def create_model(use_cuda): tcn = define_model(use_cuda) # tcn = PosNet() if arguments.load_model: model_path = os.path.join(arguments.model_folder, arguments.load_model) # map_location allows us to load models trained on cuda to cpu. tcn.load_state_dict( torch.load(model_path, map_location=lambda storage, loc: storage)) if use_cuda: tcn = tcn.cuda() return tcn
def load_model(model_path, use_cuda=True): tcn = define_model(use_cuda) tcn = torch.nn.DataParallel(tcn, device_ids=range(torch.cuda.device_count())) # tcn = PosNet() # Change dict names if model was created with nn.DataParallel state_dict = torch.load(model_path, map_location=lambda storage, loc: storage) new_state_dict = OrderedDict() # for k, v in state_dict.items(): # name = k[7:] # remove module. # new_state_dict[name] = v # map_location allows us to load models trained on cuda to cpu. tcn.load_state_dict(state_dict) if use_cuda: tcn = tcn.cuda() return tcn
self._kuka.applyAction(action) bullet.stepSimulation() if self._renders: time.sleep(self._timeStep) reward = self._reward() frames = self.reward_frames() self._envStepCounter += 1 done = self._termination() if not (done): self._observation = self.getExtendedObservation() return self._observation, reward, done, frames if __name__ == "__main__": frame_size = (299, 299) tcn = define_model(False) model_path = os.path.join("./trained_models/tcn", "inception-epoch-2000.pk") tcn.load_state_dict( torch.load(model_path, map_location=lambda storage, loc: storage)) env = ImitationEnv(renders=True, video_dir='./data/validation/angle1', tcn=tcn, frame_size=frame_size) done = False while not (done): observations, reward, done, _ = env.step(env.action_space.sample()) assert len(x.size()) == 4
def load_model(self, model_path, model): tcn = define_model(self.use_cuda) model_path = os.path.join(model_path, model) tcn.load_state_dict( torch.load(model_path, map_location=lambda storage, loc: storage)) return tcn
def load_model(model_path): tcn = define_model(pretrained=False) tcn.load_state_dict( torch.load(model_path, map_location=lambda storage, loc: storage)) return tcn