def test_build_standardized_signature_def_classify_classes_only(self):
        """Tests classification with one output tensor."""
        input_tensors = {
            "input-1":
            array_ops.placeholder(dtypes.string, 1, name="input-tensor-1")
        }
        classes = array_ops.placeholder(dtypes.string,
                                        1,
                                        name="output-tensor-1")

        export_output = export_output_lib.ClassificationOutput(classes=classes)
        actual_signature_def = export_output.as_signature_def(input_tensors)

        expected_signature_def = meta_graph_pb2.SignatureDef()
        shape = tensor_shape_pb2.TensorShapeProto(
            dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)])
        dtype_string = types_pb2.DataType.Value("DT_STRING")
        expected_signature_def.inputs[
            signature_constants.CLASSIFY_INPUTS].CopyFrom(
                meta_graph_pb2.TensorInfo(name="input-tensor-1:0",
                                          dtype=dtype_string,
                                          tensor_shape=shape))
        expected_signature_def.outputs[
            signature_constants.CLASSIFY_OUTPUT_CLASSES].CopyFrom(
                meta_graph_pb2.TensorInfo(name="output-tensor-1:0",
                                          dtype=dtype_string,
                                          tensor_shape=shape))

        expected_signature_def.method_name = (
            signature_constants.CLASSIFY_METHOD_NAME)
        self.assertEqual(actual_signature_def, expected_signature_def)
  def test_build_all_signature_defs_explicit_default(self):
    receiver_tensor = constant_op.constant(["11"])
    output_1 = constant_op.constant([1.])
    output_2 = constant_op.constant(["2"])
    output_3 = constant_op.constant(["3"])
    export_outputs = {
        signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
            export_output.RegressionOutput(value=output_1),
        "head-2": export_output.ClassificationOutput(classes=output_2),
        "head-3": export_output.PredictOutput(outputs={
            "some_output_3": output_3
        }),
    }

    signature_defs = export.build_all_signature_defs(
        receiver_tensor, export_outputs)

    expected_signature_defs = {
        "serving_default":
            signature_def_utils.regression_signature_def(receiver_tensor,
                                                         output_1),
        "head-2":
            signature_def_utils.classification_signature_def(receiver_tensor,
                                                             output_2, None),
        "head-3":
            signature_def_utils.predict_signature_def({
                "input": receiver_tensor
            }, {"output": output_3})
    }

    self.assertDictEqual(expected_signature_defs, signature_defs)
 def test_classify_scores_must_be_float(self):
     scores = array_ops.placeholder(dtypes.string,
                                    1,
                                    name="output-tensor-1")
     with self.assertRaises(ValueError) as e:
         export_output_lib.ClassificationOutput(scores=scores)
     self.assertEqual(
         'Classification scores must be a float32 Tensor; got '
         'Tensor("output-tensor-1:0", shape=(1,), dtype=string)',
         str(e.exception))
 def test_classify_classes_must_be_strings(self):
     classes = array_ops.placeholder(dtypes.float32,
                                     1,
                                     name="output-tensor-1")
     with self.assertRaises(ValueError) as e:
         export_output_lib.ClassificationOutput(classes=classes)
     self.assertEqual(
         'Classification classes must be a string Tensor; got '
         'Tensor("output-tensor-1:0", shape=(1,), dtype=float32)',
         str(e.exception))
Beispiel #5
0
 def testExportOutputsNoDict(self):
     with ops.Graph().as_default(), self.test_session():
         predictions = {'loss': constant_op.constant(1.)}
         classes = constant_op.constant('hello')
         with self.assertRaisesRegexp(TypeError,
                                      'export_outputs must be dict'):
             model_fn.EstimatorSpec(
                 mode=model_fn.ModeKeys.PREDICT,
                 predictions=predictions,
                 export_outputs=export_output.ClassificationOutput(
                     classes=classes))
def _model_fn_for_export_tests(features, labels, mode):
    _, _ = features, labels
    variables.Variable(1., name='weight')
    scores = constant_op.constant([3.])
    classes = constant_op.constant(['wumpus'])
    return model_fn_lib.EstimatorSpec(mode,
                                      predictions=constant_op.constant(10.),
                                      loss=constant_op.constant(1.),
                                      train_op=constant_op.constant(2.),
                                      export_outputs={
                                          'test':
                                          export_output.ClassificationOutput(
                                              scores, classes)
                                      })
 def _model_fn_scaffold(features, labels, mode):
     _, _ = features, labels
     variables.Variable(1., name='weight')
     real_saver = saver.Saver()
     self.mock_saver = test.mock.Mock(wraps=real_saver,
                                      saver_def=real_saver.saver_def)
     scores = constant_op.constant([3.])
     return model_fn_lib.EstimatorSpec(
         mode=mode,
         predictions=constant_op.constant([[1.]]),
         loss=constant_op.constant(0.),
         train_op=constant_op.constant(0.),
         scaffold=training.Scaffold(saver=self.mock_saver),
         export_outputs={
             'test': export_output.ClassificationOutput(scores)
         })
Beispiel #8
0
 def testAllArgumentsSet(self):
     """Tests that no errors are raised when all arguments are set."""
     with ops.Graph().as_default(), self.test_session():
         loss = constant_op.constant(1.)
         predictions = {'loss': loss}
         classes = constant_op.constant('hello')
         model_fn.EstimatorSpec(
             mode=model_fn.ModeKeys.TRAIN,
             predictions=predictions,
             loss=loss,
             train_op=control_flow_ops.no_op(),
             eval_metric_ops={'loss': (control_flow_ops.no_op(), loss)},
             export_outputs={
                 'head_name':
                 export_output.ClassificationOutput(classes=classes)
             },
             training_chief_hooks=[_FakeHook()],
             training_hooks=[_FakeHook()],
             scaffold=monitored_session.Scaffold())
Beispiel #9
0
 def testExportOutputsMultiheadWithDefault(self):
     with ops.Graph().as_default(), self.test_session():
         predictions = {'loss': constant_op.constant(1.)}
         output_1 = constant_op.constant([1.])
         output_2 = constant_op.constant(['2'])
         output_3 = constant_op.constant(['3'])
         export_outputs = {
             signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
             export_output.RegressionOutput(value=output_1),
             'head-2':
             export_output.ClassificationOutput(classes=output_2),
             'head-3':
             export_output.PredictOutput(
                 outputs={'some_output_3': output_3})
         }
         estimator_spec = model_fn.EstimatorSpec(
             mode=model_fn.ModeKeys.PREDICT,
             predictions=predictions,
             export_outputs=export_outputs)
         self.assertEqual(export_outputs, estimator_spec.export_outputs)
        def _model_fn_scaffold(features, labels, mode):
            _, _ = features, labels
            my_int = variables.Variable(
                1, name='my_int', collections=[ops.GraphKeys.LOCAL_VARIABLES])
            scores = constant_op.constant([3.])
            with ops.control_dependencies([
                    variables.local_variables_initializer(),
                    data_flow_ops.tables_initializer()
            ]):
                assign_op = state_ops.assign(my_int, 12345)

            # local_initSop must be an Operation, not a Tensor.
            custom_local_init_op = control_flow_ops.group(assign_op)
            return model_fn_lib.EstimatorSpec(
                mode=mode,
                predictions=constant_op.constant([[1.]]),
                loss=constant_op.constant(0.),
                train_op=constant_op.constant(0.),
                scaffold=training.Scaffold(local_init_op=custom_local_init_op),
                export_outputs={
                    'test': export_output.ClassificationOutput(scores)
                })
Beispiel #11
0
 def testExportOutputsMultiheadMissingDefault(self):
     with ops.Graph().as_default(), self.test_session():
         predictions = {'loss': constant_op.constant(1.)}
         output_1 = constant_op.constant([1.])
         output_2 = constant_op.constant(['2'])
         output_3 = constant_op.constant(['3'])
         export_outputs = {
             'head-1':
             export_output.RegressionOutput(value=output_1),
             'head-2':
             export_output.ClassificationOutput(classes=output_2),
             'head-3':
             export_output.PredictOutput(
                 outputs={'some_output_3': output_3})
         }
         with self.assertRaisesRegexp(
                 ValueError,
                 'Multiple export_outputs were provided, but none of them is '
                 'specified as the default.  Do this by naming one of them with '
                 'signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY.'):
             model_fn.EstimatorSpec(mode=model_fn.ModeKeys.PREDICT,
                                    predictions=predictions,
                                    export_outputs=export_outputs)
 def test_classify_requires_classes_or_scores(self):
     with self.assertRaises(ValueError) as e:
         export_output_lib.ClassificationOutput()
     self.assertEqual("At least one of scores and classes must be set.",
                      str(e.exception))