Beispiel #1
0
def function_to_graph(f, program_ctx, arg_values, arg_types, do_rename=True):
    """Specialization of `entity_to_graph` for callable functions."""

    future_features = inspect_utils.getfutureimports(f)
    node, source = parser.parse_entity(f, future_features=future_features)
    logging.log(3, 'Source code of %s:\n\n%s\n', f, source)
    # Parsed AST should contain future imports and one function def node.

    # In general, the output of inspect.getsource is inexact for lambdas because
    # it uses regex matching to adjust the exact location around the line number
    # that CPython records. Then, the entire containing line is returned, which
    # we may have trouble disambiguating. For example:
    # x, y = lambda: 1, lambda: 2
    if f.__name__ == '<lambda>':
        nodes = ast_util.find_matching_definitions(node, f)
        if len(nodes) != 1:
            raise ValueError(
                'Unable to identify source code of lambda function {}. It was'
                ' defined on this line: {}, which must contain a single lambda with'
                ' matching signature. To avoid ambiguity, define each lambda'
                ' in a separate expression.'.format(f, source))
        node, = nodes

    # TODO(znado): Place inside standard_analysis.
    origin_info.resolve(node, source, f)
    namespace = inspect_utils.getnamespace(f)
    _add_self_references(namespace, program_ctx.autograph_module)
    namer = naming.Namer(namespace)

    entity_info = transformer.EntityInfo(source_code=source,
                                         source_file='<fragment>',
                                         future_features=future_features,
                                         namespace=namespace,
                                         arg_values=arg_values,
                                         arg_types=arg_types)
    context = converter.EntityContext(namer, entity_info, program_ctx)
    try:
        node = node_to_graph(node, context)
    except (ValueError, AttributeError, KeyError, NotImplementedError) as e:
        logging.error(1, 'Error converting %s', f, exc_info=True)
        raise errors.InternalError('conversion', e)
        # TODO(mdan): Catch and rethrow syntax errors.

    if isinstance(node, gast.Lambda):
        new_name = namer.new_symbol('tf__lambda', ())
        node = gast.Assign(targets=[gast.Name(new_name, gast.Store(), None)],
                           value=node)

    elif do_rename:
        new_name = namer.function_name(f.__name__)
        node.name = new_name
    else:
        new_name = f.__name__
        assert node.name == new_name

    return (node, ), new_name, entity_info
Beispiel #2
0
def function_to_graph(f, program_ctx, arg_values, arg_types, owner_type=None):
    """Specialization of `entity_to_graph` for callable functions."""

    node, source = parser.parse_entity(f)
    logging.log(3, 'Source code of %s:\n%s', f, source)
    node = node.body[0]

    # In general, the output of inspect.getsource is inexact because it uses
    # regex matching to adjust the exact location around the line number that
    # CPython records. This is particularly problematic for lambda functions,
    # where the entire containing lines are returned.
    nodes = ast_util.find_matching_definitions(node, f)
    if len(nodes) != 1:
        if f.__name__ == '<lambda>':
            raise ValueError(
                'Unable to identify source code of lambda function {}. It was'
                ' defined on this line: {}, which must contain a single lambda with'
                ' matching signature. To avoid ambiguity, define each lambda'
                ' in a separate expression.'.format(f, source))
        else:
            raise ValueError(
                'Unable to identify source code of function {}({}). The source code'
                ' reported by Python did not include exactly one matching signature:'
                '\n{}\n. This is an extremely rare occurrence. Please report it to'
                ' the TensorFlow team.'.format(f, tf_inspect.getfullargspec(f),
                                               source))
    node, = nodes

    # TODO(znado): Place inside standard_analysis.
    origin_info.resolve(node, source, f)
    namespace = inspect_utils.getnamespace(f)
    _add_self_references(namespace, program_ctx.autograph_module)
    namer = program_ctx.new_namer(namespace)

    entity_info = transformer.EntityInfo(source_code=source,
                                         source_file='<fragment>',
                                         namespace=namespace,
                                         arg_values=arg_values,
                                         arg_types=arg_types,
                                         owner_type=owner_type)
    context = converter.EntityContext(namer, entity_info, program_ctx)
    try:
        node = node_to_graph(node, context)
    except (ValueError, AttributeError, KeyError, NotImplementedError) as e:
        logging.error(1, 'Error converting %s', f, exc_info=True)
        raise errors.InternalError('conversion', e)
        # TODO(mdan): Catch and rethrow syntax errors.

    if isinstance(node, gast.Lambda):
        new_name = namer.new_symbol('tf__lambda', ())
        node = gast.Assign(targets=[gast.Name(new_name, gast.Store(), None)],
                           value=node)

    else:
        # TODO(mdan): This somewhat duplicates the renaming logic in call_trees.py
        new_name, did_rename = namer.compiled_function_name(
            f.__name__, f, owner_type)
        if did_rename:
            node.name = new_name
        else:
            new_name = f.__name__
            assert node.name == new_name

    program_ctx.update_name_map(namer)
    # TODO(mdan): Use this at compilation.

    return [node], new_name, namespace