin A/D Line ad = talib.AD(high, low, close, volume) ad = ad.fillna(ad.mean()) print('AD - Chaikin A/D Line shape: {}'.format(ad.shape)) # ADOSC - Chaikin A/D Oscillator adosc = talib.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10) adosc = adosc.fillna(adosc.mean()) print('ADOSC - Chaikin A/D Oscillator shape: {}'.format(adosc.shape)) # OBV - On Balance Volume obv = talib.OBV(close, volume) obv = obv.fillna(obv.mean()) print('OBV - On Balance Volume shape: {}'.format(obv.shape)) ## Volatility Indicator Functions # ATR - Average True Range atr = talib.ATR(high, low, close, timeperiod=7) atr = atr.fillna(atr.mean()) print('ATR - Average True Range shape: {}'.format(atr.shape)) # NATR - Normalized Average True Range natr = talib.NATR(high, low, close, timeperiod=7) natr = natr.fillna(natr.mean()) print('NATR - Normalized Average True Range shape: {}'.format(natr.shape)) # TRANGE - True Range trange = talib.TRANGE(high, low, close) trange = trange.fillna(trange.mean()) print('TRANGE - True Range shape: {}'.format(natr.shape)) ## Price Transform Functions # AVGPRICE - Average Price avg = talib.AVGPRICE(open, high, low, close) avg = avg.fillna(avg.mean()) print('AVGPRICE - Average Price shape: {}'.format(natr.shape)) # MEDPRICE - Median Price medprice = talib.MEDPRICE(high, low) medprice = medprice.fillna(medprice.mean()) print('MEDPRICE - Median Price shape: {}'.format(medprice.shape)) # TYPPRICE - Typical Price typ = talib.TYPPRICE(high, low, close) typ = typ.fillna(typ.mean()) print('TYPPRICE - Typical Price shape: {}'.format(typ.shape)) # WCLPRICE - Weighted Close Price wcl = talib.WCLPRICE(high, low, close) wcl = wcl.fillna(wcl.mean()) print('WCLPRICE - Weighted Close Price shape: {}'.format(wcl.shape)) ## Cycle Indicator Functions # HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period dcperiod = talib.HT_DCPERIOD(close) dcperiod = dcperiod.fillna(dcperiod.mean()) print('HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period shape: {}'. format(dcperiod.shape)) # HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase dcphase = talib.HT_DCPHASE(close) dcphase = dcphase.fillna(dcphase.mean()) print('HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase shape: {}'. format(dcperiod.shape)) ## Statistic Functions # BETA - Beta beta = talib.BETA(high, low, timeperiod=3) beta = beta.fillna(beta.mean()) print('BETA - Beta shape: {}'.format(beta.shape)) # CORREL - Pearson's Correlation Coefficient(r) correl = talib.CORREL(high, low, timeperiod=30) correl = correl.fillna(correl.mean()) print("CORREL - Pearson's Correlation Coefficient(r) shape: {}".format( beta.shape)) # LINEARREG - Linear Regression linreg = talib.LINEARREG(close, timeperiod=7) linreg = linreg.fillna(linreg.mean()) print("LINEARREG - Linear Regression shape: {}".format(linreg.shape)) # STDDEV - Standard Deviation stddev = talib.STDDEV(close, timeperiod=5, nbdev=1) stddev = stddev.fillna(stddev.mean()) print("STDDEV - Standard Deviation shape: {}".format(stddev.shape)) # TSF - Time Series Forecast tsf = talib.TSF(close, timeperiod=7) tsf = tsf.fillna(tsf.mean()) print("TSF - Time Series Forecast shape: {}".format(tsf.shape)) # VAR - Variance var = talib.VAR(close, timeperiod=5, nbdev=1) var = var.fillna(var.mean()) print("VAR - Variance shape: {}".format(var.shape)) ## Feature DataFrame X_full = pd.concat([ X, dema, ema, hilbert, kama, ma, midpoint, midprice, sar, sarext, sma, t3, tema, trima, wma, adx, adxr, apo, aroon, bop, cci, cmo, mfi, minusdi, minusdm, mom, plusdi, plusdm, ppo, roc, rsi, trix, ultosc, willr, ad, adosc, obv, atr, natr, trange, avg, medprice, typ, wcl, dcperiod, dcphase, beta, correl, linreg, stddev, tsf, var ], axis=1).drop(['open', 'high', 'low', 'close'], axis=1) X_full.columns = [ 'volume', 'diff', 'dema', 'ema', 'hilbert', 'kama', 'ma', 'midpoint', 'midprice', 'sar', 'sarext', 'sma', 't3', 'tema', 'trima', 'wma', 'adx', 'adxr', 'apo', 'aroon', 'bop', 'cci', 'cmo', 'mfi', 'minusdi', 'minusdm', 'mom', 'plusdi', 'plusdm', 'ppo', 'roc', 'rsi', 'trix', 'ultosc', 'willr', 'ad', 'adosc', 'obv', 'atr', 'natr', 'trange', 'avg', 'medprice', 'typ', 'wcl', 'dcperiod', 'dcphase', 'beta', 'correl', 'linreg', 'stddev', 'tsf', 'var' ] X_full.join(y_).head(10) # full feature models X_train_full, X_test_full, y_train_full, y_test_full = train_test_split( X_full, y_, test_size=0.33, random_state=42) print('X_train shape: {}'.format(X_train_full.shape)) print('X_test shape: {}'.format(X_test_full.shape)) print('y_train shape: {}'.format(y_train_full.shape)) print('y_test shape: {}'.format(y_test_full.shape)) pipe_knn_full = Pipeline([('scl', StandardScaler()), ('est', KNeighborsClassifier(n_neighbors=3))]) pipe_logistic_full = Pipeline([ ('scl', StandardScaler()), ('est', LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=39)) ]) pipe_rf_full = Pipeline([('scl', StandardScaler()), ('est', RandomForestClassifier(random_state=39))]) pipe_gb_full = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_names = ['KNN', 'Logistic', 'RandomForest', 'GradientBoosting'] pipe_lines_full = [ pipe_knn_full, pipe_logistic_full, pipe_rf_full, pipe_gb_full ] for (i, pipe) in enumerate(pipe_lines_full): pipe.fit(X_train_full, y_train_full.values.ravel()) print(pipe) print('%s: %.3f' % (pipe_names[i] + ' Train Accuracy', accuracy_score(y_train_full.values.ravel(), pipe.predict(X_train_full)))) print('%s: %.3f' % (pipe_names[i] + ' Test Accuracy', accuracy_score(y_test_full.values.ravel(), pipe.predict(X_test_full)))) print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score', f1_score(y_train_full.values.ravel(), pipe.predict(X_train_full), average='micro'))) print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score', f1_score(y_test_full.values.ravel(), pipe.predict(X_test_full), average='micro'))) # Univariate Statistics select = SelectPercentile(percentile=25) select.fit(X_train_full, y_train_full.values.ravel()) X_train_selected = select.transform(X_train_full) X_test_selected = select.transform(X_test_full) # GradientBoost Classifier print( '--------------------------Without Univariate Statistics-------------------------------------' ) pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb.fit(X_train_full, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full), average='micro'))) # GradientBoost Cllassifier with Univariate Statistics print( '---------------------------With Univariate Statistics--------------------------------------' ) pipe_gb_percentile = Pipeline([ ('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39)) ]) pipe_gb_percentile.fit(X_train_selected, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb_percentile.predict(X_train_selected)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb_percentile.predict(X_test_selected)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb_percentile.predict(X_train_selected), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb_percentile.predict(X_test_selected), average='micro'))) # Model-based Selection select = SelectFromModel(RandomForestClassifier(n_estimators=100, random_state=42), threshold="1.25*mean") select.fit(X_train_full, y_train_full.values.ravel()) X_train_model = select.transform(X_train_full) X_test_model = select.transform(X_test_full) # GradientBoost Classifier print( '--------------------------Without Model-based Selection--------------------------------------' ) pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb.fit(X_train_full, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full), average='micro'))) # GradientBoost Classifier with Model-based Selection print( '----------------------------With Model-based Selection--------------------------------------' ) pipe_gb_model = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb_model.fit(X_train_model, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb_model.predict(X_train_model)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb_model.predict(X_test_model)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb_model.predict(X_train_model), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb_model.predict(X_test_model), average='micro'))) # Recursive Feature Elimination select = RFE(RandomForestClassifier(n_estimators=100, random_state=42), n_features_to_select=15) select.fit(X_train_full, y_train_full.values.ravel()) X_train_rfe = select.transform(X_train_full) X_test_rfe = select.transform(X_test_full) # GradientBoost Classifier print( '--------------------------Without Recursive Feature Elimination-------------------------------------' ) pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb.fit(X_train_full, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full), average='micro'))) # GradientBoost Classifier with Recursive Feature Elimination print( '----------------------------With Recursive Feature Elimination--------------------------------------' ) pipe_gb_rfe = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb_rfe.fit(X_train_rfe, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb_rfe.predict(X_train_rfe)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb_rfe.predict(X_test_rfe)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb_rfe.predict(X_train_rfe), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb_rfe.predict(X_test_rfe), average='micro'))) cv = cross_val_score(pipe_gb, X_, y_.values.ravel(), cv=StratifiedKFold(n_splits=10, shuffle=True, random_state=39)) print('Cross validation with StratifiedKFold scores: {}'.format(cv)) print('Cross Validation with StatifiedKFold mean: {}'.format(cv.mean())) # GridSearch n_features = len(df.columns) param_grid = { 'learning_rate': [0.01, 0.1, 1, 10], 'n_estimators': [1, 10, 100, 200, 300], 'max_depth': [1, 2, 3, 4, 5] } stratifiedcv = StratifiedKFold(n_splits=10, shuffle=True, random_state=39) X_train, X_test, y_train, y_test = train_test_split(X_, y_, test_size=0.33, random_state=42) grid_search = GridSearchCV(GradientBoostingClassifier(), param_grid, cv=stratifiedcv) grid_search.fit(X_train, y_train.values.ravel()) print('GridSearch Train Accuracy: {:.3f}'.format( accuracy_score(y_train.values.ravel(), grid_search.predict(X_train)))) print('GridSearch Test Accuracy: {:.3f}'.format( accuracy_score(y_test.values.ravel(), grid_search.predict(X_test)))) print('GridSearch Train F1 Score: {:.3f}'.format( f1_score(y_train.values.ravel(), grid_search.predict(X_train), average='micro'))) print('GridSearch Test F1 Score: {:.3f}'.format( f1_score(y_test.values.ravel(), grid_search.predict(X_test), average='micro'))) # GridSearch results print("Best params:\n{}".format(grid_search.best_params_)) print("Best cross-validation score: {:.2f}".format( grid_search.best_score_)) results = pd.DataFrame(grid_search.cv_results_) corr_params = results.drop(results.columns[[ 0, 1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20 ]], axis=1) corr_params.head() # GridSearch in nested cv_gb = cross_val_score(grid_search, X_, y_.values.ravel(), cv=StratifiedKFold(n_splits=3, shuffle=True, random_state=39)) print('Grid Search with nested cross validation scores: {}'.format(cv_gb)) print('Grid Search with nested cross validation mean: {}'.format( cv_gb.mean()))
def TALIB_WCLPRICE(close): '''00395,1,1''' return talib.WCLPRICE(close)
def get_datasets(asset, currency, granularity, datapoints): """Fetch the API and precess the desired pair Arguments: asset {str} -- First pair currency {str} -- Second pair granularity {str ['day', 'hour']} -- Granularity datapoints {int [100 - 2000]} -- [description] Returns: pandas.Dataframe -- The OHLCV and indicators dataframe """ df_train_path = 'datasets/bot_train_{}_{}_{}.csv'.format( asset + currency, datapoints, granularity) df_rollout_path = 'datasets/bot_rollout_{}_{}_{}.csv'.format( asset + currency, datapoints, granularity) emojis = [ ':moneybag:', ':yen:', ':dollar:', ':pound:', ':euro:', ':credit_card:', ':money_with_wings:', ':gem:' ] if not os.path.exists(df_rollout_path): headers = { 'User-Agent': 'Mozilla/5.0', 'authorization': 'Apikey 3d7d3e9e6006669ac00584978342451c95c3c78421268ff7aeef69995f9a09ce' } # OHLC # url = 'https://min-api.cryptocompare.com/data/histo{}?fsym={}&tsym={}&e=Binance&limit={}'.format(granularity, asset, currency, datapoints) url = 'https://min-api.cryptocompare.com/data/histo{}?fsym={}&tsym={}&limit={}'.format( granularity, asset, currency, datapoints) # print(emoji.emojize(':dizzy: :large_blue_diamond: :gem: :bar_chart: :crystal_ball: :chart_with_downwards_trend: :chart_with_upwards_trend: :large_orange_diamond: loading...', use_aliases=True)) print( colored( emoji.emojize('> ' + random.choice(emojis) + ' downloading ' + asset + '/' + currency, use_aliases=True), 'green')) # print(colored('> downloading ' + asset + '/' + currency, 'green')) response = requests.get(url, headers=headers) json_response = response.json() status = json_response['Response'] if status == "Error": print(colored('=== {} ==='.format(json_response['Message']), 'red')) raise AssertionError() result = json_response['Data'] df = pd.DataFrame(result) print(df.tail()) df['Date'] = pd.to_datetime(df['time'], utc=True, unit='s') df.drop('time', axis=1, inplace=True) # indicators # https://github.com/mrjbq7/ta-lib/blob/master/docs/func.md open_price, high, low, close = np.array(df['open']), np.array( df['high']), np.array(df['low']), np.array(df['close']) volume = np.array(df['volumefrom']) # cycle indicators df.loc[:, 'HT_DCPERIOD'] = talib.HT_DCPERIOD(close) df.loc[:, 'HT_DCPHASE'] = talib.HT_DCPHASE(close) df.loc[:, 'HT_PHASOR_inphase'], df.loc[:, 'HT_PHASOR_quadrature'] = talib.HT_PHASOR( close) df.loc[:, 'HT_SINE_sine'], df.loc[:, 'HT_SINE_leadsine'] = talib.HT_SINE( close) df.loc[:, 'HT_TRENDMODE'] = talib.HT_TRENDMODE(close) # momemtum indicators df.loc[:, 'ADX'] = talib.ADX(high, low, close, timeperiod=12) df.loc[:, 'ADXR'] = talib.ADXR(high, low, close, timeperiod=13) df.loc[:, 'APO'] = talib.APO(close, fastperiod=5, slowperiod=10, matype=0) df.loc[:, 'AROON_down'], df.loc[:, 'AROON_up'] = talib.AROON(high, low, timeperiod=15) df.loc[:, 'AROONOSC'] = talib.AROONOSC(high, low, timeperiod=13) df.loc[:, 'BOP'] = talib.BOP(open_price, high, low, close) df.loc[:, 'CCI'] = talib.CCI(high, low, close, timeperiod=13) df.loc[:, 'CMO'] = talib.CMO(close, timeperiod=14) df.loc[:, 'DX'] = talib.DX(high, low, close, timeperiod=10) df['MACD'], df['MACD_signal'], df['MACD_hist'] = talib.MACD( close, fastperiod=5, slowperiod=10, signalperiod=20) df.loc[:, 'MFI'] = talib.MFI(high, low, close, volume, timeperiod=12) df.loc[:, 'MINUS_DI'] = talib.MINUS_DI(high, low, close, timeperiod=10) df.loc[:, 'MINUS_DM'] = talib.MINUS_DM(high, low, timeperiod=14) df.loc[:, 'MOM'] = talib.MOM(close, timeperiod=20) df.loc[:, 'PPO'] = talib.PPO(close, fastperiod=17, slowperiod=35, matype=2) df.loc[:, 'ROC'] = talib.ROC(close, timeperiod=12) df.loc[:, 'RSI'] = talib.RSI(close, timeperiod=25) df.loc[:, 'STOCH_k'], df.loc[:, 'STOCH_d'] = talib.STOCH(high, low, close, fastk_period=35, slowk_period=12, slowk_matype=0, slowd_period=7, slowd_matype=0) df.loc[:, 'STOCHF_k'], df.loc[:, 'STOCHF_d'] = talib.STOCHF(high, low, close, fastk_period=28, fastd_period=14, fastd_matype=0) df.loc[:, 'STOCHRSI_K'], df.loc[:, 'STOCHRSI_D'] = talib.STOCHRSI( close, timeperiod=35, fastk_period=12, fastd_period=10, fastd_matype=1) df.loc[:, 'TRIX'] = talib.TRIX(close, timeperiod=30) df.loc[:, 'ULTOSC'] = talib.ULTOSC(high, low, close, timeperiod1=14, timeperiod2=28, timeperiod3=35) df.loc[:, 'WILLR'] = talib.WILLR(high, low, close, timeperiod=35) # overlap studies df.loc[:, 'BBANDS_upper'], df.loc[:, 'BBANDS_middle'], df.loc[:, 'BBANDS_lower'] = talib.BBANDS( close, timeperiod= 12, nbdevup=2, nbdevdn=2, matype=0) df.loc[:, 'DEMA'] = talib.DEMA(close, timeperiod=30) df.loc[:, 'EMA'] = talib.EMA(close, timeperiod=7) df.loc[:, 'HT_TRENDLINE'] = talib.HT_TRENDLINE(close) df.loc[:, 'KAMA'] = talib.KAMA(close, timeperiod=5) df.loc[:, 'MA'] = talib.MA(close, timeperiod=5, matype=0) df.loc[:, 'MIDPOINT'] = talib.MIDPOINT(close, timeperiod=20) df.loc[:, 'WMA'] = talib.WMA(close, timeperiod=15) df.loc[:, 'SMA'] = talib.SMA(close) # pattern recoginition df.loc[:, 'CDL2CROWS'] = talib.CDL2CROWS(open_price, high, low, close) df.loc[:, 'CDL3BLACKCROWS'] = talib.CDL3BLACKCROWS( open_price, high, low, close) df.loc[:, 'CDL3INSIDE'] = talib.CDL3INSIDE(open_price, high, low, close) df.loc[:, 'CDL3LINESTRIKE'] = talib.CDL3LINESTRIKE( open_price, high, low, close) # price transform df.loc[:, 'WCLPRICE'] = talib.WCLPRICE(high, low, close) # statistic funcitons df.loc[:, 'BETA'] = talib.BETA(high, low, timeperiod=20) df.loc[:, 'CORREL'] = talib.CORREL(high, low, timeperiod=20) df.loc[:, 'STDDEV'] = talib.STDDEV(close, timeperiod=20, nbdev=1) df.loc[:, 'TSF'] = talib.TSF(close, timeperiod=20) df.loc[:, 'VAR'] = talib.VAR(close, timeperiod=20, nbdev=1) # volatility indicators df.loc[:, 'ATR'] = talib.ATR(high, low, close, timeperiod=7) df.loc[:, 'NATR'] = talib.NATR(high, low, close, timeperiod=20) df.loc[:, 'TRANGE'] = talib.TRANGE(high, low, close) # volume indicators df.loc[:, 'AD'] = talib.AD(high, low, close, volume) df.loc[:, 'ADOSC'] = talib.ADOSC(high, low, close, volume, fastperiod=10, slowperiod=20) df.loc[:, 'OBV'] = talib.OBV(close, volume) # df.fillna(df.mean(), inplace=True) df.dropna(inplace=True) df.set_index('Date', inplace=True) print(colored('> caching' + asset + '/' + currency + ':)', 'cyan')) train_size = round( len(df) * DF_TRAIN_SIZE) # 75% to train -> test with different value df_train = df[:train_size] df_rollout = df[train_size:] df_train.to_csv(df_train_path) df_rollout.to_csv(df_rollout_path) df_train = pd.read_csv( df_train_path) # re-read to avoid indexing issue w/ Ray df_rollout = pd.read_csv(df_rollout_path) else: print( colored( emoji.emojize('> ' + random.choice(emojis) + ' feching ' + asset + '/' + currency + ' from cache', use_aliases=True), 'magenta')) # print(colored('> feching ' + asset + '/' + currency + ' from cache :)', 'magenta')) df_train = pd.read_csv(df_train_path) df_rollout = pd.read_csv(df_rollout_path) # df_train.set_index('Date', inplace=True) # df_rollout.set_index('Date', inplace=True) return df_train, df_rollout
slowperiod=10) df['OBV'] = ta.OBV(np.array(df['Adj Close'].shift(1)), np.array(df['Volume'].shift(1))) # Price Transform Functions df['AVGPRICE'] = ta.AVGPRICE(np.array(df['Open'].shift(1)), np.array(df['High'].shift(1)), np.array(df['Low'].shift(1)), np.array(df['Adj Close'].shift(1))) df['MEDPRICE'] = ta.MEDPRICE(np.array(df['High'].shift(1)), np.array(df['Low'].shift(1))) df['TYPPRICE'] = ta.TYPPRICE(np.array(df['High'].shift(1)), np.array(df['Low'].shift(1)), np.array(df['Adj Close'].shift(1))) df['WCLPRICE'] = ta.WCLPRICE(np.array(df['High'].shift(1)), np.array(df['Low'].shift(1)), np.array(df['Adj Close'].shift(1))) # Pattern Recognition Fuction df['Two_Crows'] = ta.CDL2CROWS(np.array(df['Open']), np.array(df['High']), np.array(df['Low']), np.array(df['Adj Close'])) df['Three_Crows'] = ta.CDL3BLACKCROWS(np.array(df['Open']), np.array(df['High']), np.array(df['Low']), np.array(df['Adj Close'])) df['Three_Inside_Up_Down'] = ta.CDL3INSIDE(np.array(df['Open']), np.array(df['High']), np.array(df['Low']), np.array(df['Adj Close'])) df['Three_Line_Strike'] = ta.CDL3LINESTRIKE(np.array(df['Open']), np.array(df['High']),
def talib_WCLPRICE(DataFrame): """WCLPRICE - Weighted Close Price 加权收盘价""" res = talib.WCLPRICE(DataFrame.high.values, DataFrame.low.values, DataFrame.close.values) return pd.DataFrame({'WCLPRICE': res}, index=DataFrame.index)
# volatility indicators -> ATR # pattern recognition -> CDLBELTHOLD atr = ta.ATR(high, low, close, timeperiod=period) stoch_k, stoch_d = ta.STOCH(high, low, close) # use deafault adx = ta.ADX(high, low, close, timeperiod=period) aroon_up, aroon_dn = ta.AROON(high, low, timeperiod=period) aroon = aroon_up - aroon_dn adosc = ta.ADOSC(high, low, close, volume) macd, macdsignal, macdhist = ta.MACD(close) # use default mfi = ta.MFI(high, low, close, volume, timeperiod=period) sar = ta.SAR(high, low) # use default ht = ta.HT_DCPERIOD(close) wcl = ta.WCLPRICE(high, low, close) #print(len(atr)) #print(len(stoch_d)) #print(len(adx)) #print(len(aroon)) #print(len(ad)) #print(len(macd)) #print(len(mfi)) #print(len(sar)) #print(len(ht)) #print(len(wcl)) attrNames = np.array([ 'atr', 'stoch', 'adx', 'aroon', 'adosc', 'macd', 'mfl', 'sar', 'ht', 'wcl' ]) F = np.column_stack((atr, stoch_d, adx, aroon, adosc, macd, mfi, sar, ht, wcl))
def talib_038(self): data_WCLPRICE = copy.deepcopy(self.close) for symbol in symbols: data_WCLPRICE[symbol] = ta.WCLPRICE(self.high[symbol].values, self.low[symbol].values, self.close[symbol].values) return data_WCLPRICE
def get_talib_stock_daily( stock_code, s, e, append_ori_close=False, norms=['volume', 'amount', 'ht_dcphase', 'obv', 'adosc', 'ad', 'cci']): """获取经过talib处理后的股票日线数据""" stock_data = QA.QA_fetch_stock_day_adv(stock_code, s, e) stock_df = stock_data.to_qfq().data if append_ori_close: stock_df['o_close'] = stock_data.data['close'] # stock_df['high_qfq'] = stock_data.to_qfq().data['high'] # stock_df['low_hfq'] = stock_data.to_hfq().data['low'] close = np.array(stock_df['close']) high = np.array(stock_df['high']) low = np.array(stock_df['low']) _open = np.array(stock_df['open']) _volume = np.array(stock_df['volume']) stock_df['dema'] = talib.DEMA(close) stock_df['ema'] = talib.EMA(close) stock_df['ht_tradeline'] = talib.HT_TRENDLINE(close) stock_df['kama'] = talib.KAMA(close) stock_df['ma'] = talib.MA(close) stock_df['mama'], stock_df['fama'] = talib.MAMA(close) # MAVP stock_df['midpoint'] = talib.MIDPOINT(close) stock_df['midprice'] = talib.MIDPRICE(high, low) stock_df['sar'] = talib.SAR(high, low) stock_df['sarext'] = talib.SAREXT(high, low) stock_df['sma'] = talib.SMA(close) stock_df['t3'] = talib.T3(close) stock_df['tema'] = talib.TEMA(close) stock_df['trima'] = talib.TRIMA(close) stock_df['wma'] = talib.WMA(close) stock_df['adx'] = talib.ADX(high, low, close) stock_df['adxr'] = talib.ADXR(high, low, close) stock_df['apo'] = talib.APO(close) stock_df['aroondown'], stock_df['aroonup'] = talib.AROON(high, low) stock_df['aroonosc'] = talib.AROONOSC(high, low) stock_df['bop'] = talib.BOP(_open, high, low, close) stock_df['cci'] = talib.CCI(high, low, close) stock_df['cmo'] = talib.CMO(close) stock_df['dx'] = talib.DX(high, low, close) # MACD stock_df['macd'], stock_df['macdsignal'], stock_df[ 'macdhist'] = talib.MACDEXT(close) # MACDFIX stock_df['mfi'] = talib.MFI(high, low, close, _volume) stock_df['minus_di'] = talib.MINUS_DI(high, low, close) stock_df['minus_dm'] = talib.MINUS_DM(high, low) stock_df['mom'] = talib.MOM(close) stock_df['plus_di'] = talib.PLUS_DI(high, low, close) stock_df['plus_dm'] = talib.PLUS_DM(high, low) stock_df['ppo'] = talib.PPO(close) stock_df['roc'] = talib.ROC(close) stock_df['rocp'] = talib.ROCP(close) stock_df['rocr'] = talib.ROCR(close) stock_df['rocr100'] = talib.ROCR100(close) stock_df['rsi'] = talib.RSI(close) stock_df['slowk'], stock_df['slowd'] = talib.STOCH(high, low, close) stock_df['fastk'], stock_df['fastd'] = talib.STOCHF(high, low, close) # STOCHRSI - Stochastic Relative Strength Index stock_df['trix'] = talib.TRIX(close) stock_df['ultosc'] = talib.ULTOSC(high, low, close) stock_df['willr'] = talib.WILLR(high, low, close) stock_df['ad'] = talib.AD(high, low, close, _volume) stock_df['adosc'] = talib.ADOSC(high, low, close, _volume) stock_df['obv'] = talib.OBV(close, _volume) stock_df['ht_dcperiod'] = talib.HT_DCPERIOD(close) stock_df['ht_dcphase'] = talib.HT_DCPHASE(close) stock_df['inphase'], stock_df['quadrature'] = talib.HT_PHASOR(close) stock_df['sine'], stock_df['leadsine'] = talib.HT_PHASOR(close) stock_df['ht_trendmode'] = talib.HT_TRENDMODE(close) stock_df['avgprice'] = talib.AVGPRICE(_open, high, low, close) stock_df['medprice'] = talib.MEDPRICE(high, low) stock_df['typprice'] = talib.TYPPRICE(high, low, close) stock_df['wclprice'] = talib.WCLPRICE(high, low, close) stock_df['atr'] = talib.ATR(high, low, close) stock_df['natr'] = talib.NATR(high, low, close) stock_df['trange'] = talib.TRANGE(high, low, close) stock_df['beta'] = talib.BETA(high, low) stock_df['correl'] = talib.CORREL(high, low) stock_df['linearreg'] = talib.LINEARREG(close) stock_df['linearreg_angle'] = talib.LINEARREG_ANGLE(close) stock_df['linearreg_intercept'] = talib.LINEARREG_INTERCEPT(close) stock_df['linearreg_slope'] = talib.LINEARREG_SLOPE(close) stock_df['stddev'] = talib.STDDEV(close) stock_df['tsf'] = talib.TSF(close) stock_df['var'] = talib.VAR(close) stock_df = stock_df.reset_index().set_index('date') if norms: x = stock_df[norms].values # returns a numpy array x_scaled = MinMaxScaler().fit_transform(x) stock_df = stock_df.drop(columns=norms).join( pd.DataFrame(x_scaled, columns=norms, index=stock_df.index)) # stock_df = stock_df.drop(columns=['code', 'open', 'high', 'low']) stock_df = stock_df.dropna() stock_df = stock_df.drop(columns=['code']) return stock_df