Beispiel #1
0
def crossflow_plume(fig):
    """
    Define, run, and plot the simulations for a pure bubble plume in crossflow
    for validation to data in Socolofsky and Adams (2002).
    
    """
    # Jet initial conditions
    z0 = 0.64
    U0 = 0.
    phi_0 = -np.pi / 2.
    theta_0 = 0.
    D = 0.01
    Tj = 21. + 273.15
    Sj = 0.
    cj = 1.
    chem_name = 'tracer'

    # Ambient conditions
    ua = 0.15
    T = 0.
    F = 0.
    H = 1.0

    # Create the correct ambient profile data
    uj = U0 * np.cos(phi_0) * np.cos(theta_0)
    vj = U0 * np.cos(phi_0) * np.sin(theta_0)
    wj = U0 * np.sin(phi_0)
    profile_fname = './crossflow_plume.nc'
    profile = get_profile(profile_fname, z0, D, uj, vj, wj, Tj, Sj, ua, T, F,
                          1., H)

    # Create a bent plume model simulation object
    jlm = bpm.Model(profile)

    # Define the dispersed phase input to the model
    composition = ['nitrogen', 'oxygen', 'argon', 'carbon_dioxide']
    mol_frac = np.array([0.78084, 0.20946, 0.009340, 0.00036])
    air = dbm.FluidParticle(composition)
    particles = []

    # Large bubbles
    Q_N = 0.5 / 60. / 1000.
    de0 = 0.008
    T0 = Tj
    lambda_1 = 1.
    (m0, T0, nb0, P, Sa,
     Ta) = dispersed_phases.initial_conditions(profile, z0, air, mol_frac, Q_N,
                                               1, de0, T0)
    particles.append(
        bpm.Particle(0.,
                     0.,
                     z0,
                     air,
                     m0,
                     T0,
                     nb0,
                     lambda_1,
                     P,
                     Sa,
                     Ta,
                     K=1.,
                     K_T=1.,
                     fdis=1.e-6))

    # Small bubbles
    Q_N = 0.5 / 60. / 1000.
    de0 = 0.0003
    T0 = Tj
    lambda_1 = 1.
    (m0, T0, nb0, P, Sa,
     Ta) = dispersed_phases.initial_conditions(profile, z0, air, mol_frac, Q_N,
                                               1, de0, T0)
    particles.append(
        bpm.Particle(0.,
                     0.,
                     z0,
                     air,
                     m0,
                     T0,
                     nb0,
                     lambda_1,
                     P,
                     Sa,
                     Ta,
                     K=1.,
                     K_T=1.,
                     fdis=1.e-6))

    # Run the simulation
    jlm.simulate(np.array([0., 0., z0]),
                 D,
                 U0,
                 phi_0,
                 theta_0,
                 Sj,
                 Tj,
                 cj,
                 chem_name,
                 particles,
                 track=True,
                 dt_max=60.,
                 sd_max=100.)

    # Perpare variables for plotting
    xp = jlm.q[:, 7] / jlm.D
    yp = jlm.q[:, 9] / jlm.D

    plt.figure(fig)
    plt.clf()
    plt.show()

    ax1 = plt.subplot(111)
    ax1.plot(xp, yp, 'b-')
    ax1.set_xlabel('x / D')
    ax1.set_ylabel('z / D')
    ax1.invert_yaxis()
    ax1.grid(b=True, which='major', color='0.65', linestyle='-')

    plt.draw()

    return jlm
Beispiel #2
0
    def get_particles(self, composition, data, md_gas0, md_oil0, profile, d50_gas, d50_oil, nbins,
                  T0, z0, dispersant, sigma_fac, oil, mass_frac, hydrate, inert_drop):
        """
        docstring for get_particles

        """

        # Reduce surface tension if dispersant is applied
        if dispersant is True:
            sigma = np.array([[1.], [1.]]) * sigma_fac
        else:
            sigma = np.array([[1.], [1.]])

        # Create DBM objects for the bubbles and droplets
        bubl = dbm.FluidParticle(composition, fp_type=0, sigma_correction=sigma[0], user_data=data)
        drop = dbm.FluidParticle(composition, fp_type=1, sigma_correction=sigma[1], user_data=data)

        # Get the local ocean conditions
        T, S, P = profile.get_values(z0, ['temperature', 'salinity', 'pressure'])
        rho = seawater.density(T, S, P)

        # Get the mole fractions of the released fluids
        molf_gas = bubl.mol_frac(md_gas0)
        molf_oil = drop.mol_frac(md_oil0)
        print molf_gas
        print molf_oil

        # Use the Rosin-Rammler distribution to get the mass flux in each
        # size class
#        de_gas, md_gas = sintef.rosin_rammler(nbins, d50_gas, np.sum(md_gas0),
#                                              bubl.interface_tension(md_gas0, T0, S, P),
#                                              bubl.density(md_gas0, T0, P), rho)
#        de_oil, md_oil = sintef.rosin_rammler(nbins, d50_oil, np.sum(md_oil0),
#                                              drop.interface_tension(md_oil0, T0, S, P),
#                                              drop.density(md_oil0, T0, P), rho)

        # Get the user defined particle size distibution
        de_oil, vf_oil, de_gas, vf_gas = self.userdefined_de()
        md_gas = np.sum(md_gas0) * vf_gas
        md_oil = np.sum(md_oil0) * vf_oil

        # Define a inert particle to be used if inert liquid particles are use
        # in the simulations
        molf_inert = 1.
        isfluid = True
        iscompressible = True
        rho_o = drop.density(md_oil0, T0, P)
        inert = dbm.InsolubleParticle(isfluid, iscompressible, rho_p=rho_o, gamma=40.,
                                      beta=0.0007, co=2.90075e-9)

        # Create the particle objects
        particles = []
        t_hyd = 0.

        # Bubbles
        for i in range(nbins):
            if md_gas[i] > 0.:
                (m0, T0, nb0, P, Sa, Ta) = dispersed_phases.initial_conditions(
                            profile, z0, bubl, molf_gas, md_gas[i], 2, de_gas[i], T0)
                # Get the hydrate formation time for bubbles
                if hydrate is True and dispersant is False:
                    t_hyd = dispersed_phases.hydrate_formation_time(bubl, z0, m0, T0, profile)
                    if np.isinf(t_hyd):
                        t_hyd = 0.
                else:
                    t_hyd = 0.
                particles.append(bpm.Particle(0., 0., z0, bubl, m0, T0, nb0,
                                              1.0, P, Sa, Ta, K=1., K_T=1., fdis=1.e-6, t_hyd=t_hyd))

        # Droplets
        for i in range(len(de_oil)):
            # Add the live droplets to the particle list
            if md_oil[i] > 0. and not inert_drop:
                (m0, T0, nb0, P, Sa, Ta) = dispersed_phases.initial_conditions(
                        profile, z0, drop, molf_oil, md_oil[i], 2, de_oil[i], T0)
                # Get the hydrate formation time for bubbles
                if hydrate is True and dispersant is False:
                    t_hyd = dispersed_phases.hydrate_formation_time(drop, z0, m0, T0, profile)
                    if np.isinf(t_hyd):
                            t_hyd = 0.
                else:
                    t_hyd = 0.
                particles.append(bpm.Particle(0., 0., z0, drop, m0, T0, nb0,
                                                1.0, P, Sa, Ta, K=1., K_T=1., fdis=1.e-6, t_hyd=t_hyd))
            # Add the inert droplets to the particle list
            if md_oil[i] > 0. and inert_drop is True:
                (m0, T0, nb0, P, Sa, Ta) = dispersed_phases.initial_conditions(
                        profile, z0, inert, molf_oil, md_oil[i], 2, de_oil[i], T0)
                particles.append(bpm.Particle(0., 0., z0, inert, m0, T0, nb0,
                        1.0, P, Sa, Ta, K=1., K_T=1., fdis=1.e-6, t_hyd=0.))

        # Define the lambda for particles
        model = params.Scales(profile, particles)
        for j in range(len(particles)):
            particles[j].lambda_1 = model.lambda_1(z0, j)

        # Return the particle list
        return particles
Beispiel #3
0
    # Larger free gas bubbles
    mb0 = 5.  # total mass flux in kg/s
    de = 0.005  # bubble diameter in m
    lambda_1 = 0.85
    (m0, T0, nb0, P, Sa,
     Ta) = dispersed_phases.initial_conditions(ctd, z0, gas, yk, mb0, 2, de,
                                               Tj)
    disp_phases.append(
        bent_plume_model.Particle(0.,
                                  0.,
                                  z0,
                                  gas,
                                  m0,
                                  T0,
                                  nb0,
                                  lambda_1,
                                  P,
                                  Sa,
                                  Ta,
                                  K=1.,
                                  K_T=1.,
                                  fdis=1.e-6,
                                  t_hyd=0.,
                                  lag_time=False))

    # Smaller free gas bubbles
    mb0 = 5.  # total mass flux in kg/s
    de = 0.0005  # bubble diameter in m
    lambda_1 = 0.95
    (m0, T0, nb0, P, Sa,
     Ta) = dispersed_phases.initial_conditions(ctd, z0, gas, yk, mb0, 2, de,
                                               Tj)
Beispiel #4
0
def particles(m_tot, d, vf, profile, oil, yk, x0, y0, z0, Tj, lambda_1,
              lag_time):
    """
    Create particles to add to a bent plume model simulation

    Creates bent_plume_model.Particle objects for the given particle
    properties so that they can be added to the total list of particles
    in the simulation.

    Parameters
    ----------
    m_tot : float
        Total mass flux of this fluid phase in the simulation (kg/s)
    d : np.array
        Array of particle sizes for this fluid phase (m)
    vf : np.array
        Array of volume fractions for each particle size for this fluid
        phase (--).  This array should sum to 1.0.
    profile : ambient.Profile
        An ambient.Profile object with the ambient ocean water column data
    oil : dbm.FluidParticle
        A dbm.FluidParticle object that contains the desired oil database
        composition
    yk : np.array
        Mole fractions of each compound in the chemical database of the oil
        dbm.FluidParticle object (--).
    x0, y0, z0 : floats
        Initial position of the particles in the simulation domain (m).  Note
        that x0 and y0 should be zero for particles starting on the plume
        centerline.
    Tj : float
        Initial temperature of the particles in the jet (K)
    lambda_1 : float
        Value of the dispersed phase spreading parameter of the jet integral
        model (--).
    lag_time : bool
        Flag that indicates whether (True) or not (False) to use the
        biodegradation lag times data.

    Returns
    -------
    disp_phases : list of bent_plume_model.Particle objects
        List of `bent_plume_model.Particle` objects to be added to the
        present bent plume model simulation based on the given input data.

    Notes
    -----
    See the documentation for the `bent_plume_model` for more
    information on the `Particle` object.

    """
    # Create an empty list of particles
    disp_phases = []

    # Add each particle in the distribution separately
    for i in range(len(d)):

        # Get the total mass flux of this fluid phase for the present
        # particle size
        mb0 = vf[i] * m_tot

        # Get the properties of these particles at the source
        (m0, T0, nb0, P, Sa,
         Ta) = dispersed_phases.initial_conditions(profile, z0, oil, yk, mb0,
                                                   2, d[i], Tj)

        # Append these particles to the list of particles in the simulation
        disp_phases.append(
            bent_plume_model.Particle(x0,
                                      y0,
                                      z0,
                                      oil,
                                      m0,
                                      T0,
                                      nb0,
                                      lambda_1,
                                      P,
                                      Sa,
                                      Ta,
                                      K=1.,
                                      K_T=1.,
                                      fdis=1.e-6,
                                      t_hyd=0.,
                                      lag_time=lag_time))

    # Return the list of particles
    return disp_phases
Beispiel #5
0
def get_sim_data():
    """
    Create the data needed to initialize a simulation

    Performs the steps necessary to set up a bent plume model simulation
    and passes the input variables to the `Model` object and
    `Model.simulate()` method.

    Returns
    -------
    profile : `ambient.Profile` object
        Return a profile object from the BM54 CTD data
    z0 : float
        Depth of the release port (m)
    D : float
        Diameter of the release port (m)
    Vj : float
        Initial velocity of the jet (m/s)
    phi_0 : float
        Vertical angle from the horizontal for the discharge orientation
        (rad in range +/- pi/2)
    theta_0 : float
        Horizontal angle from the x-axis for the discharge orientation.
        The x-axis is taken in the direction of the ambient current.
        (rad in range 0 to 2 pi)
    Sj : float
        Salinity of the continuous phase fluid in the discharge (psu)
    Tj : float
        Temperature of the continuous phase fluid in the discharge (T)
    cj : ndarray
        Concentration of passive tracers in the discharge (user-defined)
    tracers : string list
        List of passive tracers in the discharge.  These can be chemicals
        present in the ambient `profile` data, and if so, entrainment of
        these chemicals will change the concentrations computed for these
        tracers.  However, none of these concentrations are used in the
        dissolution of the dispersed phase.  Hence, `tracers` should not
        contain any chemicals present in the dispersed phase particles.
    particles : list of `Particle` objects
        List of `Particle` objects describing each dispersed phase in the
        simulation
    dt_max : float
        Maximum step size to take in the storage of the simulation
        solution (s)
    sd_max : float
        Maximum number of orifice diameters to compute the solution along
        the plume centerline (m/m)

    """
    # Get the ambient CTD data
    profile = get_profile()

    # Specify the release location and geometry and initialize a particle
    # list
    z0 = 300.
    D = 0.3
    particles = []

    # Add a dissolving particle to the list
    composition = ['oxygen', 'nitrogen', 'argon']
    yk = np.array([1.0, 0., 0.])
    o2 = dbm.FluidParticle(composition)
    Q_N = 1.5 / 60. / 60.
    de = 0.009
    lambda_1 = 0.85
    (m0, T0, nb0, P, Sa, Ta) = dispersed_phases.initial_conditions(
        profile, z0, o2, yk, Q_N, 1, de)
    particles.append(bent_plume_model.Particle(0., 0., z0, o2, m0, T0,
        nb0, lambda_1, P, Sa, Ta, K=1., K_T=1., fdis=1.e-6, t_hyd=0.))

    # Add an insoluble particle to the list
    composition = ['inert']
    yk = np.array([1.])
    oil = dbm.InsolubleParticle(True, True)
    mb0 = 1.
    de = 0.01
    lambda_1 = 0.8
    (m0, T0, nb0, P, Sa, Ta) = dispersed_phases.initial_conditions(
        profile, z0, oil, yk, mb0, 1, de)
    particles.append(bent_plume_model.Particle(0., 0., z0, oil, m0, T0,
        nb0, lambda_1, P, Sa, Ta, K=1., K_T=1., fdis=1.e-6, t_hyd=0.))

    # Set the other simulation parameters
    Vj = 0.
    phi_0 = -np.pi/2.
    theta_0 = 0.
    Sj = 0.
    Tj = Ta
    cj = np.array([1.])
    tracers = ['tracer']
    dt_max = 60.
    sd_max = 3000.

    # Return the results
    return (profile, np.array([0., 0., z0]), D, Vj, phi_0, theta_0, Sj, Tj,
        cj, tracers, particles, dt_max, sd_max)
Beispiel #6
0
def test_particle_obj():
    """
    Test the object behavior for the `Particle` object

    Test the instantiation and attribute data for the `Particle` object of
    the `bent_plume_model` module.

    """
    # Set up the base parameters describing a particle object
    T = 273.15 + 15.
    P = 150e5
    Sa = 35.
    Ta = 273.15 + 4.
    composition = ['methane', 'ethane', 'propane', 'oxygen']
    yk = np.array([0.85, 0.07, 0.08, 0.0])
    de = 0.005
    lambda_1 = 0.85
    K = 1.
    Kt = 1.
    fdis = 1e-6
    x = 0.
    y = 0.
    z = 0.

    # Compute a few derived quantities
    bub = dbm.FluidParticle(composition)
    nb0 = 1.e5
    m0 = bub.masses_by_diameter(de, T, P, yk)

    # Create a `PlumeParticle` object

    bub_obj = bent_plume_model.Particle(x, y, z, bub, m0, T, nb0,
        lambda_1, P, Sa, Ta, K, Kt, fdis)

    # Check if the initialized attributes are correct
    assert bub_obj.integrate == True
    assert bub_obj.sim_stored == False
    assert bub_obj.farfield == False
    assert bub_obj.t == 0.
    assert bub_obj.x == x
    assert bub_obj.y == y
    assert bub_obj.z == z
    for i in range(len(composition)):
        assert bub_obj.composition[i] == composition[i]
    assert_array_almost_equal(bub_obj.m0, m0, decimal=6)
    assert bub_obj.T0 == T
    assert_array_almost_equal(bub_obj.m, m0, decimal=6)
    assert bub_obj.T == T
    assert bub_obj.cp == seawater.cp() * 0.5
    assert bub_obj.K == K
    assert bub_obj.K_T == Kt
    assert bub_obj.fdis == fdis
    for i in range(len(composition)-1):
        assert bub_obj.diss_indices[i] == True
    assert bub_obj.diss_indices[-1] == False
    assert bub_obj.nb0 == nb0
    assert bub_obj.lambda_1 == lambda_1

    # Including the values after the first call to the update method
    us_ans = bub.slip_velocity(m0, T, P, Sa, Ta)
    rho_p_ans = bub.density(m0, T, P)
    A_ans = bub.surface_area(m0, T, P, Sa, Ta)
    Cs_ans = bub.solubility(m0, T, P, Sa)
    beta_ans = bub.mass_transfer(m0, T, P, Sa, Ta)
    beta_T_ans = bub.heat_transfer(m0, T, P, Sa, Ta)
    assert bub_obj.us == us_ans
    assert bub_obj.rho_p == rho_p_ans
    assert bub_obj.A == A_ans
    assert_array_almost_equal(bub_obj.Cs, Cs_ans, decimal=6)
    assert_array_almost_equal(bub_obj.beta, beta_ans, decimal=6)
    assert bub_obj.beta_T == beta_T_ans

    # Test the bub_obj.outside() method
    bub_obj.outside(Ta, Sa, P)
    assert bub_obj.us == 0.
    assert bub_obj.rho_p == seawater.density(Ta, Sa, P)
    assert bub_obj.A == 0.
    assert_array_almost_equal(bub_obj.Cs, np.zeros(len(composition)))
    assert_array_almost_equal(bub_obj.beta, np.zeros(len(composition)))
    assert bub_obj.beta_T == 0.
    assert bub_obj.T == Ta

    # No need to test the properties or diameter objects since they are
    # inherited from the `single_bubble_model` and tested in `test_sbm`.

    # No need to test the bub_obj.track(), bub_obj.run_sbm() since they will
    # be tested below for the simulation cases.

    # Check functionality of insoluble particle
    drop = dbm.InsolubleParticle(isfluid=True, iscompressible=True)
    m0 = drop.mass_by_diameter(de, T, P, Sa, Ta)
    drop_obj = bent_plume_model.Particle(x, y, z, drop, m0, T, nb0,
               lambda_1, P, Sa, Ta, K, fdis=fdis, K_T=Kt)
    assert len(drop_obj.composition) == 1
    assert drop_obj.composition[0] == 'inert'
    assert_array_almost_equal(drop_obj.m0, m0, decimal=6)
    assert drop_obj.T0 == T
    assert_array_almost_equal(drop_obj.m, m0, decimal=6)
    assert drop_obj.T == T
    assert drop_obj.cp == seawater.cp() * 0.5
    assert drop_obj.K == K
    assert drop_obj.K_T == Kt
    assert drop_obj.fdis == fdis
    assert drop_obj.diss_indices[0] == True
    assert drop_obj.nb0 == nb0
    assert drop_obj.lambda_1 == lambda_1

    # Including the values after the first call to the update method
    us_ans = drop.slip_velocity(m0, T, P, Sa, Ta)
    rho_p_ans = drop.density(T, P, Sa, Ta)
    A_ans = drop.surface_area(m0, T, P, Sa, Ta)
    beta_T_ans = drop.heat_transfer(m0, T, P, Sa, Ta)
    assert drop_obj.us == us_ans
    assert drop_obj.rho_p == rho_p_ans
    assert drop_obj.A == A_ans
    assert drop_obj.beta_T == beta_T_ans