Beispiel #1
0
def t2smap(data, tes, combmode='t2s', label=None):
    """
    Estimate T2 and S0, and optimally combine data across TEs.

    Parameters
    ----------
    data : :obj:`list` of :obj:`str`
        Either a single z-concatenated file (single-entry list) or a
        list of echo-specific files, in ascending order.
    tes : :obj:`list`
        List of echo times associated with data in milliseconds.
    combmode : {'t2s', 'ste'}, optional
        Combination scheme for TEs: 't2s' (Posse 1999, default), 'ste' (Poser).
    label : :obj:`str` or :obj:`None`, optional
        Label for output directory. Default is None.
    """
    if label is not None:
        suf = '_%s' % str(label)
    else:
        suf = ''
    tes, data, combmode = tes, data, combmode

    tes = [float(te) for te in tes]
    n_echos = len(tes)

    catd = utils.load_data(data, n_echos=n_echos)
    _, n_echos, _ = catd.shape

    ref_img = data[0] if isinstance(data, list) else data

    LGR.info('Computing adaptive mask')
    mask, masksum = utils.make_adaptive_mask(catd, minimum=False, getsum=True)
    utils.filewrite(masksum, 'masksum%s' % suf, ref_img, copy_header=False)

    LGR.info('Computing adaptive T2* map')
    t2s, s0, t2ss, s0vs, _, _ = model.t2sadmap(catd, tes, mask, masksum, 2)
    utils.filewrite(t2ss, 't2ss%s' % suf, ref_img, copy_header=False)
    utils.filewrite(s0vs, 's0vs%s' % suf, ref_img, copy_header=False)

    LGR.info('Computing optimal combination')
    tsoc = np.array(model.make_optcom(catd, t2s, tes, mask, combmode),
                    dtype=float)

    # Clean up numerical errors
    t2sm = t2s.copy()
    for n in (tsoc, s0, t2s, t2sm):
        np.nan_to_num(n, copy=False)

    s0[s0 < 0] = 0
    t2s[t2s < 0] = 0
    t2sm[t2sm < 0] = 0

    utils.filewrite(tsoc, 'ocv%s' % suf, ref_img, copy_header=False)
    utils.filewrite(s0, 's0v%s' % suf, ref_img, copy_header=False)
    utils.filewrite(t2s, 't2sv%s' % suf, ref_img, copy_header=False)
    utils.filewrite(t2sm, 't2svm%s' % suf, ref_img, copy_header=False)
Beispiel #2
0
def fitmodels_direct(catd,
                     mmix,
                     mask,
                     t2s,
                     t2sG,
                     tes,
                     combmode,
                     ref_img,
                     fout=None,
                     reindex=False,
                     mmixN=None,
                     full_sel=True):
    """
    Fit models directly.

    Parameters
    ----------
    catd : (S x E x T) array_like
        Input data, where `S` is samples, `E` is echos, and `T` is time
    mmix : (T x C) array_like
        Mixing matrix for converting input data to component space, where `C`
        is components and `T` is the same as in `catd`
    mask : (S,) array_like
        Boolean mask array
    t2s : (S,) array_like
    t2sG : (S,) array_like
    tes : list
        List of echo times associated with `catd`, in milliseconds
    combmode : {'t2s', 'ste'} str
        How optimal combination of echos should be made, where 't2s' indicates
        using the method of Posse 1999 and 'ste' indicates using the method of
        Poser 2006
    ref_img : str or img_like
        Reference image to dictate how outputs are saved to disk
    fout : bool
        Whether to output per-component TE-dependence maps. Default: None
    reindex : bool, optional
        Default: False
    mmixN : array_like, optional
        Default: None
    full_sel : bool, optional
        Whether to perform selection of components based on Rho/Kappa scores.
        Default: True

    Returns
    -------
    seldict : dict
    comptab : (N x 5) :obj:`numpy.ndarray`
        Array with columns denoting (1) index of component, (2) Kappa score of
        component, (3) Rho score of component, (4) variance explained by
        component, and (5) normalized variance explained bycomponent
    betas : :obj:`numpy.ndarray`
    mmix_new : :obj:`numpy.ndarray`
    """

    # compute optimal combination of raw data
    tsoc = model.make_optcom(catd, t2sG, tes, mask, combmode,
                             verbose=False).astype(float)[mask]
    # demean optimal combination
    tsoc_dm = tsoc - tsoc.mean(axis=-1, keepdims=True)

    # compute un-normalized weight dataset (features)
    if mmixN is None:
        mmixN = mmix
    WTS = computefeats2(utils.unmask(tsoc, mask), mmixN, mask, normalize=False)

    # compute PSC dataset - shouldn't have to refit data
    tsoc_B = get_coeffs(utils.unmask(tsoc_dm, mask), mask, mmix)[mask]
    tsoc_Babs = np.abs(tsoc_B)
    PSC = tsoc_B / tsoc.mean(axis=-1, keepdims=True) * 100

    # compute skews to determine signs based on unnormalized weights,
    # correct mmix & WTS signs based on spatial distribution tails
    signs = stats.skew(WTS, axis=0)
    signs /= np.abs(signs)
    mmix = mmix.copy()
    mmix *= signs
    WTS *= signs
    PSC *= signs
    totvar = (tsoc_B**2).sum()
    totvar_norm = (WTS**2).sum()

    # compute Betas and means over TEs for TE-dependence analysis
    betas = get_coeffs(catd, np.repeat(mask[:, np.newaxis], len(tes), axis=1),
                       mmix)
    n_samp, n_echos, n_components = betas.shape
    n_voxels = mask.sum()
    n_data_voxels = (t2s != 0).sum()
    mu = catd.mean(axis=-1, dtype=float)
    tes = np.reshape(tes, (n_echos, 1))
    fmin, fmid, fmax = utils.getfbounds(n_echos)

    # mask arrays
    mumask = mu[t2s != 0]
    t2smask = t2s[t2s != 0]
    betamask = betas[t2s != 0]

    # set up Xmats
    X1 = mumask.T  # Model 1
    X2 = np.tile(tes, (1, n_data_voxels)) * mumask.T / t2smask.T  # Model 2

    # tables for component selection
    Kappas = np.zeros([n_components])
    Rhos = np.zeros([n_components])
    varex = np.zeros([n_components])
    varex_norm = np.zeros([n_components])
    Z_maps = np.zeros([n_voxels, n_components])
    F_R2_maps = np.zeros([n_data_voxels, n_components])
    F_S0_maps = np.zeros([n_data_voxels, n_components])
    Z_clmaps = np.zeros([n_voxels, n_components])
    F_R2_clmaps = np.zeros([n_data_voxels, n_components])
    F_S0_clmaps = np.zeros([n_data_voxels, n_components])
    Br_clmaps_R2 = np.zeros([n_voxels, n_components])
    Br_clmaps_S0 = np.zeros([n_voxels, n_components])

    LGR.info('Fitting TE- and S0-dependent models to components')
    for i in range(n_components):
        # size of B is (n_components, nx*ny*nz)
        B = np.atleast_3d(betamask)[:, :, i].T
        alpha = (np.abs(B)**2).sum(axis=0)
        varex[i] = (tsoc_B[:, i]**2).sum() / totvar * 100.
        varex_norm[i] = (utils.unmask(WTS, mask)[t2s != 0][:, i]**
                         2).sum() / totvar_norm * 100.

        # S0 Model
        coeffs_S0 = (B * X1).sum(axis=0) / (X1**2).sum(axis=0)
        SSE_S0 = (B - X1 * np.tile(coeffs_S0, (n_echos, 1)))**2
        SSE_S0 = SSE_S0.sum(axis=0)
        F_S0 = (alpha - SSE_S0) * 2 / (SSE_S0)
        F_S0_maps[:, i] = F_S0

        # R2 Model
        coeffs_R2 = (B * X2).sum(axis=0) / (X2**2).sum(axis=0)
        SSE_R2 = (B - X2 * np.tile(coeffs_R2, (n_echos, 1)))**2
        SSE_R2 = SSE_R2.sum(axis=0)
        F_R2 = (alpha - SSE_R2) * 2 / (SSE_R2)
        F_R2_maps[:, i] = F_R2

        # compute weights as Z-values
        wtsZ = (WTS[:, i] - WTS[:, i].mean()) / WTS[:, i].std()
        wtsZ[np.abs(wtsZ) > Z_MAX] = (
            Z_MAX * (np.abs(wtsZ) / wtsZ))[np.abs(wtsZ) > Z_MAX]
        Z_maps[:, i] = wtsZ

        # compute Kappa and Rho
        F_S0[F_S0 > F_MAX] = F_MAX
        F_R2[F_R2 > F_MAX] = F_MAX
        norm_weights = np.abs(
            np.squeeze(utils.unmask(wtsZ, mask)[t2s != 0]**2.))
        Kappas[i] = np.average(F_R2, weights=norm_weights)
        Rhos[i] = np.average(F_S0, weights=norm_weights)

    # tabulate component values
    comptab_pre = np.vstack(
        [np.arange(n_components), Kappas, Rhos, varex, varex_norm]).T
    if reindex:
        # re-index all components in Kappa order
        comptab = comptab_pre[comptab_pre[:, 1].argsort()[::-1], :]
        Kappas = comptab[:, 1]
        Rhos = comptab[:, 2]
        varex = comptab[:, 3]
        varex_norm = comptab[:, 4]
        nnc = np.array(comptab[:, 0], dtype=np.int)
        mmix_new = mmix[:, nnc]
        F_S0_maps = F_S0_maps[:, nnc]
        F_R2_maps = F_R2_maps[:, nnc]
        Z_maps = Z_maps[:, nnc]
        WTS = WTS[:, nnc]
        PSC = PSC[:, nnc]
        tsoc_B = tsoc_B[:, nnc]
        tsoc_Babs = tsoc_Babs[:, nnc]
        comptab[:, 0] = np.arange(comptab.shape[0])
    else:
        comptab = comptab_pre
        mmix_new = mmix

    # full selection including clustering criteria
    seldict = None
    if full_sel:
        LGR.info('Performing spatial clustering of components')
        csize = np.max([int(n_voxels * 0.0005) + 5, 20])
        LGR.debug('Using minimum cluster size: {}'.format(csize))
        for i in range(n_components):
            # save out files
            out = np.zeros((n_samp, 4))
            out[:, 0] = np.squeeze(utils.unmask(PSC[:, i], mask))
            out[:, 1] = np.squeeze(utils.unmask(F_R2_maps[:, i], t2s != 0))
            out[:, 2] = np.squeeze(utils.unmask(F_S0_maps[:, i], t2s != 0))
            out[:, 3] = np.squeeze(utils.unmask(Z_maps[:, i], mask))

            if utils.get_dtype(ref_img) == 'GIFTI':
                continue  # TODO: pass through GIFTI file data as below

            ccimg = utils.new_nii_like(ref_img, out)

            # Do simple clustering on F
            sel = spatclust(ccimg,
                            min_cluster_size=csize,
                            threshold=int(fmin),
                            index=[1, 2],
                            mask=(t2s != 0))
            F_R2_clmaps[:, i] = sel[:, 0]
            F_S0_clmaps[:, i] = sel[:, 1]
            countsigFR2 = F_R2_clmaps[:, i].sum()
            countsigFS0 = F_S0_clmaps[:, i].sum()

            # Do simple clustering on Z at p<0.05
            sel = spatclust(ccimg,
                            min_cluster_size=csize,
                            threshold=1.95,
                            index=3,
                            mask=mask)
            Z_clmaps[:, i] = sel

            # Do simple clustering on ranked signal-change map
            spclust_input = utils.unmask(stats.rankdata(tsoc_Babs[:, i]), mask)
            spclust_input = utils.new_nii_like(ref_img, spclust_input)
            Br_clmaps_R2[:, i] = spatclust(spclust_input,
                                           min_cluster_size=csize,
                                           threshold=max(tsoc_Babs.shape) -
                                           countsigFR2,
                                           mask=mask)
            Br_clmaps_S0[:, i] = spatclust(spclust_input,
                                           min_cluster_size=csize,
                                           threshold=max(tsoc_Babs.shape) -
                                           countsigFS0,
                                           mask=mask)

        seldict = {}
        selvars = [
            'Kappas', 'Rhos', 'WTS', 'varex', 'Z_maps', 'F_R2_maps',
            'F_S0_maps', 'Z_clmaps', 'F_R2_clmaps', 'F_S0_clmaps', 'tsoc_B',
            'Br_clmaps_R2', 'Br_clmaps_S0', 'PSC'
        ]
        for vv in selvars:
            seldict[vv] = eval(vv)

    return seldict, comptab, betas, mmix_new
Beispiel #3
0
def tedana(data,
           tes,
           mixm=None,
           ctab=None,
           manacc=None,
           strict=False,
           gscontrol=True,
           kdaw=10.,
           rdaw=1.,
           conv=2.5e-5,
           ste=-1,
           combmode='t2s',
           dne=False,
           initcost='tanh',
           finalcost='tanh',
           stabilize=False,
           fout=False,
           filecsdata=False,
           label=None,
           fixed_seed=42,
           debug=False,
           quiet=False):
    """
    Run the "canonical" TE-Dependent ANAlysis workflow.

    Parameters
    ----------
    data : :obj:`list` of :obj:`str`
        Either a single z-concatenated file (single-entry list) or a
        list of echo-specific files, in ascending order.
    tes : :obj:`list`
        List of echo times associated with data in milliseconds.
    mixm : :obj:`str`, optional
        File containing mixing matrix. If not provided, ME-PCA and ME-ICA are
        done.
    ctab : :obj:`str`, optional
        File containing component table from which to extract pre-computed
        classifications.
    manacc : :obj:`str`, optional
        Comma separated list of manually accepted components in string form.
        Default is None.
    strict : :obj:`bool`, optional
        Ignore low-variance ambiguous components. Default is False.
    gscontrol : :obj:`bool`, optional
        Control global signal using spatial approach. Default is True.
    kdaw : :obj:`float`, optional
        Dimensionality augmentation weight (Kappa). Default is 10.
        -1 for low-dimensional ICA.
    rdaw : :obj:`float`, optional
        Dimensionality augmentation weight (Rho). Default is 1.
        -1 for low-dimensional ICA.
    conv : :obj:`float`, optional
        Convergence limit. Default is 2.5e-5.
    ste : :obj:`int`, optional
        Source TEs for models. 0 for all, -1 for optimal combination.
        Default is -1.
    combmode : {'t2s', 'ste'}, optional
        Combination scheme for TEs: 't2s' (Posse 1999, default), 'ste' (Poser).
    dne : :obj:`bool`, optional
        Denoise each TE dataset separately. Default is False.
    initcost : {'tanh', 'pow3', 'gaus', 'skew'}, optional
        Initial cost function for ICA. Default is 'tanh'.
    finalcost : {'tanh', 'pow3', 'gaus', 'skew'}, optional
        Final cost function. Default is 'tanh'.
    stabilize : :obj:`bool`, optional
        Stabilize convergence by reducing dimensionality, for low quality data.
        Default is False.
    fout : :obj:`bool`, optional
        Save output TE-dependence Kappa/Rho SPMs. Default is False.
    filecsdata : :obj:`bool`, optional
        Save component selection data to file. Default is False.
    label : :obj:`str` or :obj:`None`, optional
        Label for output directory. Default is None.
    fixed_seed : :obj:`int`, optional
        Seeded value for ICA, for reproducibility.
    """

    # ensure tes are in appropriate format
    tes = [float(te) for te in tes]
    n_echos = len(tes)

    # coerce data to samples x echos x time array
    LGR.info('Loading input data: {}'.format([op.abspath(f) for f in data]))
    catd, ref_img = utils.load_data(data, n_echos=n_echos)
    n_samp, n_echos, n_vols = catd.shape
    LGR.debug('Resulting data shape: {}'.format(catd.shape))

    if fout:
        fout = ref_img
    else:
        fout = None

    kdaw, rdaw = float(kdaw), float(rdaw)

    if label is not None:
        out_dir = 'TED.{0}'.format(label)
    else:
        out_dir = 'TED'
    out_dir = op.abspath(out_dir)
    if not op.isdir(out_dir):
        LGR.info('Creating output directory: {}'.format(out_dir))
        os.mkdir(out_dir)
    else:
        LGR.info('Using output directory: {}'.format(out_dir))

    if mixm is not None and op.isfile(mixm):
        shutil.copyfile(mixm, op.join(out_dir, 'meica_mix.1D'))
        shutil.copyfile(mixm, op.join(out_dir, op.basename(mixm)))
    elif mixm is not None:
        raise IOError('Argument "mixm" must be an existing file.')

    if ctab is not None and op.isfile(ctab):
        shutil.copyfile(ctab, op.join(out_dir, 'comp_table.txt'))
        shutil.copyfile(ctab, op.join(out_dir, op.basename(ctab)))
    elif ctab is not None:
        raise IOError('Argument "ctab" must be an existing file.')

    os.chdir(out_dir)

    LGR.info('Computing adapative mask')
    mask, masksum = utils.make_adaptive_mask(catd, minimum=False, getsum=True)
    LGR.debug('Retaining {}/{} samples'.format(mask.sum(), n_samp))

    LGR.info('Computing T2* map')
    t2s, s0, t2ss, s0s, t2sG, s0G = model.fit_decay(catd,
                                                    tes,
                                                    mask,
                                                    masksum,
                                                    start_echo=1)

    # set a hard cap for the T2* map
    # anything that is 10x higher than the 99.5 %ile will be reset to 99.5 %ile
    cap_t2s = stats.scoreatpercentile(t2s.flatten(),
                                      99.5,
                                      interpolation_method='lower')
    LGR.debug('Setting cap on T2* map at {:.5f}'.format(cap_t2s * 10))
    t2s[t2s > cap_t2s * 10] = cap_t2s
    utils.filewrite(t2s, op.join(out_dir, 't2sv'), ref_img)
    utils.filewrite(s0, op.join(out_dir, 's0v'), ref_img)
    utils.filewrite(t2ss, op.join(out_dir, 't2ss'), ref_img)
    utils.filewrite(s0s, op.join(out_dir, 's0vs'), ref_img)
    utils.filewrite(t2sG, op.join(out_dir, 't2svG'), ref_img)
    utils.filewrite(s0G, op.join(out_dir, 's0vG'), ref_img)

    # optimally combine data
    OCcatd = model.make_optcom(catd, t2sG, tes, mask, combmode)

    # regress out global signal unless explicitly not desired
    if gscontrol:
        catd, OCcatd = model.gscontrol_raw(catd, OCcatd, n_echos, ref_img)

    if mixm is None:
        n_components, dd = decomposition.tedpca(catd,
                                                OCcatd,
                                                combmode,
                                                mask,
                                                t2s,
                                                t2sG,
                                                stabilize,
                                                ref_img,
                                                tes=tes,
                                                kdaw=kdaw,
                                                rdaw=rdaw,
                                                ste=ste)
        mmix_orig = decomposition.tedica(n_components,
                                         dd,
                                         conv,
                                         fixed_seed,
                                         cost=initcost,
                                         final_cost=finalcost,
                                         verbose=debug)
        np.savetxt(op.join(out_dir, '__meica_mix.1D'), mmix_orig)
        LGR.info('Making second component selection guess from ICA results')
        seldict, comptable, betas, mmix = model.fitmodels_direct(catd,
                                                                 mmix_orig,
                                                                 mask,
                                                                 t2s,
                                                                 t2sG,
                                                                 tes,
                                                                 combmode,
                                                                 ref_img,
                                                                 fout=fout,
                                                                 reindex=True)
        np.savetxt(op.join(out_dir, 'meica_mix.1D'), mmix)

        acc, rej, midk, empty = selection.selcomps(seldict,
                                                   mmix,
                                                   mask,
                                                   ref_img,
                                                   manacc,
                                                   n_echos,
                                                   t2s,
                                                   s0,
                                                   strict_mode=strict,
                                                   filecsdata=filecsdata)
    else:
        LGR.info('Using supplied mixing matrix from ICA')
        mmix_orig = np.loadtxt(op.join(out_dir, 'meica_mix.1D'))
        seldict, comptable, betas, mmix = model.fitmodels_direct(catd,
                                                                 mmix_orig,
                                                                 mask,
                                                                 t2s,
                                                                 t2sG,
                                                                 tes,
                                                                 combmode,
                                                                 ref_img,
                                                                 fout=fout)
        if ctab is None:
            acc, rej, midk, empty = selection.selcomps(seldict,
                                                       mmix,
                                                       mask,
                                                       ref_img,
                                                       manacc,
                                                       n_echos,
                                                       t2s,
                                                       s0,
                                                       filecsdata=filecsdata,
                                                       strict_mode=strict)
        else:
            acc, rej, midk, empty = utils.ctabsel(ctab)

    if len(acc) == 0:
        LGR.warning(
            'No BOLD components detected! Please check data and results!')

    utils.writeresults(OCcatd, mask, comptable, mmix, n_vols, acc, rej, midk,
                       empty, ref_img)
    utils.gscontrol_mmix(OCcatd, mmix, mask, acc, rej, midk, ref_img)
    if dne:
        utils.writeresults_echoes(catd, mmix, mask, acc, rej, midk, ref_img)
Beispiel #4
0
def t2smap_workflow(data, tes, fitmode='all', combmode='t2s', label=None):
    """
    Estimate T2 and S0, and optimally combine data across TEs.

    Parameters
    ----------
    data : :obj:`str` or :obj:`list` of :obj:`str`
        Either a single z-concatenated file (single-entry list or str) or a
        list of echo-specific files, in ascending order.
    tes : :obj:`list`
        List of echo times associated with data in milliseconds.
    fitmode : {'all', 'ts'}, optional
        Monoexponential model fitting scheme.
        'all' means that the model is fit, per voxel, across all timepoints.
        'ts' means that the model is fit, per voxel and per timepoint.
        Default is 'all'.
    combmode : {'t2s', 'ste'}, optional
        Combination scheme for TEs: 't2s' (Posse 1999, default), 'ste' (Poser).
    label : :obj:`str` or :obj:`None`, optional
        Label for output directory. Default is None.

    Notes
    -----
    This workflow writes out several files, which are written out to a folder
    named TED.[ref_label].[label] if ``label`` is provided and TED.[ref_label]
    if not. ``ref_label`` is determined based on the name of the first ``data``
    file.

    Files are listed below:

    ======================    =================================================
    Filename                  Content
    ======================    =================================================
    t2sv.nii                  Limited estimated T2* 3D map or 4D timeseries.
                              Will be a 3D map if ``fitmode`` is 'all' and a
                              4D timeseries if it is 'ts'.
    s0v.nii                   Limited S0 3D map or 4D timeseries.
    t2svG.nii                 Full T2* map/timeseries. The difference between
                              the limited and full maps is that, for voxels
                              affected by dropout where only one echo contains
                              good data, the full map uses the single echo's
                              value while the limited map has a NaN.
    s0vG.nii                  Full S0 map/timeseries.
    ts_OC.nii                 Optimally combined timeseries.
    ======================    =================================================
    """
    # ensure tes are in appropriate format
    tes = [float(te) for te in tes]
    n_echos = len(tes)

    # coerce data to samples x echos x time array
    if isinstance(data, str):
        data = [data]

    LGR.info('Loading input data: {}'.format([f for f in data]))
    catd, ref_img = utils.load_data(data, n_echos=n_echos)
    n_samp, n_echos, n_vols = catd.shape
    LGR.debug('Resulting data shape: {}'.format(catd.shape))

    try:
        ref_label = os.path.basename(ref_img).split('.')[0]
    except TypeError:
        ref_label = os.path.basename(str(data[0])).split('.')[0]

    if label is not None:
        out_dir = 'TED.{0}.{1}'.format(ref_label, label)
    else:
        out_dir = 'TED.{0}'.format(ref_label)
    out_dir = op.abspath(out_dir)
    if not op.isdir(out_dir):
        LGR.info('Creating output directory: {}'.format(out_dir))
        os.mkdir(out_dir)
    else:
        LGR.info('Using output directory: {}'.format(out_dir))

    LGR.info('Computing adaptive mask')
    mask, masksum = utils.make_adaptive_mask(catd, minimum=False, getsum=True)

    LGR.info('Computing adaptive T2* map')
    if fitmode == 'all':
        (t2s_limited, s0_limited,
         t2ss, s0s,
         t2s_full, s0_full) = model.fit_decay(catd, tes, mask,
                                              masksum, start_echo=1)
    else:
        (t2s_limited, s0_limited,
         t2s_full, s0_full) = model.fit_decay_ts(catd, tes, mask, masksum,
                                                 start_echo=1)

    # set a hard cap for the T2* map/timeseries
    # anything that is 10x higher than the 99.5 %ile will be reset to 99.5 %ile
    cap_t2s = stats.scoreatpercentile(t2s_limited.flatten(), 99.5,
                                      interpolation_method='lower')
    LGR.debug('Setting cap on T2* map at {:.5f}'.format(cap_t2s * 10))
    t2s_limited[t2s_limited > cap_t2s * 10] = cap_t2s

    LGR.info('Computing optimal combination')
    # optimally combine data
    OCcatd = model.make_optcom(catd, tes, mask, t2s=t2s_full,
                               combmode=combmode)

    # clean up numerical errors
    for arr in (OCcatd, s0_limited, t2s_limited):
        np.nan_to_num(arr, copy=False)

    s0_limited[s0_limited < 0] = 0
    t2s_limited[t2s_limited < 0] = 0

    utils.filewrite(t2s_limited, op.join(out_dir, 't2sv.nii'), ref_img)
    utils.filewrite(s0_limited, op.join(out_dir, 's0v.nii'), ref_img)
    utils.filewrite(t2s_full, op.join(out_dir, 't2svG.nii'), ref_img)
    utils.filewrite(s0_full, op.join(out_dir, 's0vG.nii'), ref_img)
    utils.filewrite(OCcatd, op.join(out_dir, 'ts_OC.nii'), ref_img)
Beispiel #5
0
def tedana(data, tes, mixm=None, ctab=None, manacc=None, strict=False,
           gscontrol=True, kdaw=10., rdaw=1., conv=2.5e-5, ste=-1,
           combmode='t2s', dne=False, initcost='tanh', finalcost='tanh',
           stabilize=False, fout=False, filecsdata=False, label=None,
           fixed_seed=42, debug=False, quiet=False):
    """
    Run the "canonical" TE-Dependent ANAlysis workflow.

    Parameters
    ----------
    data : :obj:`list` of :obj:`str`
        Either a single z-concatenated file (single-entry list) or a
        list of echo-specific files, in ascending order.
    tes : :obj:`list`
        List of echo times associated with data in milliseconds.
    mixm : :obj:`str`, optional
        File containing mixing matrix. If not provided, ME-PCA and ME-ICA are
        done.
    ctab : :obj:`str`, optional
        File containing component table from which to extract pre-computed
        classifications.
    manacc : :obj:`str`, optional
        Comma separated list of manually accepted components in string form.
        Default is None.
    strict : :obj:`bool`, optional
        Ignore low-variance ambiguous components. Default is False.
    gscontrol : :obj:`bool`, optional
        Control global signal using spatial approach. Default is True.
    kdaw : :obj:`float`, optional
        Dimensionality augmentation weight (Kappa). Default is 10.
        -1 for low-dimensional ICA.
    rdaw : :obj:`float`, optional
        Dimensionality augmentation weight (Rho). Default is 1.
        -1 for low-dimensional ICA.
    conv : :obj:`float`, optional
        Convergence limit. Default is 2.5e-5.
    ste : :obj:`int`, optional
        Source TEs for models. 0 for all, -1 for optimal combination.
        Default is -1.
    combmode : {'t2s', 'ste'}, optional
        Combination scheme for TEs: 't2s' (Posse 1999, default), 'ste' (Poser).
    dne : :obj:`bool`, optional
        Denoise each TE dataset separately. Default is False.
    initcost : {'tanh', 'pow3', 'gaus', 'skew'}, optional
        Initial cost function for ICA. Default is 'tanh'.
    finalcost : {'tanh', 'pow3', 'gaus', 'skew'}, optional
        Final cost function. Default is 'tanh'.
    stabilize : :obj:`bool`, optional
        Stabilize convergence by reducing dimensionality, for low quality data.
        Default is False.
    fout : :obj:`bool`, optional
        Save output TE-dependence Kappa/Rho SPMs. Default is False.
    filecsdata : :obj:`bool`, optional
        Save component selection data to file. Default is False.
    label : :obj:`str` or :obj:`None`, optional
        Label for output directory. Default is None.
    fixed_seed : :obj:`int`, optional
        Seeded value for ICA, for reproducibility.
    """

    # ensure tes are in appropriate format
    tes = [float(te) for te in tes]
    n_echos = len(tes)

    # coerce data to samples x echos x time array
    LGR.info('Loading input data: {}'.format([op.abspath(f) for f in data]))
    catd, ref_img = utils.load_data(data, n_echos=n_echos)
    n_samp, n_echos, n_vols = catd.shape
    LGR.debug('Resulting data shape: {}'.format(catd.shape))

    if fout:
        fout = ref_img
    else:
        fout = None

    kdaw, rdaw = float(kdaw), float(rdaw)

    if label is not None:
        out_dir = 'TED.{0}'.format(label)
    else:
        out_dir = 'TED'
    out_dir = op.abspath(out_dir)
    if not op.isdir(out_dir):
        LGR.info('Creating output directory: {}'.format(out_dir))
        os.mkdir(out_dir)
    else:
        LGR.info('Using output directory: {}'.format(out_dir))

    if mixm is not None and op.isfile(mixm):
        shutil.copyfile(mixm, op.join(out_dir, 'meica_mix.1D'))
        shutil.copyfile(mixm, op.join(out_dir, op.basename(mixm)))
    elif mixm is not None:
        raise IOError('Argument "mixm" must be an existing file.')

    if ctab is not None and op.isfile(ctab):
        shutil.copyfile(ctab, op.join(out_dir, 'comp_table.txt'))
        shutil.copyfile(ctab, op.join(out_dir, op.basename(ctab)))
    elif ctab is not None:
        raise IOError('Argument "ctab" must be an existing file.')

    os.chdir(out_dir)

    LGR.info('Computing adapative mask')
    mask, masksum = utils.make_adaptive_mask(catd, minimum=False, getsum=True)
    LGR.debug('Retaining {}/{} samples'.format(mask.sum(), n_samp))

    LGR.info('Computing T2* map')
    t2s, s0, t2ss, s0s, t2sG, s0G = model.fit_decay(catd, tes, mask, masksum,
                                                    start_echo=1)

    # set a hard cap for the T2* map
    # anything that is 10x higher than the 99.5 %ile will be reset to 99.5 %ile
    cap_t2s = stats.scoreatpercentile(t2s.flatten(), 99.5,
                                      interpolation_method='lower')
    LGR.debug('Setting cap on T2* map at {:.5f}'.format(cap_t2s * 10))
    t2s[t2s > cap_t2s * 10] = cap_t2s
    utils.filewrite(t2s, op.join(out_dir, 't2sv'), ref_img)
    utils.filewrite(s0, op.join(out_dir, 's0v'), ref_img)
    utils.filewrite(t2ss, op.join(out_dir, 't2ss'), ref_img)
    utils.filewrite(s0s, op.join(out_dir, 's0vs'), ref_img)
    utils.filewrite(t2sG, op.join(out_dir, 't2svG'), ref_img)
    utils.filewrite(s0G, op.join(out_dir, 's0vG'), ref_img)

    # optimally combine data
    OCcatd = model.make_optcom(catd, t2sG, tes, mask, combmode)

    # regress out global signal unless explicitly not desired
    if gscontrol:
        catd, OCcatd = model.gscontrol_raw(catd, OCcatd, n_echos, ref_img)

    if mixm is None:
        n_components, dd = decomposition.tedpca(catd, OCcatd, combmode, mask, t2s, t2sG,
                                                stabilize, ref_img,
                                                tes=tes, kdaw=kdaw, rdaw=rdaw, ste=ste)
        mmix_orig = decomposition.tedica(n_components, dd, conv, fixed_seed, cost=initcost,
                                         final_cost=finalcost, verbose=debug)
        np.savetxt(op.join(out_dir, '__meica_mix.1D'), mmix_orig)
        LGR.info('Making second component selection guess from ICA results')
        seldict, comptable, betas, mmix = model.fitmodels_direct(catd, mmix_orig,
                                                                 mask, t2s, t2sG,
                                                                 tes, combmode,
                                                                 ref_img,
                                                                 fout=fout,
                                                                 reindex=True)
        np.savetxt(op.join(out_dir, 'meica_mix.1D'), mmix)

        acc, rej, midk, empty = selection.selcomps(seldict, mmix, mask, ref_img, manacc,
                                                   n_echos, t2s, s0, strict_mode=strict,
                                                   filecsdata=filecsdata)
    else:
        LGR.info('Using supplied mixing matrix from ICA')
        mmix_orig = np.loadtxt(op.join(out_dir, 'meica_mix.1D'))
        seldict, comptable, betas, mmix = model.fitmodels_direct(catd, mmix_orig,
                                                                 mask, t2s, t2sG,
                                                                 tes, combmode,
                                                                 ref_img,
                                                                 fout=fout)
        if ctab is None:
            acc, rej, midk, empty = selection.selcomps(seldict, mmix, mask,
                                                       ref_img, manacc,
                                                       n_echos, t2s, s0,
                                                       filecsdata=filecsdata,
                                                       strict_mode=strict)
        else:
            acc, rej, midk, empty = utils.ctabsel(ctab)

    if len(acc) == 0:
        LGR.warning('No BOLD components detected! Please check data and results!')

    utils.writeresults(OCcatd, mask, comptable, mmix, n_vols, acc, rej, midk, empty, ref_img)
    utils.gscontrol_mmix(OCcatd, mmix, mask, acc, rej, midk, ref_img)
    if dne:
        utils.writeresults_echoes(catd, mmix, mask, acc, rej, midk, ref_img)
Beispiel #6
0
def fitmodels_direct(catd, mmix, mask, t2s, t2sG, tes, combmode, ref_img,
                     fout=None, reindex=False, mmixN=None, full_sel=True):
    """
    Fit models directly.

    Parameters
    ----------
    catd : (S x E x T) array_like
        Input data, where `S` is samples, `E` is echos, and `T` is time
    mmix : (T x C) array_like
        Mixing matrix for converting input data to component space, where `C`
        is components and `T` is the same as in `catd`
    mask : (S,) array_like
        Boolean mask array
    t2s : (S,) array_like
    t2sG : (S,) array_like
    tes : list
        List of echo times associated with `catd`, in milliseconds
    combmode : {'t2s', 'ste'} str
        How optimal combination of echos should be made, where 't2s' indicates
        using the method of Posse 1999 and 'ste' indicates using the method of
        Poser 2006
    ref_img : str or img_like
        Reference image to dictate how outputs are saved to disk
    fout : bool
        Whether to output per-component TE-dependence maps. Default: None
    reindex : bool, optional
        Default: False
    mmixN : array_like, optional
        Default: None
    full_sel : bool, optional
        Whether to perform selection of components based on Rho/Kappa scores.
        Default: True

    Returns
    -------
    seldict : dict
    comptab : (N x 5) :obj:`numpy.ndarray`
        Array with columns denoting (1) index of component, (2) Kappa score of
        component, (3) Rho score of component, (4) variance explained by
        component, and (5) normalized variance explained bycomponent
    betas : :obj:`numpy.ndarray`
    mmix_new : :obj:`numpy.ndarray`
    """

    # compute optimal combination of raw data
    tsoc = model.make_optcom(catd, t2sG, tes, mask, combmode, verbose=False).astype(float)[mask]
    # demean optimal combination
    tsoc_dm = tsoc - tsoc.mean(axis=-1, keepdims=True)

    # compute un-normalized weight dataset (features)
    if mmixN is None:
        mmixN = mmix
    WTS = computefeats2(utils.unmask(tsoc, mask), mmixN, mask, normalize=False)

    # compute PSC dataset - shouldn't have to refit data
    tsoc_B = get_coeffs(utils.unmask(tsoc_dm, mask), mask, mmix)[mask]
    tsoc_Babs = np.abs(tsoc_B)
    PSC = tsoc_B / tsoc.mean(axis=-1, keepdims=True) * 100

    # compute skews to determine signs based on unnormalized weights,
    # correct mmix & WTS signs based on spatial distribution tails
    signs = stats.skew(WTS, axis=0)
    signs /= np.abs(signs)
    mmix = mmix.copy()
    mmix *= signs
    WTS *= signs
    PSC *= signs
    totvar = (tsoc_B**2).sum()
    totvar_norm = (WTS**2).sum()

    # compute Betas and means over TEs for TE-dependence analysis
    betas = get_coeffs(catd, np.repeat(mask[:, np.newaxis], len(tes), axis=1), mmix)
    n_samp, n_echos, n_components = betas.shape
    n_voxels = mask.sum()
    n_data_voxels = (t2s != 0).sum()
    mu = catd.mean(axis=-1, dtype=float)
    tes = np.reshape(tes, (n_echos, 1))
    fmin, fmid, fmax = utils.getfbounds(n_echos)

    # mask arrays
    mumask = mu[t2s != 0]
    t2smask = t2s[t2s != 0]
    betamask = betas[t2s != 0]

    # set up Xmats
    X1 = mumask.T  # Model 1
    X2 = np.tile(tes, (1, n_data_voxels)) * mumask.T / t2smask.T  # Model 2

    # tables for component selection
    Kappas = np.zeros([n_components])
    Rhos = np.zeros([n_components])
    varex = np.zeros([n_components])
    varex_norm = np.zeros([n_components])
    Z_maps = np.zeros([n_voxels, n_components])
    F_R2_maps = np.zeros([n_data_voxels, n_components])
    F_S0_maps = np.zeros([n_data_voxels, n_components])
    Z_clmaps = np.zeros([n_voxels, n_components])
    F_R2_clmaps = np.zeros([n_data_voxels, n_components])
    F_S0_clmaps = np.zeros([n_data_voxels, n_components])
    Br_clmaps_R2 = np.zeros([n_voxels, n_components])
    Br_clmaps_S0 = np.zeros([n_voxels, n_components])

    LGR.info('Fitting TE- and S0-dependent models to components')
    for i in range(n_components):
        # size of B is (n_components, nx*ny*nz)
        B = np.atleast_3d(betamask)[:, :, i].T
        alpha = (np.abs(B)**2).sum(axis=0)
        varex[i] = (tsoc_B[:, i]**2).sum() / totvar * 100.
        varex_norm[i] = (utils.unmask(WTS, mask)[t2s != 0][:, i]**2).sum() / totvar_norm * 100.

        # S0 Model
        coeffs_S0 = (B * X1).sum(axis=0) / (X1**2).sum(axis=0)
        SSE_S0 = (B - X1 * np.tile(coeffs_S0, (n_echos, 1)))**2
        SSE_S0 = SSE_S0.sum(axis=0)
        F_S0 = (alpha - SSE_S0) * 2 / (SSE_S0)
        F_S0_maps[:, i] = F_S0

        # R2 Model
        coeffs_R2 = (B * X2).sum(axis=0) / (X2**2).sum(axis=0)
        SSE_R2 = (B - X2 * np.tile(coeffs_R2, (n_echos, 1)))**2
        SSE_R2 = SSE_R2.sum(axis=0)
        F_R2 = (alpha - SSE_R2) * 2 / (SSE_R2)
        F_R2_maps[:, i] = F_R2

        # compute weights as Z-values
        wtsZ = (WTS[:, i] - WTS[:, i].mean()) / WTS[:, i].std()
        wtsZ[np.abs(wtsZ) > Z_MAX] = (Z_MAX * (np.abs(wtsZ) / wtsZ))[np.abs(wtsZ) > Z_MAX]
        Z_maps[:, i] = wtsZ

        # compute Kappa and Rho
        F_S0[F_S0 > F_MAX] = F_MAX
        F_R2[F_R2 > F_MAX] = F_MAX
        norm_weights = np.abs(np.squeeze(utils.unmask(wtsZ, mask)[t2s != 0]**2.))
        Kappas[i] = np.average(F_R2, weights=norm_weights)
        Rhos[i] = np.average(F_S0, weights=norm_weights)

    # tabulate component values
    comptab_pre = np.vstack([np.arange(n_components), Kappas, Rhos, varex, varex_norm]).T
    if reindex:
        # re-index all components in Kappa order
        comptab = comptab_pre[comptab_pre[:, 1].argsort()[::-1], :]
        Kappas = comptab[:, 1]
        Rhos = comptab[:, 2]
        varex = comptab[:, 3]
        varex_norm = comptab[:, 4]
        nnc = np.array(comptab[:, 0], dtype=np.int)
        mmix_new = mmix[:, nnc]
        F_S0_maps = F_S0_maps[:, nnc]
        F_R2_maps = F_R2_maps[:, nnc]
        Z_maps = Z_maps[:, nnc]
        WTS = WTS[:, nnc]
        PSC = PSC[:, nnc]
        tsoc_B = tsoc_B[:, nnc]
        tsoc_Babs = tsoc_Babs[:, nnc]
        comptab[:, 0] = np.arange(comptab.shape[0])
    else:
        comptab = comptab_pre
        mmix_new = mmix

    # full selection including clustering criteria
    seldict = None
    if full_sel:
        LGR.info('Performing spatial clustering of components')
        csize = np.max([int(n_voxels * 0.0005) + 5, 20])
        LGR.debug('Using minimum cluster size: {}'.format(csize))
        for i in range(n_components):
            # save out files
            out = np.zeros((n_samp, 4))
            out[:, 0] = np.squeeze(utils.unmask(PSC[:, i], mask))
            out[:, 1] = np.squeeze(utils.unmask(F_R2_maps[:, i], t2s != 0))
            out[:, 2] = np.squeeze(utils.unmask(F_S0_maps[:, i], t2s != 0))
            out[:, 3] = np.squeeze(utils.unmask(Z_maps[:, i], mask))

            if utils.get_dtype(ref_img) == 'GIFTI':
                continue  # TODO: pass through GIFTI file data as below

            ccimg = utils.new_nii_like(ref_img, out)

            # Do simple clustering on F
            sel = spatclust(ccimg, min_cluster_size=csize,
                            threshold=int(fmin), index=[1, 2], mask=(t2s != 0))
            F_R2_clmaps[:, i] = sel[:, 0]
            F_S0_clmaps[:, i] = sel[:, 1]
            countsigFR2 = F_R2_clmaps[:, i].sum()
            countsigFS0 = F_S0_clmaps[:, i].sum()

            # Do simple clustering on Z at p<0.05
            sel = spatclust(ccimg, min_cluster_size=csize,
                            threshold=1.95, index=3, mask=mask)
            Z_clmaps[:, i] = sel

            # Do simple clustering on ranked signal-change map
            spclust_input = utils.unmask(stats.rankdata(tsoc_Babs[:, i]), mask)
            spclust_input = utils.new_nii_like(ref_img, spclust_input)
            Br_clmaps_R2[:, i] = spatclust(spclust_input,
                                           min_cluster_size=csize,
                                           threshold=max(tsoc_Babs.shape)-countsigFR2,
                                           mask=mask)
            Br_clmaps_S0[:, i] = spatclust(spclust_input,
                                           min_cluster_size=csize,
                                           threshold=max(tsoc_Babs.shape)-countsigFS0,
                                           mask=mask)

        seldict = {}
        selvars = ['Kappas', 'Rhos', 'WTS', 'varex', 'Z_maps', 'F_R2_maps',
                   'F_S0_maps', 'Z_clmaps', 'F_R2_clmaps', 'F_S0_clmaps',
                   'tsoc_B', 'Br_clmaps_R2', 'Br_clmaps_S0', 'PSC']
        for vv in selvars:
            seldict[vv] = eval(vv)

    return seldict, comptab, betas, mmix_new
Beispiel #7
0
def tedana_workflow(data, tes, mask=None, mixm=None, ctab=None, manacc=None,
                    strict=False, gscontrol=True, kdaw=10., rdaw=1., conv=2.5e-5,
                    ste=-1, combmode='t2s', dne=False,
                    initcost='tanh', finalcost='tanh',
                    stabilize=False, filecsdata=False, wvpca=False,
                    label=None, fixed_seed=42, debug=False, quiet=False):
    """
    Run the "canonical" TE-Dependent ANAlysis workflow.

    Parameters
    ----------
    data : :obj:`str` or :obj:`list` of :obj:`str`
        Either a single z-concatenated file (single-entry list or str) or a
        list of echo-specific files, in ascending order.
    tes : :obj:`list`
        List of echo times associated with data in milliseconds.
    mask : :obj:`str`, optional
        Binary mask of voxels to include in TE Dependent ANAlysis. Must be spatially
        aligned with `data`.
    mixm : :obj:`str`, optional
        File containing mixing matrix. If not provided, ME-PCA and ME-ICA are
        done.
    ctab : :obj:`str`, optional
        File containing component table from which to extract pre-computed
        classifications.
    manacc : :obj:`str`, optional
        Comma separated list of manually accepted components in string form.
        Default is None.
    strict : :obj:`bool`, optional
        Ignore low-variance ambiguous components. Default is False.
    gscontrol : :obj:`bool`, optional
        Control global signal using spatial approach. Default is True.
    kdaw : :obj:`float`, optional
        Dimensionality augmentation weight (Kappa). Default is 10.
        -1 for low-dimensional ICA.
    rdaw : :obj:`float`, optional
        Dimensionality augmentation weight (Rho). Default is 1.
        -1 for low-dimensional ICA.
    conv : :obj:`float`, optional
        Convergence limit. Default is 2.5e-5.
    ste : :obj:`int`, optional
        Source TEs for models. 0 for all, -1 for optimal combination.
        Default is -1.
    combmode : {'t2s', 'ste'}, optional
        Combination scheme for TEs: 't2s' (Posse 1999, default), 'ste' (Poser).
    dne : :obj:`bool`, optional
        Denoise each TE dataset separately. Default is False.
    initcost : {'tanh', 'pow3', 'gaus', 'skew'}, optional
        Initial cost function for ICA. Default is 'tanh'.
    finalcost : {'tanh', 'pow3', 'gaus', 'skew'}, optional
        Final cost function. Default is 'tanh'.
    stabilize : :obj:`bool`, optional
        Stabilize convergence by reducing dimensionality, for low quality data.
        Default is False.
    filecsdata : :obj:`bool`, optional
        Save component selection data to file. Default is False.
    wvpca : :obj:`bool`, optional
        Whether or not to perform PCA on wavelet-transformed data.
        Default is False.
    label : :obj:`str` or :obj:`None`, optional
        Label for output directory. Default is None.

    Other Parameters
    ----------------
    fixed_seed : :obj:`int`, optional
        Value passed to ``mdp.numx_rand.seed()``.
        Set to a positive integer value for reproducible ICA results;
        otherwise, set to -1 for varying results across calls.
    debug : :obj:`bool`, optional
        Whether to run in debugging mode or not. Default is False.
    quiet : :obj:`bool`, optional
        If True, suppresses logging/printing of messages. Default is False.

    Notes
    -----
    PROCEDURE 2 : Computes ME-PCA and ME-ICA

    - Computes T2* map
    - Computes PCA of concatenated ME data, then computes TE-dependence of PCs
    - Computes ICA of TE-dependence PCs
    - Identifies TE-dependent ICs, outputs high-\kappa (BOLD) component
      and denoised time series

    or computes TE-dependence of each component of a general linear model
    specified by input (includes MELODIC FastICA mixing matrix)

    PROCEDURE 2a: Model fitting and component selection routines

    This workflow writes out several files, which are written out to a folder
    named TED.[ref_label].[label] if ``label`` is provided and TED.[ref_label]
    if not. ``ref_label`` is determined based on the name of the first ``data``
    file.

    Files are listed below:

    ======================    =================================================
    Filename                  Content
    ======================    =================================================
    t2sv.nii                  Limited estimated T2* 3D map.
                              The difference between the limited and full maps
                              is that, for voxels affected by dropout where
                              only one echo contains good data, the full map
                              uses the single echo's value while the limited
                              map has a NaN.
    s0v.nii                   Limited S0 3D map.
                              The difference between the limited and full maps
                              is that, for voxels affected by dropout where
                              only one echo contains good data, the full map
                              uses the single echo's value while the limited
                              map has a NaN.
    t2ss.nii                  ???
    s0vs.nii                  ???
    t2svG.nii                 Full T2* map/timeseries. The difference between
                              the limited and full maps is that, for voxels
                              affected by dropout where only one echo contains
                              good data, the full map uses the single echo's
                              value while the limited map has a NaN.
    s0vG.nii                  Full S0 map/timeseries.
    __meica_mix.1D            A mixing matrix
    meica_mix.1D              Another mixing matrix
    ts_OC.nii                 Optimally combined timeseries.
    betas_OC.nii              Full ICA coefficient feature set.
    betas_hik_OC.nii          Denoised ICA coefficient feature set
    feats_OC2.nii             Z-normalized spatial component maps
    comp_table.txt            Component table
    sphis_hik.nii             T1-like effect
    hik_ts_OC_T1c.nii         T1 corrected time series by regression
    dn_ts_OC_T1c.nii          ME-DN version of T1 corrected time series
    betas_hik_OC_T1c.nii      T1-GS corrected components
    meica_mix_T1c.1D          T1-GS corrected mixing matrix
    ======================    =================================================

    If ``dne`` is set to True:

    ======================    =================================================
    Filename                  Content
    ======================    =================================================
    hik_ts_e[echo].nii        High-Kappa timeseries for echo number ``echo``
    midk_ts_e[echo].nii       Mid-Kappa timeseries for echo number ``echo``
    lowk_ts_e[echo].nii       Low-Kappa timeseries for echo number ``echo``
    dn_ts_e[echo].nii         Denoised timeseries for echo number ``echo``
    ======================    =================================================
    """

    # ensure tes are in appropriate format
    tes = [float(te) for te in tes]
    n_echos = len(tes)

    # coerce data to samples x echos x time array
    if isinstance(data, str):
        data = [data]

    LGR.info('Loading input data: {}'.format([f for f in data]))
    catd, ref_img = utils.load_data(data, n_echos=n_echos)
    n_samp, n_echos, n_vols = catd.shape
    LGR.debug('Resulting data shape: {}'.format(catd.shape))

    kdaw, rdaw = float(kdaw), float(rdaw)

    try:
        ref_label = op.basename(ref_img).split('.')[0]
    except TypeError:
        ref_label = op.basename(str(data[0])).split('.')[0]

    if label is not None:
        out_dir = 'TED.{0}.{1}'.format(ref_label, label)
    else:
        out_dir = 'TED.{0}'.format(ref_label)
    out_dir = op.abspath(out_dir)
    if not op.isdir(out_dir):
        LGR.info('Creating output directory: {}'.format(out_dir))
        os.mkdir(out_dir)
    else:
        LGR.info('Using output directory: {}'.format(out_dir))

    if mixm is not None and op.isfile(mixm):
        shutil.copyfile(mixm, op.join(out_dir, 'meica_mix.1D'))
        shutil.copyfile(mixm, op.join(out_dir, op.basename(mixm)))
    elif mixm is not None:
        raise IOError('Argument "mixm" must be an existing file.')

    if ctab is not None and op.isfile(ctab):
        shutil.copyfile(ctab, op.join(out_dir, 'comp_table.txt'))
        shutil.copyfile(ctab, op.join(out_dir, op.basename(ctab)))
    elif ctab is not None:
        raise IOError('Argument "ctab" must be an existing file.')

    os.chdir(out_dir)

    if mask is None:
        LGR.info('Computing adaptive mask')
    else:
        # TODO: add affine check
        LGR.info('Using user-defined mask')
    mask, masksum = utils.make_adaptive_mask(catd, mask=mask,
                                             minimum=False, getsum=True)
    LGR.debug('Retaining {}/{} samples'.format(mask.sum(), n_samp))

    LGR.info('Computing T2* map')
    t2s, s0, t2ss, s0s, t2sG, s0G = model.fit_decay(catd, tes, mask, masksum)

    # set a hard cap for the T2* map
    # anything that is 10x higher than the 99.5 %ile will be reset to 99.5 %ile
    cap_t2s = stats.scoreatpercentile(t2s.flatten(), 99.5,
                                      interpolation_method='lower')
    LGR.debug('Setting cap on T2* map at {:.5f}'.format(cap_t2s * 10))
    t2s[t2s > cap_t2s * 10] = cap_t2s
    utils.filewrite(t2s, op.join(out_dir, 't2sv.nii'), ref_img)
    utils.filewrite(s0, op.join(out_dir, 's0v.nii'), ref_img)
    utils.filewrite(t2ss, op.join(out_dir, 't2ss.nii'), ref_img)
    utils.filewrite(s0s, op.join(out_dir, 's0vs.nii'), ref_img)
    utils.filewrite(t2sG, op.join(out_dir, 't2svG.nii'), ref_img)
    utils.filewrite(s0G, op.join(out_dir, 's0vG.nii'), ref_img)

    # optimally combine data
    OCcatd = model.make_optcom(catd, tes, mask, t2s=t2sG, combmode=combmode)

    # regress out global signal unless explicitly not desired
    if gscontrol:
        catd, OCcatd = model.gscontrol_raw(catd, OCcatd, n_echos, ref_img)

    if mixm is None:
        n_components, dd = decomposition.tedpca(catd, OCcatd, combmode, mask,
                                                t2s, t2sG, stabilize, ref_img,
                                                tes=tes, kdaw=kdaw, rdaw=rdaw,
                                                ste=ste, wvpca=wvpca)
        mmix_orig, fixed_seed = decomposition.tedica(n_components, dd, conv, fixed_seed,
                                                     cost=initcost, final_cost=finalcost,
                                                     verbose=debug)
        np.savetxt(op.join(out_dir, '__meica_mix.1D'), mmix_orig)
        LGR.info('Making second component selection guess from ICA results')
        seldict, comptable, betas, mmix = model.fitmodels_direct(catd, mmix_orig,
                                                                 mask, t2s, t2sG,
                                                                 tes, combmode,
                                                                 ref_img,
                                                                 reindex=True)
        np.savetxt(op.join(out_dir, 'meica_mix.1D'), mmix)

        acc, rej, midk, empty = selection.selcomps(seldict, mmix, mask, ref_img, manacc,
                                                   n_echos, t2s, s0, strict_mode=strict,
                                                   filecsdata=filecsdata)
    else:
        LGR.info('Using supplied mixing matrix from ICA')
        mmix_orig = np.loadtxt(op.join(out_dir, 'meica_mix.1D'))
        seldict, comptable, betas, mmix = model.fitmodels_direct(catd, mmix_orig,
                                                                 mask, t2s, t2sG,
                                                                 tes, combmode,
                                                                 ref_img)
        if ctab is None:
            acc, rej, midk, empty = selection.selcomps(seldict, mmix, mask,
                                                       ref_img, manacc,
                                                       n_echos, t2s, s0,
                                                       filecsdata=filecsdata,
                                                       strict_mode=strict)
        else:
            acc, rej, midk, empty = utils.ctabsel(ctab)

    if len(acc) == 0:
        LGR.warning('No BOLD components detected! Please check data and '
                    'results!')

    utils.writeresults(OCcatd, mask, comptable, mmix, fixed_seed, n_vols,
                       acc, rej, midk, empty, ref_img)
    utils.gscontrol_mmix(OCcatd, mmix, mask, acc, ref_img)
    if dne:
        utils.writeresults_echoes(catd, mmix, mask, acc, rej, midk, ref_img)