Beispiel #1
0
    def get_prediction_to_top_k_mesh_fn(
            self, edge_length_threshold=None, top_k=2):
        cat_id = self.cat_id
        with get_ffd_dataset(cat_id, self.n, edge_length_threshold) \
                as ffd_dataset:
            example_ids, bs, ps = zip(*self.get_ffd_data(ffd_dataset))
        with get_template_mesh_dataset(cat_id, edge_length_threshold) as \
                mesh_dataset:
            all_faces = []
            all_vertices = []
            for k in example_ids:
                sg = mesh_dataset[k]
                all_faces.append(np.array(sg['faces']))
                all_vertices.append(np.array(sg['vertices']))

        def get_deformed_mesh(i, dp):
            vertices = np.matmul(bs[i], ps[i] + dp[i])
            faces = all_faces[i]
            return dict(
                vertices=vertices, faces=faces,
                original_vertices=all_vertices[i])

        def transform_predictions(probs, dp):
            ks = probs.argsort()[-3:][::-1]
            return [get_deformed_mesh(k, dp) for k in ks]

        return transform_predictions
Beispiel #2
0
    def get_prediction_to_mesh_fn(self, edge_length_threshold=None):
        cat_id = self.cat_id
        with get_ffd_dataset(cat_id, self.n, edge_length_threshold) \
                as ffd_dataset:
            example_ids, bs, ps = zip(*self.get_ffd_data(ffd_dataset))
        with get_template_mesh_dataset(cat_id, edge_length_threshold) as \
                mesh_dataset:
            all_faces = []
            all_vertices = []
            for k in example_ids:
                sg = mesh_dataset[k]
                all_faces.append(np.array(sg['faces']))
                all_vertices.append(np.array(sg['vertices']))

        def transform_predictions(probs, dp):
            i = np.argmax(probs)
            # print(ps[i].shape)
            # print(dp[i].shape)
            # print(bs[i].shape)
            # exit()
            vertices = np.matmul(bs[i], ps[i] + dp[i])
            faces = all_faces[i]
            original_vertices = all_vertices[i]
            return dict(
                vertices=vertices,
                faces=faces,
                original_vertices=original_vertices,
                attrs=dict(template_id=example_ids[i]))

        return transform_predictions
Beispiel #3
0
def get_data(model_id, example_ids=None):
    edge_length_threshold = 0.02
    builder = get_builder(model_id)
    cat_id = builder.cat_id

    with get_ffd_dataset(cat_id, edge_length_threshold=0.02) as ffd_ds:
        template_ids, bs, ps = zip(*builder.get_ffd_data(ffd_ds))

    with get_template_mesh_dataset(cat_id, edge_length_threshold) as mesh_ds:
        faces = [np.array(mesh_ds[e]['faces']) for e in template_ids]

    predictions_ds = get_predictions_dataset(model_id)
    mesh_ds = get_mesh_dataset(cat_id)
    image_ds = RenderConfig().get_dataset(cat_id, builder.view_index)
    zipped = Dataset.zip(predictions_ds, mesh_ds, image_ds)
    with zipped:
        if example_ids is None:
            example_ids = list(predictions_ds.keys())
            random.shuffle(example_ids)
        for example_id in example_ids:
            print(example_id)
            pred, mesh, image = zipped[example_id]
            i = np.argmax(pred['probs'])
            dp = np.array(pred['dp'][i])
            b = bs[i]
            p = ps[i]
            yield example_id, b, p, dp, faces[i], mesh, image
    def get_prediction_to_mesh_fn(self, edge_length_threshold=None):
        cat_id = self.cat_id
        if not isinstance(cat_id, (list, tuple)):
            cat_id = [cat_id]
        with get_ffd_dataset(self.cat_id, self.n,
                             edge_length_threshold=edge_length_threshold) as d:
            cat_ids, example_ids, bs, ps = zip(*self.get_ffd_data(d))
        with get_template_mesh_dataset(cat_id, edge_length_threshold) as \
                mesh_dataset:
            all_faces = []
            all_vertices = []

            for cat_id, example_id in zip(cat_ids, example_ids):
                sg = mesh_dataset[cat_id, example_id]
                all_faces.append(np.array(sg['faces']))
                all_vertices.append(np.array(sg['vertices']))

        def transform_predictions(probs, dp):
            i = np.argmax(probs)
            vertices = np.matmul(bs[i], ps[i] + dp[i])
            faces = all_faces[i]
            original_vertices = all_vertices[i]
            return dict(
                vertices=vertices,
                faces=faces,
                original_vertices=original_vertices,
                attrs=dict(template_id=example_ids[i]))

        return transform_predictions
Beispiel #5
0
def get_data(model_id, example_ids=None):
    edge_length_threshold = 0.02
    builder = get_builder(model_id)
    cat_id = builder.cat_id

    with get_ffd_dataset(cat_id, edge_length_threshold=0.02) as ffd_ds:
        template_ids, bs, ps = zip(*builder.get_ffd_data(ffd_ds))

    with get_template_mesh_dataset(cat_id, edge_length_threshold) as mesh_ds:
        faces = [np.array(mesh_ds[e]['faces']) for e in template_ids]

    predictions_ds = get_predictions_dataset(model_id)
    mesh_ds = get_mesh_dataset(cat_id)
    image_ds = RenderConfig().get_dataset(cat_id, builder.view_index)
    zipped = Dataset.zip(predictions_ds, mesh_ds, image_ds)
    with zipped:
        if example_ids is None:
            example_ids = list(predictions_ds.keys())
            random.shuffle(example_ids)
        for example_id in example_ids:
            print(example_id)
            pred, mesh, image = zipped[example_id]
            i = np.argmax(pred['probs'])
            dp = np.array(pred['dp'][i])
            b = bs[i]
            p = ps[i]
            yield example_id, b, p, dp, faces[i], mesh, image
Beispiel #6
0
    def get_segmented_mesh_fn(self, edge_length_threshold=None):
        from shapenet.core.annotations.datasets import PointCloudDataset, \
            SegmentationDataset
        from dataset import Dataset

        cat_id = self.cat_id
        bs = []
        ps = []
        segs = []
        faces = []
        original_segs = []
        original_seg_points = []
        ffd_dataset = get_ffd_dataset(
            cat_id, self.n, edge_length_threshold=edge_length_threshold)
        with ffd_dataset:
            example_ids, bs, ps = zip(*self.get_ffd_data(ffd_dataset))

        template_mesh_ds = get_template_mesh_dataset(
            cat_id, edge_length_threshold=edge_length_threshold)
        seg_points_ds = PointCloudDataset(cat_id)
        seg_ds = SegmentationDataset(cat_id)
        ds = Dataset.zip(template_mesh_ds, seg_points_ds, seg_ds)
        with ds:
            for example_id in example_ids:
                if example_id in ds:
                    template_mesh, seg_points, original_seg = ds[example_id]
                    v, f = (np.array(template_mesh[k])
                            for k in ('vertices', 'faces'))
                    centroids = get_centroids(v, f)
                    seg = original_seg[get_nn(seg_points, centroids)]
                else:
                    f = None
                    seg = None
                    seg_points = None
                    original_seg = None
                segs.append(seg)
                original_seg_points.append(seg_points)
                original_segs.append(original_seg)
                faces.append(f)

        def transform_predictions(probs, dp):
            i = np.argmax(probs)
            seg = segs[i]
            if seg is None:
                return None
            else:
                v = np.matmul(bs[i], ps[i] + dp[i])
                return dict(faces=faces[i],
                            vertices=v,
                            segmentation=segs[i],
                            original_points=original_seg_points[i],
                            original_segmentation=original_segs[i])

        return transform_predictions