def compute_output_shape(self, input_shape):
     if K.image_dim_ordering() == 'tf':
         batch_size, feature_map_height, feature_map_width, feature_map_channels = input_shape
     else:  # Not yet relevant since TensorFlow is the only supported backend right now, but it can't harm to have this in here for the future
         batch_size, feature_map_channels, feature_map_height, feature_map_width = input_shape
     return (batch_size, feature_map_height, feature_map_width,
             self.n_boxes, 8)
Beispiel #2
0
def gram_matrix(x):
    assert K.ndim(x) == 3
    if K.image_dim_ordering() == "th":
        features = K.batch_flatten(x)
    else:
        features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
    gram = K.dot(features, K.transpose(features))
    return gram
def eval_loss_and_grads(x):
    if K.image_dim_ordering() == 'th':
        x = x.reshape((1, 3, img_nrows, img_ncols))
    else:
        x = x.reshape((1, img_nrows, img_ncols, 3))
    outs = f_outputs([x])
    loss_value = outs[0]
    if len(outs[1:]) == 1:
        grad_values = outs[1].flatten().astype('float64')
    else:
        grad_values = np.array(outs[1:]).flatten().astype('float64')
    return loss_value, grad_values
def total_variation_loss(x):
    assert 4 == K.ndim(x)
    if K.image_dim_ordering() == 'th':
        a = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] -
                     x[:, :, 1:, :img_ncols - 1])
        b = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] -
                     x[:, :, :img_nrows - 1, 1:])
    else:
        a = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] -
                     x[:, 1:, :img_ncols - 1, :])
        b = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] -
                     x[:, :img_nrows - 1, 1:, :])
    return K.sum(K.pow(a + b, 1.25))
def deprocess_image(x):
    if K.image_dim_ordering() == 'th':
        x = x.reshape((3, img_nrows, img_ncols))
        x = x.transpose((1, 2, 0))
    else:
        x = x.reshape((img_nrows, img_ncols, 3))
    x[:, :, 0] += 103.939
    x[:, :, 1] += 116.779
    x[:, :, 2] += 123.68

    # BGR to RGB
    x = x[:, :, ::-1]
    x = np.clip(x, 0, 255).astype('uint8')
    return x
def load_mask_labels():
    '''Load both target and style masks.
    A mask image (nr x nc) with m labels/colors will be loaded
    as a 4D boolean tensor: (1, m, nr, nc) for 'th' or (1, nr, nc, m) for 'tf'
    '''
    target_mask_img = load_img(target_mask_path,
                               target_size=(img_nrows, img_ncols))
    target_mask_img = img_to_array(target_mask_img)
    style_mask_img = load_img(style_mask_path,
                              target_size=(img_nrows, img_ncols))
    style_mask_img = img_to_array(style_mask_img)
    if K.image_dim_ordering() == 'th':
        mask_vecs = np.vstack([
            style_mask_img.reshape((3, -1)).T,
            target_mask_img.reshape((3, -1)).T
        ])
    else:
        mask_vecs = np.vstack([
            style_mask_img.reshape((-1, 3)),
            target_mask_img.reshape((-1, 3))
        ])

    labels = kmeans(mask_vecs, nb_labels)
    style_mask_label = labels[:img_nrows * img_ncols].reshape(
        (img_nrows, img_ncols))
    target_mask_label = labels[img_nrows * img_ncols:].reshape(
        (img_nrows, img_ncols))

    stack_axis = 0 if K.image_dim_ordering() == 'th' else -1
    style_mask = np.stack([style_mask_label == r for r in range(nb_labels)],
                          axis=stack_axis)
    target_mask = np.stack([target_mask_label == r for r in range(nb_labels)],
                           axis=stack_axis)

    return (np.expand_dims(style_mask,
                           axis=0), np.expand_dims(target_mask, axis=0))
def style_loss(style_image, target_image, style_masks, target_masks):
    '''Calculate style loss between style_image and target_image,
    in all regions.
    '''
    assert 3 == K.ndim(style_image) == K.ndim(target_image)
    assert 3 == K.ndim(style_masks) == K.ndim(target_masks)
    loss = K.variable(0)
    for i in range(nb_labels):
        if K.image_dim_ordering() == 'th':
            style_mask = style_masks[i, :, :]
            target_mask = target_masks[i, :, :]
        else:
            style_mask = style_masks[:, :, i]
            target_mask = target_masks[:, :, i]
        loss += region_style_weight * region_style_loss(
            style_image, target_image, style_mask, target_mask)
    return loss
    def build(input_shape, num_outputs, block_fn, repetitions):
        """Builds a custom ResNet like architecture.
        Args:
            input_shape: The input shape in the form (nb_channels, nb_rows, nb_cols)
            num_outputs: The number of outputs at final softmax layer
            block_fn: The block function to use. This is either `basic_block` or `bottleneck`.
                The original paper used basic_block for layers < 50
            repetitions: Number of repetitions of various block units.
                At each block unit, the number of filters are doubled and the input size is halved
        Returns:
            The keras `Model`.
        """
        _handle_dim_ordering()
        if len(input_shape) != 3:
            raise Exception("Input shape should be a tuple (nb_channels, nb_rows, nb_cols)")

        # Permute dimension order if necessary
        if K.image_dim_ordering() == 'tf':
            input_shape = (input_shape[1], input_shape[2], input_shape[0])

        # Load function from str if needed.
        block_fn = _get_block(block_fn)

        input = Input(shape=input_shape)
        conv1 = _conv_bn_relu(filters=64, kernel_size=(7, 7), strides=(2, 2))(input)
        pool1 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding="same")(conv1)

        block = pool1
        filters = 64
        for i, r in enumerate(repetitions):
            block = _residual_block(block_fn, filters=filters, repetitions=r, is_first_layer=(i == 0))(block)
            filters *= 2

        # Last activation
        block = _bn_relu(block)

        # Classifier block
        block_shape = K.int_shape(block)
        pool2 = AveragePooling2D(pool_size=(block_shape[ROW_AXIS], block_shape[COL_AXIS]),
                                 strides=(1, 1))(block)
        flatten1 = Flatten()(pool2)
        dense = Dense(units=num_outputs, kernel_initializer="he_normal",
                      activation="softmax")(flatten1)

        model = Model(inputs=input, outputs=dense)
        return model
def region_style_loss(style_image, target_image, style_mask, target_mask):
    '''Calculate style loss between style_image and target_image,
    for one common region specified by their (boolean) masks
    '''
    assert 3 == K.ndim(style_image) == K.ndim(target_image)
    assert 2 == K.ndim(style_mask) == K.ndim(target_mask)
    if K.image_dim_ordering() == 'th':
        masked_style = style_image * style_mask
        masked_target = target_image * target_mask
        nb_channels = K.shape(style_image)[0]
    else:
        masked_style = K.permute_dimensions(style_image,
                                            (2, 0, 1)) * style_mask
        masked_target = K.permute_dimensions(target_image,
                                             (2, 0, 1)) * target_mask
        nb_channels = K.shape(style_image)[-1]
    s = gram_matrix(masked_style) / K.mean(style_mask) / nb_channels
    c = gram_matrix(masked_target) / K.mean(target_mask) / nb_channels
    return K.mean(K.square(s - c))
        (img_nrows, img_ncols))
    target_mask_label = labels[img_nrows * img_ncols:].reshape(
        (img_nrows, img_ncols))

    stack_axis = 0 if K.image_dim_ordering() == 'th' else -1
    style_mask = np.stack([style_mask_label == r for r in range(nb_labels)],
                          axis=stack_axis)
    target_mask = np.stack([target_mask_label == r for r in range(nb_labels)],
                           axis=stack_axis)

    return (np.expand_dims(style_mask,
                           axis=0), np.expand_dims(target_mask, axis=0))


# Create tensor variables for images
if K.image_dim_ordering() == 'th':
    shape = (1, nb_colors, img_nrows, img_ncols)
else:
    shape = (1, img_nrows, img_ncols, nb_colors)

style_image = K.variable(preprocess_image(style_img_path))
target_image = K.placeholder(shape=shape)
if use_content_img:
    content_image = K.variable(preprocess_image(content_img_path))
else:
    content_image = K.zeros(shape=shape)

images = K.concatenate([style_image, target_image, content_image], axis=0)

# Create tensor variables for masks
raw_style_mask, raw_target_mask = load_mask_labels()
Beispiel #11
0
def to_plot(img):
    if K.image_dim_ordering() == 'tf':
        return np.rollaxis(img, 0, 1).astype(np.uint8)
    else:
        return np.rollaxis(img, 0, 3).astype(np.uint8)