def test_for_variable_defined_in_body(self):
    def bad_for_loop(n):
      for i in range(n):
        s = i
      return s

    node, ctx = self.prepare(bad_for_loop, {})
    with self.assertRaises(transformer.AutographParseError):
      control_flow.transform(node, ctx)
Beispiel #2
0
    def test_if_imbalanced_outputs(self):
        def test_fn(n):
            if n > 0:
                b = 4
            return b

        node, ctx = self.prepare(test_fn, {})
        with self.assertRaises(transformer.AutographParseError):
            control_flow.transform(node, ctx)
  def test_if_imbalanced_outputs(self):

    def test_fn(n):
      if n > 0:
        b = 4
      return b

    node, ctx = self.prepare(test_fn, {})
    with self.assertRaises(transformer.AutographParseError):
      control_flow.transform(node, ctx)
  def test_while_variable_defined_in_body(self):
    def bad_while_loop(n):
      while n > 0:
        n -= 1
        s = n
      return s

    node, ctx = self.prepare(bad_while_loop, {})
    with self.assertRaises(transformer.AutographParseError):
      control_flow.transform(node, ctx)
    def test_handle_temp_variable(self):
        def test_fn_using_temp(x, y, w):
            if x < y:
                z = x + y
            else:
                w = 2
                tmp = w
                z = x - tmp
            return z, w

        node = self.parse_and_analyze(test_fn_using_temp, {})
        node = control_flow.transform(node, self.ctx)

        with self.compiled(node, control_flow_ops.cond,
                           array_ops.ones) as result:
            with self.test_session() as sess:
                z, w = sess.run(
                    result.test_fn_using_temp(constant_op.constant(-3),
                                              constant_op.constant(3),
                                              constant_op.constant(3)))
                self.assertEqual(0, z)
                self.assertEqual(3, w)
                z, w = sess.run(
                    result.test_fn_using_temp(constant_op.constant(3),
                                              constant_op.constant(-3),
                                              constant_op.constant(3)))
                self.assertEqual(1, z)
                self.assertEqual(2, w)

        def test_fn_ignoring_temp(x, y, w):
            if x < y:
                z = x + y
            else:
                w = 2
                tmp = w
                z = x - tmp
            return z

        node = self.parse_and_analyze(test_fn_ignoring_temp, {})
        node = control_flow.transform(node, self.ctx)

        with self.compiled(node, control_flow_ops.cond,
                           array_ops.ones) as result:
            with self.test_session() as sess:
                z = sess.run(
                    result.test_fn_ignoring_temp(constant_op.constant(-3),
                                                 constant_op.constant(3),
                                                 constant_op.constant(3)))
                self.assertEqual(0, z)
                z = sess.run(
                    result.test_fn_ignoring_temp(constant_op.constant(3),
                                                 constant_op.constant(-3),
                                                 constant_op.constant(3)))
                self.assertEqual(1, z)
  def test_handle_temp_variable(self):

    def test_fn_using_temp(x, y, w):
      if x < y:
        z = x + y
      else:
        w = 2
        tmp = w
        z = x - tmp
      return z, w

    node = self.parse_and_analyze(test_fn_using_temp, {})
    node = control_flow.transform(node, self.ctx)

    with self.compiled(node, control_flow_ops.cond, array_ops.ones) as result:
      with self.test_session() as sess:
        z, w = sess.run(
            result.test_fn_using_temp(
                constant_op.constant(-3), constant_op.constant(3),
                constant_op.constant(3)))
        self.assertEqual(0, z)
        self.assertEqual(3, w)
        z, w = sess.run(
            result.test_fn_using_temp(
                constant_op.constant(3), constant_op.constant(-3),
                constant_op.constant(3)))
        self.assertEqual(1, z)
        self.assertEqual(2, w)

    def test_fn_ignoring_temp(x, y, w):
      if x < y:
        z = x + y
      else:
        w = 2
        tmp = w
        z = x - tmp
      return z

    node = self.parse_and_analyze(test_fn_ignoring_temp, {})
    node = control_flow.transform(node, self.ctx)

    with self.compiled(node, control_flow_ops.cond, array_ops.ones) as result:
      with self.test_session() as sess:
        z = sess.run(
            result.test_fn_ignoring_temp(
                constant_op.constant(-3), constant_op.constant(3),
                constant_op.constant(3)))
        self.assertEqual(0, z)
        z = sess.run(
            result.test_fn_ignoring_temp(
                constant_op.constant(3), constant_op.constant(-3),
                constant_op.constant(3)))
        self.assertEqual(1, z)
    def test_simple_for(self):
        def test_fn(l):
            s1 = 0
            s2 = 0
            for e in l:
                s1 += e
                s2 += e * e
            return s1, s2

        node = self.parse_and_analyze(test_fn, {})
        node = control_flow.transform(node, self.ctx)

        with self.compiled(node) as result:
            with self.test_session() as sess:
                l = [1, 2, 3]
                self.assertEqual(
                    test_fn(l),
                    sess.run(result.test_fn(constant_op.constant(l))))
                l = []
                self.assertEqual(
                    test_fn(l),
                    sess.run(
                        result.test_fn(
                            constant_op.constant(l,
                                                 shape=(0, ),
                                                 dtype=dtypes.int32))))
    def test_while_single_var(self):
        def test_fn(n):
            while n > 0:
                n -= 1
            return n

        node = self.parse_and_analyze(test_fn, {})
        node = control_flow.transform(node, self.ctx)

        with self.compiled(node, control_flow_ops.while_loop) as result:
            with self.test_session() as sess:
                self.assertEqual(
                    0, sess.run(result.test_fn(constant_op.constant(5))))
    def test_if_single_var(self):
        def test_fn(n):
            if n > 0:
                n = -n
            return n

        node = self.parse_and_analyze(test_fn, {})
        node = control_flow.transform(node, self.ctx)

        with self.compiled(node, control_flow_ops.cond) as result:
            with self.test_session() as sess:
                self.assertEqual(
                    -1, sess.run(result.test_fn(constant_op.constant(1))))
  def test_if_single_var(self):

    def test_fn(n):
      if n > 0:
        n = -n
      return n

    node = self.parse_and_analyze(test_fn, {})
    node = control_flow.transform(node, self.ctx)

    with self.compiled(node, control_flow_ops.cond) as result:
      with self.test_session() as sess:
        self.assertEqual(-1, sess.run(result.test_fn(constant_op.constant(1))))
  def test_while_single_var(self):

    def test_fn(n):
      while n > 0:
        n -= 1
      return n

    node = self.parse_and_analyze(test_fn, {})
    node = control_flow.transform(node, self.ctx)

    with self.compiled(node, control_flow_ops.while_loop) as result:
      with self.test_session() as sess:
        self.assertEqual(0, sess.run(result.test_fn(constant_op.constant(5))))
Beispiel #12
0
  def test_imbalanced_aliasing(self):

    def test_fn(n):
      if n > 0:
        n = 3
      return n

    node = self.parse_and_analyze(test_fn, {})
    node = control_flow.transform(node, self.ctx)

    with self.compiled(node, control_flow_ops.cond) as result:
      with self.test_session() as sess:
        self.assertEqual(3, sess.run(result.test_fn(constant_op.constant(2))))
        self.assertEqual(-3, sess.run(result.test_fn(constant_op.constant(-3))))
Beispiel #13
0
  def test_ignore_unread_variable(self):

    def test_fn(n):
      b = 3  # pylint: disable=unused-variable
      if n > 0:
        b = 4
      return n

    node = self.parse_and_analyze(test_fn, {})
    node = control_flow.transform(node, self.ctx)

    with self.compiled(node, control_flow_ops.cond, array_ops.ones) as result:
      with self.test_session() as sess:
        self.assertEqual(3, sess.run(result.test_fn(constant_op.constant(3))))
        self.assertEqual(-3, sess.run(result.test_fn(constant_op.constant(-3))))
  def test_simple_while(self):

    def test_fn(n):
      i = 0
      s = 0
      while i < n:
        s += i
        i += 1
      return s, i, n

    node = self.parse_and_analyze(test_fn, {})
    node = control_flow.transform(node, self.ctx)

    with self.compiled(node, control_flow_ops.while_loop) as result:
      with self.test_session() as sess:
        self.assertEqual((10, 5, 5),
                         sess.run(result.test_fn(constant_op.constant(5))))
    def test_simple_while(self):
        def test_fn(n):
            i = 0
            s = 0
            while i < n:
                s += i
                i += 1
            return s, i, n

        node = self.parse_and_analyze(test_fn, {})
        node = control_flow.transform(node, self.ctx)

        with self.compiled(node, control_flow_ops.while_loop) as result:
            with self.test_session() as sess:
                self.assertEqual(
                    (10, 5, 5),
                    sess.run(result.test_fn(constant_op.constant(5))))
  def test_simple_if(self):

    def test_fn(n):
      a = 0
      b = 0
      if n > 0:
        a = -n
      else:
        b = 2 * n
      return a, b

    node = self.parse_and_analyze(test_fn, {})
    node = control_flow.transform(node, self.ctx)

    with self.compiled(node, control_flow_ops.cond) as result:
      with self.test_session() as sess:
        self.assertEqual((-1, 0),
                         sess.run(result.test_fn(constant_op.constant(1))))
        self.assertEqual((0, -2),
                         sess.run(result.test_fn(constant_op.constant(-1))))
    def test_simple_if(self):
        def test_fn(n):
            a = 0
            b = 0
            if n > 0:
                a = -n
            else:
                b = 2 * n
            return a, b

        node = self.parse_and_analyze(test_fn, {})
        node = control_flow.transform(node, self.ctx)

        with self.compiled(node, control_flow_ops.cond) as result:
            with self.test_session() as sess:
                self.assertEqual(
                    (-1, 0), sess.run(result.test_fn(constant_op.constant(1))))
                self.assertEqual(
                    (0, -2),
                    sess.run(result.test_fn(constant_op.constant(-1))))
  def test_for_iterated_expression(self):

    eval_count = [0]

    def count_evals(x):
      eval_count[0] += 1
      return x

    def test_fn(n):
      s = 0
      for e in count_evals(range(n)):
        s += e
      return s

    ns = {'count_evals': count_evals}
    node, ctx = self.prepare(test_fn, ns)
    node = control_flow.transform(node, ctx)

    with self.compiled(node, ns) as result:
      self.assertEqual(result.test_fn(5), 10)
      self.assertEqual(eval_count[0], 1)
  def test_for_iterated_expression(self):

    eval_count = [0]

    def count_evals(x):
      eval_count[0] += 1
      return x

    def test_fn(n):
      s = 0
      for e in count_evals(range(n)):
        s += e
      return s

    ns = {'count_evals': count_evals}
    node, ctx = self.prepare(test_fn, ns)
    node = control_flow.transform(node, ctx)

    with self.compiled(node, ns) as result:
      self.assertEqual(result.test_fn(5), 10)
      self.assertEqual(eval_count[0], 1)
    def test_for_with_iterated_expression(self):

        eval_count = [0]

        def count_evals(x):
            eval_count[0] += 1
            return x

        def test_fn(n):
            s = 0
            for e in count_evals(range(n)):
                s += e
            return s

        node = self.parse_and_analyze(test_fn, {'count_evals': count_evals})
        node = control_flow.transform(node, self.ctx)

        with self.compiled(node) as result:
            result.count_evals = count_evals
            self.assertEqual(test_fn(5), result.test_fn(5))
            # count_evals ran twice, once for test_fn and another for result.test_fn
            self.assertEqual(eval_count[0], 2)
  def test_for_with_iterated_expression(self):

    eval_count = [0]

    def count_evals(x):
      eval_count[0] += 1
      return x

    def test_fn(n):
      s = 0
      for e in count_evals(range(n)):
        s += e
      return s

    node = self.parse_and_analyze(test_fn, {'count_evals': count_evals})
    node = control_flow.transform(node, self.ctx)

    with self.compiled(node) as result:
      result.count_evals = count_evals
      self.assertEqual(test_fn(5), result.test_fn(5))
      # count_evals ran twice, once for test_fn and another for result.test_fn
      self.assertEqual(eval_count[0], 2)
  def test_for_single_var(self):

    def test_fn(l):
      s = 0
      for e in l:
        s += e
      return s

    node = self.parse_and_analyze(test_fn, {})
    node = control_flow.transform(node, self.ctx)

    with self.compiled(node) as result:
      with self.test_session() as sess:
        l = [1, 2, 3]
        self.assertEqual(
            test_fn(l), sess.run(result.test_fn(constant_op.constant(l))))
        l = []
        self.assertEqual(
            test_fn(l),
            sess.run(
                result.test_fn(
                    constant_op.constant(l, shape=(0,), dtype=dtypes.int32))))
def node_to_graph(node, ctx, nocompile_decorators):
    """Convert Python code to equivalent TF graph mode code.

  Args:
    node: A Python AST node representing the code to convert.
    ctx: An EntityContext object.
    nocompile_decorators: A tuple containing decorators to be stripped from
        functions during conversion.

  Returns:
    A tuple (node, deps):
        * node: A Python ast node, representing the converted code.
        * deps: A set of strings, the fully qualified names of entity
            dependencies that this node has.
  """
    # TODO(mdan): Verify arguments for correctness.

    # TODO(mdan): Factor out common elements.
    # These include:
    #   * code move between blocks
    #   * visiting blocks in transformers

    # Certain steps, especially canonicalization, insert new symbols into the
    # tree, which must be accounted. Although less efficient, it is most robust
    # to re-run the analysis.

    node = _static_analysis_pass(node, ctx)

    # TODO(mdan): Clean this up.
    # Some intermediate analyses are not required, and some comments got orphaned.

    # Past this point, line numbers are no longer accurate so we ignore the
    # source.
    # TODO(mdan): Is it feasible to reconstruct intermediate source code?
    ctx.source_code = None
    node = ifexp.transform(node, ctx)
    node, deps = decorators.transform(node, nocompile_decorators)
    node = break_statements.transform(node, ctx)
    node = asserts.transform(node, ctx)

    # Note: sequencing continue canonicalization before for loop one avoids
    # dealing with the extra loop increment operation that the for
    # canonicalization creates.
    node = continue_statements.transform(node, ctx)
    ctx.namespace['len'] = len

    node = _static_analysis_pass(node, ctx)
    node = single_return.transform(node, ctx)

    node = _static_analysis_pass(node, ctx)
    node = lists.transform(node, ctx)
    node = builtin_functions.transform(node, ctx)

    node = _static_analysis_pass(node, ctx)
    node = call_trees.transform(node, ctx, config.DEFAULT_UNCOMPILED_MODULES,
                                nocompile_decorators)
    node = control_flow.transform(node, ctx)

    # control_flow may create new symbols and change scopes.
    node = _static_analysis_pass(node, ctx)
    node = logical_expressions.transform(node, ctx)
    node = side_effect_guards.transform(node, ctx)
    node = name_scopes.transform(node, ctx)

    return node, deps
Beispiel #24
0
def node_to_graph(node, ctx, nocompile_decorators):
  """Convert Python code to equivalent TF graph mode code.

  Args:
    node: A Python AST node representing the code to convert.
    ctx: An EntityContext object.
    nocompile_decorators: A tuple containing decorators to be stripped from
        functions during conversion.

  Returns:
    A tuple (node, deps):
        * node: A Python ast node, representing the converted code.
        * deps: A set of strings, the fully qualified names of entity
            dependencies that this node has.
  """
  # TODO(mdan): Verify arguments for correctness.

  # TODO(mdan): Factor out common elements.
  # These include:
  #   * code move between blocks
  #   * visiting blocks in transformers

  # Certain steps, especially canonicalization, insert new symbols into the
  # tree, which must be accounted. Although less efficient, it is most robust
  # to re-run the analysis.

  node = _static_analysis_pass(node, ctx)

  # TODO(mdan): Clean this up.
  # Some intermediate analyses are not required, and some comments got orphaned.

  # Past this point, line numbers are no longer accurate so we ignore the
  # source.
  # TODO(mdan): Is it feasible to reconstruct intermediate source code?
  ctx.source_code = None
  node = ifexp.transform(node, ctx)
  node, deps = decorators.transform(node, nocompile_decorators)
  node = break_statements.transform(node, ctx)
  node = asserts.transform(node, ctx)

  # Note: sequencing continue canonicalization before for loop one avoids
  # dealing with the extra loop increment operation that the for
  # canonicalization creates.
  node = continue_statements.transform(node, ctx)
  ctx.namespace['len'] = len

  node = _static_analysis_pass(node, ctx)
  node = single_return.transform(node, ctx)

  node = _static_analysis_pass(node, ctx)
  node = lists.transform(node, ctx)
  node = builtin_functions.transform(node, ctx)

  node = _static_analysis_pass(node, ctx)
  node = call_trees.transform(node, ctx, config.DEFAULT_UNCOMPILED_MODULES,
                              nocompile_decorators)
  node = control_flow.transform(node, ctx)

  # control_flow may create new symbols and change scopes.
  node = _static_analysis_pass(node, ctx)
  node = logical_expressions.transform(node, ctx)
  node = side_effect_guards.transform(node, ctx)
  node = name_scopes.transform(node, ctx)

  return node, deps