Beispiel #1
0
def GeneralGRUCell(candidate_transform,
                   memory_transform_fn=None,
                   gate_nonlinearity=core.Sigmoid,
                   candidate_nonlinearity=core.Tanh,
                   dropout_rate_c=0.1,
                   sigmoid_bias=0.5):
    r"""Parametrized Gated Recurrent Unit (GRU) cell construction.

  GRU update equations:
  $$ Update gate: u_t = \sigmoid(U' * s_{t-1} + B') $$
  $$ Reset gate: r_t = \sigmoid(U'' * s_{t-1} + B'') $$
  $$ Candidate memory: c_t = \tanh(U * (r_t \odot s_{t-1}) + B) $$
  $$ New State: s_t = u_t \odot s_{t-1} + (1 - u_t) \odot c_t $$

  See combinators.Gate for details on the gating function.


  Args:
    candidate_transform: Transform to apply inside the Candidate branch. Applied
      before nonlinearities.
    memory_transform_fn: Optional transformation on the memory before gating.
    gate_nonlinearity: Function to use as gate activation. Allows trying
      alternatives to Sigmoid, such as HardSigmoid.
    candidate_nonlinearity: Nonlinearity to apply after candidate branch. Allows
      trying alternatives to traditional Tanh, such as HardTanh
    dropout_rate_c: Amount of dropout on the transform (c) gate. Dropout works
      best in a GRU when applied exclusively to this branch.
    sigmoid_bias: Constant to add before sigmoid gates. Generally want to start
      off with a positive bias.

  Returns:
    A model representing a GRU cell with specified transforms.
  """
    gate_block = [  # u_t
        candidate_transform(),
        core.AddConstant(constant=sigmoid_bias),
        gate_nonlinearity(),
    ]
    reset_block = [  # r_t
        candidate_transform(),
        core.AddConstant(
            constant=sigmoid_bias),  # Want bias to start positive.
        gate_nonlinearity(),
    ]
    candidate_block = [
        cb.Branch([], reset_block),
        cb.Multiply(),  # Gate S{t-1} with sigmoid(candidate_transform(S{t-1}))
        candidate_transform(),  # Final projection + tanh to get Ct
        candidate_nonlinearity(),  # Candidate gate

        # Only apply dropout on the C gate. Paper reports 0.1 as a good default.
        core.Dropout(rate=dropout_rate_c)
    ]
    memory_transform = memory_transform_fn() if memory_transform_fn else []
    return cb.Serial([
        cb.Branch(memory_transform, gate_block, candidate_block),
        cb.Gate(),
    ])
def MaskedScalar(metric_layer, mask_id=None, has_weights=False):
    """Metric as scalar compatible with Trax masking."""
    # Stack of (inputs, targets) --> (metric, weight-mask).
    metric_and_mask = [
        cb.Parallel(
            [],
            cb.Dup()  # Duplicate targets
        ),
        cb.Parallel(
            metric_layer,  # Metric: (inputs, targets) --> metric
            WeightMask(mask_id=mask_id)  # pylint: disable=no-value-for-parameter
        )
    ]
    if not has_weights:
        # Take (metric, weight-mask) and return the weighted mean.
        return cb.Serial([metric_and_mask, WeightedMean()])  # pylint: disable=no-value-for-parameter
    return cb.Serial([
        metric_and_mask,
        cb.Parallel(
            [],
            cb.Multiply()  # Multiply given weights by mask_id weights
        ),
        WeightedMean()  # pylint: disable=no-value-for-parameter
    ])