Beispiel #1
0
    def fit(self, epochs=1000, alpha=0.001, beta=0, verbose=False):
        """
        Find optimal weights to fit to samples.

        :param epochs: Number of epochs to train model for \\
        :param alpha: Learning rate hyperparameter \\
        :param beta: Regularization hyperparameter \\
        :param verbose: Flag for verbose logging \\
        :return: Optimal weights \\
        """
        X, y = self.data, self.labels

        optimizer = tf.train.GradientDescentOptimizer(learning_rate=alpha)
        gradient = tfe.implicit_gradients(self._loss)

        for epoch in range(epochs):
            optimizer.apply_gradients(gradient(beta))

            if verbose:
                once_every = epochs // 10
                if (epoch + 1) % once_every == 0:
                    loss = self._loss(beta)
                    print('Epoch: %i --> loss = %0.3f' % (epoch + 1, loss))

        return self.w.numpy()
Beispiel #2
0
def train():
    batch_size = 10
    num_epoches = 2
    data_size = 500 * 10
    display_iter = 100
    dir = r"E:\code\python\deeplearning\tensorflow1.x\data\mnist_digits_images"
    save_dir = r"E:\\code\\python\\deeplearning\\tensorflow1.x\\data\\ck\\"
    dataset = get_dataset(directory=dir, size=[28, 28], batch_size=batch_size)
    iterator = dataset.make_one_shot_iterator()
    data = iterator.get_next()
    model = MNISTModel(name='net')
    global_step = tf.train.get_or_create_global_step()
    optimizer = tf.train.AdamOptimizer(learning_rate=1e-4)
    grad_fn = tfe.implicit_gradients(compute_loss)

    while global_step * batch_size / data_size < num_epoches:
        step = int(global_step * batch_size / data_size)
        x, y = tf.cast(data[0], dtype=tf.float32), data[1]
        grads_and_vars = grad_fn(model, x, y)
        optimizer.apply_gradients(
            grads_and_vars=grads_and_vars,
            global_step=tf.train.get_or_create_global_step())
        # 获取要保存的变量
        if global_step % display_iter == 0:
            all_variables = (model.variables + optimizer.variables() +
                             [global_step])
            tfe.Saver(all_variables).save(save_dir,
                                          global_step=global_step)  # 检查点文件
        print("Epoch:{}, Iteration:{}, loss:{}".format(
            step, global_step, compute_loss(model, x, y)))
        global_step = tf.train.get_or_create_global_step()
Beispiel #3
0
    def optimize_policy(self,
                        policy,
                        env,
                        n_samples_per_rollout,
                        time_horizon,
                        n_iter=1000,
                        verbose=1):

        if policy.type == 'discrete':
            loss = self.loss_discrete
        elif policy.type == 'continuous':
            loss = self.loss_continuous

        grads = tfe.implicit_gradients(loss)

        for i in range(n_iter):
            observations, actions, q_values, mean_reward = self.policy_rollout(
                policy, env, n_samples_per_rollout, time_horizon)

            if verbose >= 1 and (i+1) % 1 == 0:
                print('Iteration {0}. Loss: {1}. Average reward: {2}.'
                      .format(i+1,
                              loss(policy, observations, actions, q_values),
                              mean_reward))

            if verbose >= 2 and (i+1) % 10 == 0:
                render_policy(policy, env)

            self.optimizer.apply_gradients(
                grads(policy, observations, actions, q_values))

        return n_iter
Beispiel #4
0
  def call(self, inputs):
    """Calculates logits and action.

    Args:
      inputs: Observations from a step in the cart-pole environment, of shape
        `(batch_size, input_size)`

    Returns:
      logits: the logits output by the output layer. This can be viewed as the
        likelihood vales of choosing the left (0) action. Shape:
        `(batch_size, 1)`.
      actions: randomly selected actions ({0, 1}) based on the logits. Shape:
        `(batch_size, 1)`.
    """
    hidden = self._hidden_layer(inputs)
    logits = self._output_layer(hidden)

    left_prob = tf.nn.sigmoid(logits)
    action_probs = tf.concat([left_prob, 1.0 - left_prob], 1)

    self._grad_fn = eager.implicit_gradients(
        self._get_cross_entropy_and_save_actions)

    actions = tf.multinomial(tf.log(action_probs), 1)
    return logits, actions
    def __init__(self, hidden_size):
        super(EagerPolicyNetwork, self).__init__()
        self._hidden_layer = tf.keras.layers.Dense(hidden_size,
                                                   activation=tf.nn.elu)
        self._output_layer = tf.keras.layers.Dense(1)

        self._grad_fn = eager.implicit_gradients(
            self._get_cross_entropy_and_save_actions)
Beispiel #6
0
 def __init__(self, params):
     super(SimpleNN, self).__init__()
     self.params = params
     self.hidden_layers = [
         self.track_layer(tf.layers.Dense(params.state_size, activation=tf.nn.relu))
         for _ in range(params.num_layers)]
     self.output_layer = self.track_layer(tf.layers.Dense(params.num_classes, name='output_layer'))
     self.optimizer = tf.train.AdamOptimizer(1e-3)
     self.grads_fn = tfe.implicit_gradients(self.loss_fn)
Beispiel #7
0
 def __init__(self, env):
     self.actions = list(range(env.action_space.n))
     self.num_states = env.observation_space.n
     self.rewards = tfe.Variable(tf.random_uniform(
         [env.observation_space.n]),
                                 name="rewards")
     """
     self.rewards = tfe.Variable(initial_value=[0.0, 0.0, 0.0, 0.0,
                                                0.0, 0.0, 0.0, 0.0,
                                                0.0, 0.0, 0.0, 0.0,
                                                0.0, 0.0, 0.0, 1.0,],
                                 name="rewards")
     """
     self._updater = tfe.implicit_gradients(self.loss)
def train():
    datasize = 100
    train_X, train_y = generate_data(datasize=datasize)
    dataset = gen_datast(train_X, train_y)
    iterator = dataset.make_one_shot_iterator()
    data = iterator.get_next()
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
    grad_fn = tfe.implicit_gradients(compute_loss)

    global_step = tf.train.get_or_create_global_step()
    iter = 0

    training_epoches = 20
    display_step = 2
    batch_size = 10
    plot_steps = []
    plot_losses = []
    while global_step * batch_size / datasize < training_epoches:
        step = int(global_step * batch_size / datasize)
        X = tf.cast(data['X'], dtype=tf.float32)
        y = tf.cast(data['y'], dtype=tf.float32)
        grads_and_vars = grad_fn(linear_regression, X, y)
        optimizer.apply_gradients(
            grads_and_vars=grads_and_vars, global_step=global_step
        )  # compute_cost的输入为linear_regression, data['X'], data['y']
        loss = compute_loss(linear_regression, X, y)
        if step % display_step == 0:
            print("Epoch:", step + 1, "loss=", loss, "weight=", weight, "b=",
                  b)
            if not (loss == "NA"):
                # plot_steps.append(global_step.eval()) 不行
                plot_steps.append(iter)
                plot_losses.append(loss)
        data = iterator.get_next()
        global_step = tf.train.get_or_create_global_step()
        iter += 1
    print("Done!!!")
    print(plot_steps)
    show_data(plot_steps, plot_losses)
Beispiel #9
0
    def optimize_policy(self,
                        env,
                        n_samples_per_rollout,
                        time_horizon=200,
                        n_iter=1000,
                        early_stop=True,
                        verbose=True):
        grads = tfe.implicit_gradients(self.loss)
        for i in range(n_iter):
            observations, actions, q_values, mean_reward = self.policy_rollout(
                env, n_samples_per_rollout, time_horizon)

            if verbose and (i + 1) % 10 == 0:
                print('Iteration {0}. Average reward: {1}'.format(
                    i + 1, mean_reward))

            if mean_reward == 200 and early_stop:
                return i + 1

            self.optimizer.apply_gradients(
                grads(observations, actions, q_values))

        return n_iter
Beispiel #10
0
#定义优化器
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)


#定义函数计算loss
def _grad_fn(yolo_v3, images_tensor, list_y_trues):
    logits = yolo_v3(images_tensor)
    loss = loss_fn(list_y_trues,
                   logits,
                   anchors=COCO_ANCHORS,
                   image_size=[imgsize, imgsize])
    return loss


grad = tfe.implicit_gradients(_grad_fn)  #获得计算梯度的函数

history = []
for i in range(num_epoches):
    _loop_train(yolo_v3, optimizer, generator, grad)  #训练

    loss_value = _loop_validation(yolo_v3, generator)  #验证
    print("{}-th loss = {}".format(i, loss_value))

    #收集loss
    history.append(loss_value)
    if loss_value == min(history):  #只有loss创新低时再保存模型
        print("    update weight {}".format(loss_value))
        yolo_v3.save_weights("{}.h5".format(save_fname))
################################################################
#使用模型
Beispiel #11
0
def all_loss(encoder, decoder, img_tensor, target):
    loss = 0
    hidden = decoder.reset_state(batch_size=target.shape[0])

    dec_input = tf.expand_dims([word_index['<start>']] * target.shape[0], 1)
    feature = encoder(img_tensor)  # (batch_size,49,256)

    for i in range(1, target.shape[1]):
        predictions, hidden, _ = decoder(dec_input, feature, hidden)
        loss += loss_mask(target[:, i], predictions)

        dec_input = tf.expand_dims(target[:, i], 1)
    return loss


grad = tfe.implicit_gradients(all_loss)


# 实现单步训练过程
def train_one_epoch(encoder, decoder, optimizer, step_counter, dataset, epoch):
    total_loss = 0
    for (step, (img_tensor, target)) in enumerate(dataset):
        loss = 0

        optimizer.apply_gradients(grad(encoder, decoder, img_tensor, target), step_counter)
        loss = all_loss(encoder, decoder, img_tensor, target)

        total_loss += (loss / int(target.shape[1]))
        if step % 5 == 0:
            print('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1,
                                                         step,
    # Using sparse_softmax cross entropy
    return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=inference_fn(inputs), labels=labels))


# Calculate accuracy
def accuracy_fn(inference_fn, inputs, labels):
    prediction = tf.nn.softmax(inference_fn(inputs))
    correct_pred = tf.equal(tf.argmax(prediction, 1), labels)
    return tf.reduce_mean(tf.cast(correct_pred, tf.float32))


# SGD Optimizer
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
# Compute gradients
grad = tfe.implicit_gradients(loss_fn)

# Training
average_loss = 0.
average_acc = 0.
for step in range(num_steps):

    # Iterate through the dataset
    try:
        d = dataset_iter.next()
    except StopIteration:
        # Refill queue
        dataset_iter = tfe.Iterator(dataset)
        d = dataset_iter.next()

    # Images
Beispiel #13
0
global_step = tf.train.get_or_create_global_step()


def getcost(x, y):  #定义函数,计算loss值
    # 前向结构
    z = tf.cast(tf.multiply(np.asarray(x, dtype=np.float32), W) + b,
                dtype=tf.float32)
    cost = tf.reduce_mean(tf.square(y - z))  #loss值
    return cost


learning_rate = 0.01
# 随机梯度下降法作为优化器
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)

grad = tfe.implicit_gradients(getcost)  #获得计算梯度的函数

#定义saver,演示两种方法处理检查点文件
savedir = "logeager/"
savedirx = "logeagerx/"

saver = tf.train.Saver([W, b],
                       max_to_keep=1)  #生成saver。 max_to_keep=1,表明最多只保存一个检查点文件
saverx = tfe.Saver([W, b])  #生成saver。 max_to_keep=1,表明最多只保存一个检查点文件

kpt = tf.train.latest_checkpoint(savedir)  #找到检查点文件
kptx = tf.train.latest_checkpoint(savedirx)  #找到检查点文件
if kpt != None:
    saver.restore(None, kpt)  #两种加载方式都可以
    saverx.restore(kptx)
# Create Linear Regression function
def linear_regression(theta):
    return theta * W + b


# Create MSE function (y-yi)^2 / 2*n_samples
def MSE(model, theta, labels):
    #return tf.reduce_sum(tf.pow(model(theta) - labels, 2) / (2*n_samples))
    return tf.reduce_mean(tf.square(tf.subtract(model(theta), labels)))


# Define SGD Optimizer
optimizer = tf.train.GradientDescentOptimizer(learning_rate)

# Computation of gradients
grad = tfe.implicit_gradients(MSE)

# Print initial cost
cost = MSE(linear_regression, train_X, train_Y)
print("Cost: %.9f" % cost)
print("Weight: %s" % W.numpy())
print("Bias: %s" % b.numpy())

for step in range(num_steps):

    optimizer.apply_gradients(grad(linear_regression, train_X, train_Y))

    if (step + 1) % display_step == 0 or step == 0:
        print("Epoch:", '%04d' % (step + 1), "cost=",
              "{:.9f}".format(MSE(linear_regression, train_X, train_Y)), "W=",
              W.numpy(), "b=", b.numpy())
    if batch < n_batch - 1:
        batch_X = train_list[batch * batch_size:(batch + 1) *
                             batch_size, :, :, :]
        batch_Y = train_label[batch * batch_size:(batch + 1) *
                              batch_size, :, :]
    else:
        batch_X = train_list[batch * batch_size:, :, :, :]
        batch_Y = train_label[batch * batch_size:, :, :]
    return batch_X, batch_Y


# Adam Optimizer
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

# Compute gradients
grad = tfe.implicit_gradients(mean_square_fn)

# Initial cost, before optimizing
print("Initial cost = {:.9f}".format(mean_square_fn(pred, batch_Y)))

# Training
costs = []
params = stage_1_util_v1.params

for epoch in range(epochs):

    batch_cost = 0.0

    for batch in range(n_batch):
        batch_X, batch_Y = next_batch(batch, batch_size)
        pred = stage_1_model(batch_X, n_joints, is_training,
Beispiel #16
0
    def train(self, global_step):
        if self.use_difference_critic:
            # Sample replay buffer for training
            batchA = self.memory.sample(batch_size=self.batch_size * 2)
            batchB = self.memory.sample(batch_size=self.batch_size * 2)

            # Prepare training data for critic
            actionA1s = self.actor(tf.convert_to_tensor(batchA['obs1']))
            actionB1s = self.actor(tf.convert_to_tensor(batchB['obs1']))
            diff_Qs = self.difference_critic(
                tf.convert_to_tensor(batchA['obs1']), actionA1s,
                tf.convert_to_tensor(batchB['obs1']), actionB1s)
            target_diff_Qs = batchA['rewards'] - batchB[
                'rewards'] + self.gamma * diff_Qs
            target_diff_Qs = tf.clip_by_value(
                tf.convert_to_tensor(target_diff_Qs), 2 * self.return_range[0],
                2 * self.return_range[1])
            target_diff_Qs = tf.constant(
                target_diff_Qs
            )  # target_diff_Qs should be treated as a constant (like supervised learning labels)

            # Gradient descent step on critic
            diff_critic_grad_fn = tfe.implicit_gradients(
                self.difference_critic_loss)
            difference_critic_grad = diff_critic_grad_fn(
                tf.convert_to_tensor(batchA['obs0']),
                tf.convert_to_tensor(batchA['actions']),
                tf.convert_to_tensor(batchB['obs0']),
                tf.convert_to_tensor(batchB['actions']), target_diff_Qs)
            difference_critic_grad = filter_grads_and_vars_by_scope(
                difference_critic_grad, 'difference_critic')
            self.difference_critic_optimizer.apply_gradients(
                difference_critic_grad, global_step=global_step)

            # Gradient descent step on actor
            actor_grad_fn = tfe.implicit_gradients(
                self.actor_loss_with_difference_critic)
            actor_grad = actor_grad_fn(tf.convert_to_tensor(batchA['obs0']),
                                       tf.convert_to_tensor(batchB['obs0']),
                                       tf.convert_to_tensor(batchB['actions']))
            actor_grad = filter_grads_and_vars_by_scope(
                actor_grad,
                'actor')  # We only want to optimize the actor at this stage
            self.actor_optimizer.apply_gradients(actor_grad,
                                                 global_step=global_step)
        else:
            # Sample replay buffer for training
            batch = self.memory.sample(batch_size=self.batch_size)

            # Prepare training data for critic
            action1s = self.actor(tf.convert_to_tensor(batch['obs1']))
            Qs = self.critic(tf.convert_to_tensor(batch['obs1']), action1s)
            terminals = batch['terminals1'].astype('float32')
            target_Qs = batch['rewards'] + (1. - terminals) * self.gamma * Qs
            target_Qs = tf.clip_by_value(tf.convert_to_tensor(target_Qs),
                                         self.return_range[0],
                                         self.return_range[1])
            target_Qs = tf.constant(
                target_Qs
            )  # target_Qs should be treated as a constant (like supervised learning labels)

            # Gradient descent step on critic_loss
            critic_grad_fn = tfe.implicit_gradients(self.critic_loss)
            critic_grad = critic_grad_fn(
                tf.convert_to_tensor(batch['obs0']),
                tf.convert_to_tensor(batch['actions']), target_Qs)
            critic_grad = filter_grads_and_vars_by_scope(critic_grad, 'critic')
            self.critic_optimizer.apply_gradients(critic_grad,
                                                  global_step=global_step)

            # Gradient descent step on actor
            actor_grad_fn = tfe.implicit_gradients(self.actor_loss)
            actor_grad = actor_grad_fn(tf.convert_to_tensor(batch['obs0']))
            actor_grad = filter_grads_and_vars_by_scope(actor_grad, 'actor')
            self.actor_optimizer.apply_gradients(actor_grad,
                                                 global_step=global_step)
Beispiel #17
0
grad_f = tfe.gradients_function(f)
print(f(2., 1.))  # 2.0
print(grad_f(2., 1.))  # [Tensor(3.0), Tensor(-2.0)]

# It's also possible to calculate partial derivatives wrt. Variables implicitly
# involved in the computation of the function
x = tfe.Variable(1.0, name='x')
y = tfe.Variable(2.0, name='y')


def g(z):
    return z * x + z * y**2


grad_g = tfe.gradients_function(g)
imp_grad_g = tfe.implicit_gradients(g)

print(g(3.))  # Tensor(15.0)
print(grad_g(3.))  # [Tensor(5.0)] is [dg/dz]
print(imp_grad_g(3.))  # [(Tensor(3.0), Variable(name='x:0')),
#  (Tensor(12.0), Variable(name='y:0'))] is [dg/dx, dg/dy]

# You can also calculate partial derivatives of one computation inside a
# GradientTape context manager
x = tf.constant(3.)
y = tfe.Variable(3.)
with tfe.GradientTape() as tape:
    tape.watch(x)  # Trainable Variables are automatically watched
    f = x**2 + y**2
print(tape.gradient(f, [x, y]))

# Linear regression (Wx + b)
def linear_regression(inputs):
    return inputs * W + b


# Mean square error
def mean_square_fn(model_fn, inputs, labels):
    return tf.reduce_sum(tf.pow(model_fn(inputs) - labels, 2)) / (2 * n_samples)


# SGD Optimizer
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
# Compute gradients
grad = tfe.implicit_gradients(mean_square_fn)

# Initial cost, before optimizing
print("Initial cost= {:.9f}".format(
    mean_square_fn(linear_regression, train_X, train_Y)),
    "W=", W.numpy(), "b=", b.numpy())

# Training
for step in range(num_steps):

    optimizer.apply_gradients(grad(linear_regression, train_X, train_Y))

    if (step + 1) % display_step == 0 or step == 0:
        print("Epoch:", '%04d' % (step + 1), "cost=",
              "{:.9f}".format(mean_square_fn(linear_regression, train_X, train_Y)),
              "W=", W.numpy(), "b=", b.numpy())
Beispiel #19
0
# 必须在loss_fn函数里面进行前项传播,然后经implicit_gradients包装后,才能进行梯度计算
def loss_fn(forward, inputs, ys, keep_prob, is_training, momentum=0.9):
    # tf.nn.softmax_cross_entropy_with_logits_v2等价于tf.nn.softmax+cross_entropy
    #       1.最后一层不需要使用激活函数softmax,直接使用softmax_cross_entropy_with_logits_v2即可
    return tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits_v2(labels=ys,
                                                   logits=forward(
                                                       inputs, keep_prob,
                                                       is_training, momentum)))


'''--------定义loss函数 end--------'''
'''--------定义优化器与梯度函数 start--------'''
# ys与out_layer都是one-hot类型的向量
optimizer = tf.train.AdamOptimizer(0.01)
grad_fn = tfe.implicit_gradients(loss_fn)
'''--------定义优化器与梯度函数 end--------'''
'''--------训练start--------'''
model = CNNModel()
for i in range(100000):
    # 获取要训练的数据
    batch_xs, batch_ys = mnist.train.next_batch(32)
    # 计算每一个变量的梯度
    grad = grad_fn(model.forward, batch_xs.reshape(-1, 28, 28, 1), batch_ys,
                   0.8, True)
    # 优化梯度
    optimizer.apply_gradients(grad)
    if i % 50 == 0:
        # 测试阶段
        y_pre = model.forward(tf.cast(x_test, dtype=tf.float32), 1, False)
        # 测试正确率
Beispiel #20
0
## Gradients - Automatic differentiation is built into eager execution
# Under the hood ...
#    - Operations are recorded on a tap
#    - The tape is Played back to compute gradients
#         - This is reverse-mode differentiation (backpropagation)


# Eg: 01
def square(x):
    return x**2


grad = tfe.gradients_function(square)  # differentiation w.r.t input of square

print(square(3.))
print(grad(3.))

# Eg: 02
x = tfe.Variable(2.0)  # use when eager execution is enabled


def loss(y):
    return (y - x**2)**2


grad = tfe.implicit_gradients(
    loss)  # Differentiation w.r.t variables used to compute loss

print(loss(7.))
print(grad(7.))  # [gradient w.r.t x, x]
Beispiel #21
0
for i in x:
    print(i)


def square(x):
    return x**2


grad = tfe.gradients_function(square)

print(square(3.))
print(grad(3.))

x = tfe.Variable(2.0)


def loss(y):
    return (y - x**2)**2


grad = tfe.implicit_gradients(loss)

print(loss(7.))
print(grad(7.))

#APIs for computing gradients work
#tfe.gradients_function()
#tfe.value_and_gradients_function()
#tfe.implicit_gradients()
#tfe.implicit_value_and_gradients()
Beispiel #22
0
    def __init__(self):
        super(MNISTModel, self).__init__()
        self.layer1 = self.track_layer(tf.layers.Dense(units=10))
        self.layer2 = self.track_layer(tf.layers.Dense(units=10))

    def call(self, input):
        """Actually runs the model."""
        result = self.layer1(input)
        result = self.layer2(result)
        return result


# Let's make up a blank input image
model = MNISTModel()
batch = tf.zeros([1, 1, 784])
print(batch.shape)

result = model(batch)
print(result)


def loss_function(model, x, y):
    y_ = model(x)
    return tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y_)


optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)

for (x, y) in tfe.Iterator(batch):
    grads = tfe.implicit_gradients(loss_function)(model, x, y)
    optimizer.apply_gradients(grads)