Beispiel #1
0
def _clone_and_build_model(mode,
                           keras_model,
                           custom_objects,
                           features=None,
                           labels=None):
  """Clone and build the given keras_model.

  Args:
    mode: training mode.
    keras_model: an instance of compiled keras model.
    custom_objects: Dictionary for custom objects.
    features:
    labels:

  Returns:
    The newly built model.
  """
  # Set to True during training, False for inference.
  K.set_learning_phase(mode == model_fn_lib.ModeKeys.TRAIN)

  # Clone keras model.
  input_tensors = None if features is None else _create_ordered_io(
      keras_model, features)
  if custom_objects:
    with CustomObjectScope(custom_objects):
      model = models.clone_model(keras_model, input_tensors=input_tensors)
  else:
    model = models.clone_model(keras_model, input_tensors=input_tensors)

  # Compile/Build model
  if mode is model_fn_lib.ModeKeys.PREDICT and not model.built:
    model.build()
  else:
    optimizer_config = keras_model.optimizer.get_config()
    optimizer = keras_model.optimizer.__class__.from_config(optimizer_config)
    optimizer.iterations = training_util.get_or_create_global_step()

    # Get list of outputs.
    if labels is None:
      target_tensors = None
    elif isinstance(labels, dict):
      target_tensors = _create_ordered_io(keras_model, labels, is_input=False)
    else:
      target_tensors = [
          _cast_tensor_to_floatx(
              sparse_tensor_lib.convert_to_tensor_or_sparse_tensor(labels))
      ]

    model.compile(
        optimizer,
        keras_model.loss,
        metrics=keras_model.metrics,
        loss_weights=keras_model.loss_weights,
        sample_weight_mode=keras_model.sample_weight_mode,
        weighted_metrics=keras_model.weighted_metrics,
        target_tensors=target_tensors)

  if isinstance(model, models.Sequential):
    model = model.model
  return model
Beispiel #2
0
def convert(in_path, out_path):
    """Convert any Keras model to the frugally-deep model format."""

    assert K.backend() == "tensorflow"
    assert K.floatx() == "float32"
    assert K.image_data_format() == 'channels_last'

    print('loading {}'.format(in_path))
    with CustomObjectScope({
            'relu6': mobilenet.relu6,
            'DepthwiseConv2D': mobilenet.DepthwiseConv2D
    }):
        model = load_model(in_path)

    # Force creation of underlying functional model.
    # see: https://github.com/fchollet/keras/issues/8136
    # Loss and optimizer type do not matter, since to don't train the model.
    model.compile(loss='mse', optimizer='sgd')

    model = convert_sequential_to_model(model)
    test_data = gen_test_data(model)

    json_output = {}
    json_output['architecture'] = json.loads(model.to_json())

    json_output['image_data_format'] = K.image_data_format()
    for depth in range(1, 3, 1):
        json_output['conv2d_valid_offset_depth_' + str(depth)] =\
            check_operation_offset(depth, offset_conv2d_eval, 'valid')
        json_output['conv2d_same_offset_depth_' + str(depth)] =\
            check_operation_offset(depth, offset_conv2d_eval, 'same')
        json_output['separable_conv2d_valid_offset_depth_' + str(depth)] =\
            check_operation_offset(depth, offset_sep_conv2d_eval, 'valid')
        json_output['separable_conv2d_same_offset_depth_' + str(depth)] =\
            check_operation_offset(depth, offset_sep_conv2d_eval, 'same')
    json_output['max_pooling_2d_valid_offset'] =\
        check_operation_offset(1, conv2d_offset_max_pool_eval, 'valid')
    json_output['max_pooling_2d_same_offset'] =\
        check_operation_offset(1, conv2d_offset_max_pool_eval, 'same')
    json_output['average_pooling_2d_valid_offset'] =\
        check_operation_offset(1, conv2d_offset_average_pool_eval, 'valid')
    json_output['average_pooling_2d_same_offset'] =\
        check_operation_offset(1, conv2d_offset_average_pool_eval, 'same')
    json_output['input_shapes'] = get_shapes(test_data['inputs'])
    json_output['output_shapes'] = get_shapes(test_data['outputs'])
    json_output['tests'] = [test_data]
    json_output['trainable_params'] = get_all_weights(model)

    print('writing {}'.format(out_path))
    write_text_file(
        out_path,
        json.dumps(json_output, allow_nan=False, indent=2, sort_keys=True))
Beispiel #3
0
def evaluate_test(model_path,
                  model_type,
                  test_dset,
                  batch_size=64,
                  confusion_mat=False):
    x_test, y_media_test, y_emotion_test = test_dset

    if model_type == "mobile":
        #        model = tf.keras.models.load_model(model_path,
        #                                           custom_objects={'relu6': tf.keras.applications.mobilenet.relu6,
        #                                                           'DepthwiseConv2D': tf.keras.applications.mobilenet.DepthwiseConv2D})
        from tensorflow.python.keras._impl.keras.utils.generic_utils import CustomObjectScope
        from tensorflow.python.keras._impl.keras.applications import mobilenet
        from tensorflow.python.keras._impl.keras.models import load_model
        with CustomObjectScope({
                'relu6': mobilenet.relu6,
                'DepthwiseConv2D': mobilenet.DepthwiseConv2D
        }):
            model = load_model(model_path)
    else:
        model = tf.keras.models.load_model(model_path)

    results = model.evaluate(x_test, {
        'output_media': y_media_test,
        'output_emotion': y_emotion_test
    },
                             batch_size=batch_size,
                             verbose=True)
    for i in range(0, len(results)):
        print(model.metrics_names[i])
        print(results[i])

    if confusion_mat:
        y_media_pred, y_emotion_pred = model.predict(x_test,
                                                     batch_size=batch_size)
        y_media_test_label = np.argmax(y_media_test, axis=1)
        y_emotion_test_label = np.argmax(y_emotion_test, axis=1)
        y_media_pred_label = np.argmax(y_media_pred, axis=1)
        y_emotion_pred_label = np.argmax(y_emotion_pred, axis=1)

        cm_media = sklearn.metrics.confusion_matrix(y_media_test_label,
                                                    y_media_pred_label)
        cm_emotion = sklearn.metrics.confusion_matrix(y_emotion_test_label,
                                                      y_emotion_pred_label)
        print("Confusion matrix for media:")
        print(cm_media)
        print("Confusion matrix for emotion:")
        print(cm_emotion)
Beispiel #4
0
def load_ensemble(ensemble_folder):
    print("Load models for ensemble...")
    models = []
    from tensorflow.python.keras._impl.keras.utils.generic_utils import CustomObjectScope
    from tensorflow.python.keras._impl.keras.applications import mobilenet
    from tensorflow.python.keras._impl.keras.models import load_model
    with CustomObjectScope({
            'relu6': mobilenet.relu6,
            'DepthwiseConv2D': mobilenet.DepthwiseConv2D
    }):
        for model_name in os.listdir(ensemble_folder):
            i = 1
            model_path = os.path.join(ensemble_folder, model_name)
            model = load_model(model_path)
            model._base_name = "model_" + str(i)
            model._name = "model_" + str(i)
            models.append(model)
            i += 1
    return models
Beispiel #5
0
def _clone_and_build_model(mode,
                           keras_model,
                           custom_objects,
                           features=None,
                           labels=None):
    """Clone and build the given keras_model.

  Args:
    mode: training mode.
    keras_model: an instance of compiled keras model.
    custom_objects: Dictionary for custom objects.
    features: Dict of tensors.
    labels: Dict of tensors, or single tensor instance.

  Returns:
    The newly built model.
  """
    # Set to True during training, False for inference.
    K.set_learning_phase(mode == model_fn_lib.ModeKeys.TRAIN)

    # Get list of inputs.
    if features is None:
        input_tensors = None
    else:
        input_tensors = _create_ordered_io(keras_model,
                                           estimator_io=features,
                                           is_input=True)
    # Get list of outputs.
    if labels is None:
        target_tensors = None
    elif isinstance(labels, dict):
        target_tensors = _create_ordered_io(keras_model,
                                            estimator_io=labels,
                                            is_input=False)
    else:
        target_tensors = [_convert_tensor(labels)]

    if keras_model._is_graph_network:
        if custom_objects:
            with CustomObjectScope(custom_objects):
                model = models.clone_model(keras_model,
                                           input_tensors=input_tensors)
        else:
            model = models.clone_model(keras_model,
                                       input_tensors=input_tensors)
    else:
        model = keras_model
        _in_place_subclassed_model_reset(model)
        if input_tensors is not None:
            model._set_inputs(input_tensors)

    # Compile/Build model
    if mode is model_fn_lib.ModeKeys.PREDICT:
        if isinstance(model, models.Sequential):
            model.build()
    else:
        if isinstance(keras_model.optimizer, optimizers.TFOptimizer):
            optimizer = keras_model.optimizer
        else:
            optimizer_config = keras_model.optimizer.get_config()
            optimizer = keras_model.optimizer.__class__.from_config(
                optimizer_config)
        optimizer.iterations = training_util.get_or_create_global_step()

        model.compile(optimizer,
                      keras_model.loss,
                      metrics=keras_model.metrics,
                      loss_weights=keras_model.loss_weights,
                      sample_weight_mode=keras_model.sample_weight_mode,
                      weighted_metrics=keras_model.weighted_metrics,
                      target_tensors=target_tensors)
    return model