Beispiel #1
0
def mdl_resid(x=None,
              targets=None,
              weights=w,
              save_to=None,
              load_from=None,
              return_format=['distance'],
              store_path=None,
              verbose=False,
              draw=False,
              graphs=False,
              rel_diff=False,
              cs_moments=False,
              moments_repeat=5,
              Tsim=30,
              moments_save_name=None):

    from model import Model
    from setup import DivorceCosts
    from simulations import Agents
    from crosssection import CrossSection
    from calibration_params import calibration_params

    if type(x) is dict:
        kwords = x

        if 'targets' in x:
            targets = x.pop('targets')

    else:
        lb, ub, xdef, keys, translator = calibration_params()

        if x is None:
            x = xdef
        kwords = translator(x)

    if verbose: print(kwords)

    # this is for the default model
    #dc_k  = DivorceCosts(unilateral_divorce=True,assets_kept = 1.0,u_lost_m=0.00,u_lost_f=0.00,eq_split=1.0)
    #dc_nk = DivorceCosts(unilateral_divorce=True,assets_kept = 1.0,u_lost_m=0.00,u_lost_f=0.00,eq_split=1.0)

    def join_path(name, path):
        return os.path.join(path, name)

    if load_from is not None:
        if type(load_from) is not list:
            load_from = [load_from]
        if store_path is not None:
            load_from = [join_path(n, store_path) for n in load_from]

    if save_to is not None:
        if type(save_to) is not list:
            save_to = [save_to]
        if store_path is not None:
            save_to = [join_path(n, store_path) for n in save_to]

    if load_from is None:

        mdl = Model(verbose=verbose, **kwords)
        mdl_list = [mdl]

    else:
        mdl_list = [dill.load(open(l, 'rb+')) for l in load_from]
        mdl = mdl_list[0]

    if save_to is not None:

        if len(save_to) > 1:
            print('warning: too much stuff is save_to')
        dill.dump(mdl, open(save_to[0], 'wb+'))

    np.random.seed(18)
    agents = Agents(mdl_list, verbose=verbose, fix_seed=False, T=Tsim)

    if not cs_moments:
        moments_list = [agents.compute_moments()] + [
            Agents(mdl_list, verbose=False, T=Tsim,
                   fix_seed=False).compute_moments()
            for _ in range(moments_repeat - 1)
        ]
    else:
        moments_list = [
            CrossSection(mdl_list,
                         verbose=False,
                         N_total=30000,
                         fix_seed=False).compute_moments()
            for _ in range(moments_repeat)
        ]

    mom = {
        key: np.mean([m[key] for m in moments_list], axis=0)
        for key in moments_list[0].keys()
    }

    #mom_join = Agents( mdl_list, N=10000, T=18, female=False, verbose=False).aux_moments()
    #mom_men = agents_extra.compute_moments()
    #mom.update(mom_join)

    if moments_save_name:  # is not None can be ommited
        filer('{}.pkl'.format(moments_save_name), mom, True)

    if targets is None:
        from targets import target_values
        tar = target_values()
    elif type(targets) is str:
        from targets import target_values
        tar = target_values(mode=targets)
    else:
        tar = targets

    resid_all, resid_sc, dist = distance_to_targets(mom,
                                                    tar,
                                                    weights=weights,
                                                    report=verbose)

    #if verbose:
    #    print('data moments are {}'.format(dat))
    #    print('simulated moments are {}'.format(sim))

    tt = mdl_list[0].get_total_time()
    print('Distance {}, time {}'.format(dist, tt))

    out_dict = {
        'distance': dist,
        'all residuals': resid_all,
        'scaled residuals': resid_sc,
        'models': mdl_list,
        'agents': agents,
        'moments': mom
    }

    out = [out_dict[key] for key in return_format]

    del (out_dict)

    if 'models' not in return_format:
        for m in mdl_list:
            del (m)
        del mdl_list

    if 'agents' not in return_format:
        del (agents)

    if len(out) == 1: out = out[0]

    return out
Beispiel #2
0
            'pmeet_35': 0.40800438661571153,
            'preg_21': 0.07677173244887601,
            'preg_28': 0.06061469851763078,
            'preg_35': 0.01825557056243586,
            'u_shift_mar': 1.7329041070973545,
            'util_alp': 0.6182672481649074,
            'util_kap': 0.8081836080864513,
            'util_qbar': 0.5163163798943308,
            'disutil_marry_sm_mal_coef': 14.446603934890161,
            'disutil_shotgun_coef': 0.4904309002252879,
            'taste_shock_mult': 4.116448914683272,
            'high education': True,
            'n_psi': npsi
        }

        tar = target_values('high education')
        out, mdl, agents, res, mom = mdl_resid(
            x=x,
            targets=tar,
            return_format=[
                'distance', 'models', 'agents', 'scaled residuals', 'moments'
            ],
            #load_from='mdl.pkl',
            verbose=False,
            draw=True,
            cs_moments=False,
            moments_repeat=2)

        mdl[0].time_statistics()
        print('Done. Residual in point x0 is {}'.format(out))
        del ((out, mdl, agents, res, mom))
Beispiel #3
0
        'pmeet_35': 0.3537668845748406,
        'preg_21': 0.03301912411330818,
        'preg_28': 0.04337421298029398,
        'preg_35': 0.06499192886306442,
        'u_shift_mar': 1.4329636375369272,
        'util_alp': 0.4980641699631754,
        'util_kap': 0.8967664551452008,
        'util_qbar': 1.0457400305750946,
        'disutil_marry_sm_mal_coef': 14.444200806643657,
        'disutil_shotgun_coef': 2.117334990378265,
        'abortion_costs_mult': 8.430713206729187,
        'p_abortion_access': 1.0,
        'u_lost_divorce_mult': 2.690742151483817
    }

    tar = target_values(targ_mode)

    out, mdl, agents, res, mom = mdl_resid(
        x=x,
        targets=tar,
        return_format=[
            'distance', 'models', 'agents', 'scaled residuals', 'moments'
        ],
        #load_from='mdl.pkl',
        verbose=True,
        draw=True,
        cs_moments=False,
        moments_save_name='college move social stigma',
        moments_repeat=2)

    mdl[0].time_statistics()
Beispiel #4
0
def run(resume=False, high_e=True):

    xinit, targ_mode = get_point(high_e, read_wisdom=False)
    tar = target_values(targ_mode)

    if resume:
        x_load = filer('wisdom_refined.pkl', 0, 0)
        prob_meet_load = x_load['pmeet_exo']
        prob_preg_load = x_load['ppreg_exo']
        xinit = x_load

    out, mdl, agents, res, mom = mdl_resid(x=xinit,
                                           targets=tar,
                                           return_format=[
                                               'distance', 'models', 'agents',
                                               'scaled residuals', 'moments'
                                           ],
                                           verbose=False)

    print('initial distance is {}'.format(out))

    if resume:
        prob_meet_init = prob_meet_load
        prob_preg_init = prob_preg_load
    else:
        prob_meet_init = np.array(
            mdl[0].setup.pars['pmeet_t'][:mdl[0].setup.pars['Tmeet']])
        prob_preg_init = np.array([
            mdl[0].setup.upp_precomputed_fem[t][3]
            for t in range(mdl[0].setup.pars['Tmeet'])
        ])

    nopt = 10
    yfactor = 1.5

    for iopt in range(nopt):

        print('running esimation round {}'.format(iopt))

        print('estimating probabilities:')

        prob_meet_est = 0.0
        prob_preg_est = 0.0
        nrep = 4 if iopt > 0 else 1
        np.random.seed(12)

        for rep in range(nrep):
            o = AgentsEst(mdl, T=30, verbose=False, fix_seed=False)

            prob_meet_est += (1 / nrep) * o.pmeet_exo.copy()
            prob_preg_est += (1 / nrep) * o.ppreg_exo.copy()

        print('estimated pmeet = {}'.format(prob_meet_est))
        print('estimated ppreg = {}'.format(prob_preg_est))

        # this does binary search

        w = 1.0

        factor = 0.5

        ne = prob_meet_est.size
        nw = 10
        print('reference value is {}'.format(out))

        y_previous = out

        for i in range(nw):
            prob_meet_w = w * prob_meet_est + (1 - w) * prob_meet_init[:ne]
            prob_preg_w = w * prob_preg_est + (1 - w) * prob_preg_init[:ne]

            xsearch = xinit.copy()
            xsearch.update({
                'pmeet_exo': prob_meet_w,
                'ppreg_exo': prob_preg_w
            })

            out_w = mdl_resid(x=xsearch,
                              targets=tar,
                              return_format=['distance'],
                              verbose=False)

            print('with weight = {}, distance is {}'.format(w, out_w))

            if out_w < yfactor * out:
                print('found a potentially imporving weight for yfactor = {}'.
                      format(yfactor))
                break
            else:
                w = factor * w
                if i < nw - 1:
                    print('trying new weight = {}'.format(w))
                else:
                    print('no luck...')

        xfix = {
            k: xinit[k]
            for k in [
                'pmeet_21', 'pmeet_30', 'pmeet_40', 'preg_21', 'preg_28',
                'preg_35'
            ]
        }

        lb, ub, _, keys, translator = calibration_params(xfix=xfix)

        def tr(x):
            xx = translator(x)
            xx.update({'pmeet_exo': prob_meet_w, 'ppreg_exo': prob_preg_w})
            return xx

        x0 = [xinit[key] for key in keys]

        x0, lb, ub = np.array(x0), np.array(lb), np.array(ub)

        print('starting from {}'.format(tr(x0)))

        tar = target_values('high education')

        def q(pt):
            #print('computing at point {}'.format(translator(pt)))
            try:
                ans = mdl_resid(tr(pt), return_format=['scaled residuals'])
            except BaseException as a:
                print('During optimization function evaluation failed at {}'.
                      format(pt))
                print(a)
                ans = np.array([1e6])
            finally:
                gc.collect()
            return ans

        res = dfols.solve(q,
                          x0,
                          rhobeg=0.02,
                          rhoend=1e-5,
                          maxfun=60,
                          bounds=(lb, ub),
                          scaling_within_bounds=True,
                          objfun_has_noise=False,
                          npt=len(x0) + 5,
                          user_params={
                              'restarts.use_restarts': True,
                              'restarts.rhoend_scale': 0.5,
                              'restarts.increase_npt': True
                          })

        print(res)
        print('Result is {}'.format(tr(res.x)))
        filer('wisdom_refined.pkl', tr(res.x), True)
        print('wrote to the file!')

        xinit = tr(res.x)
        out, mdl, agents, res, mom = mdl_resid(x=xinit,
                                               return_format=[
                                                   'distance', 'models',
                                                   'agents',
                                                   'scaled residuals',
                                                   'moments'
                                               ])
        if out > y_previous:
            print('no reduction in function value obtained')
            yfactor = 0.5 * yfactor + 0.5

        y_previous = out
Beispiel #5
0
def run(adj_name, fix, educ_name, resume=False, noplot=False):
    # at first this takes point x saved in estimates.py
    # by calling get_point(high_e). x is a dict with parameter names and values
    # then it applies adjustment fix (a dict) to the point x
    # resulting file name is educ_name + adj_name
    # adj_name -- name of adjustment
    # fix -- dictionary containing parameters of setup.py to change
    # educ_name -- name of education group ("col" or "hs")
    # high_e -- input to get_point function, True for college, False for HS

    high_e = (educ_name == 'col' or educ_name == 'college')
    low_e = (educ_name == 'hs' or educ_name == 'high school')

    assert (high_e or low_e), 'wrong specifier for education'

    x, targ_mode = get_point(high_e, read_wisdom=False)

    tar = target_values(targ_mode)

    print('\n\n\n\n\n\n')
    print('doing {} {}'.format(educ_name, adj_name))

    x_new = x.copy()

    fix = fix.copy()

    if 'multiply' in fix:
        mult = fix.pop('multiply')
        for m in mult:
            x_new[m] *= mult[m]

    x_new.update(fix)

    print(x_new)

    name = '{} {}'.format(educ_name, adj_name)
    fname = '{}.pkl'.format(name)

    try:

        if resume:
            try:
                mom = filer(fname, 0, 0, repeat=False)
                skip = True
            except:
                skip = False
        else:
            skip = False

        if not skip:
            print("computing {}".format(fname))
            out, mom = mdl_resid(x=x_new,
                                 targets=tar,
                                 return_format=['distance', 'moments'],
                                 verbose=False,
                                 draw=False,
                                 cs_moments=False,
                                 save_to='mdl for {}'.format(fname),
                                 moments_save_name=name,
                                 moments_repeat=5,
                                 Tsim=42)
            print("file {} saved".format(fname))
        else:
            print("file {} already exists".format(fname))

        print('done, doing fit plots')

        try:
            if adj_name == 'baseline':
                fp = FitPlots(targ_mode=targ_mode,
                              compare=None,
                              base='{} baseline.pkl'.format(educ_name),
                              compare_name='Data',
                              base_name='baseline',
                              moments_aux=None,
                              noplot=noplot)
            else:
                fp = FitPlots(targ_mode=targ_mode,
                              compare='{} baseline.pkl'.format(educ_name),
                              base=fname,
                              compare_name='baseline',
                              base_name=adj_name,
                              moments_aux=None,
                              noplot=noplot)
        except:
            print('something wrong with fit plots...')

    except KeyboardInterrupt:
        raise (KeyboardInterrupt)
    except BaseException as a:
        print("file {} {}.pkl could not be produced. Exception:".format(
            name, adj_name))
        print(a)
        print(' ')
    return mom, fp
Beispiel #6
0
    os.environ['QT_QPA_PLATFORM'] = 'offscreen'

from residuals import mdl_resid

print('Hi!')

import os
os.environ['MKL_CBWR'] = 'AUTO'

from estimates import get_point

if __name__ == '__main__':

    x_base, tm = get_point(True, read_wisdom=False)  # high education

    tar = target_values(tm)

    x_comp, _ = get_point(False, read_wisdom=False)  # low education

    pmeets = ['pmeet_21', 'pmeet_30', 'pmeet_40']
    ppregs = ['preg_21', 'preg_28', 'preg_35']
    abortions = ['abortion_costs', 'p_abortion_access']
    prefs = [
        'disutil_marry_sm_mal', 'disutil_shotgun', 'u_lost_divorce',
        'util_qbar'
    ]
    # form xlist
    xlist = [x_base]
    he = ['high education'],
    replace_fields = [('trend only', he), ('pmeets', pmeets),
                      ('ppregs', ppregs), ('remar', ['disutil_marry_sm_mal']),
Beispiel #7
0
def main(read_wisdom=False,erase=False):
    
    high_e = True
    
    if erase:
        try:
            os.remove('az_dist_fem.pkl')
            print('removed')
        except:
            pass

        try:
            os.remove('az_dist_mal.pkl')
            print('removed')
        except:
            pass
    
    x, targ_mode = get_point(high_e,read_wisdom=read_wisdom)
    
        
    
    tar = target_values(targ_mode)


    this_name = 'college baseline' if high_e else 'high school baseline'
    out, mdl, agents, res, mom = mdl_resid(x=x,targets=tar,
                                      return_format=['distance','models','agents','scaled residuals','moments'],
                                      #load_from='mdl.pkl',
                                      verbose=True,draw=True,cs_moments=False,
                                      moments_save_name = this_name,
                                      moments_repeat=1)


    #agents.sim_graphs()

    
    mdl[0].time_statistics()

    print('Done. Residual in point x0 is {}'.format(out))

    from fit_plot import FitPlots
    fp = FitPlots(targ_mode=targ_mode,
                   compare=None,
                   base=this_name+'.pkl',
                   compare_name='data',
                   base_name='college baseline',
                   moments_aux=None) #,moments_aux=moments_aux)
    
    '''
    from fit_plot import FitPlots
    fp = FitPlots(targ_mode=targ_mode,
                   compare='col baseline.pkl',
                   base='col double social stigma.pkl',
                   compare_name='baseline',
                   base_name='double stigma',
                   moments_aux=None) #,moments_aux=moments_aux)
    
    '''
    mdl[0].mar_graphs(t = 4)
    
    return locals()