Beispiel #1
0
    def test_inference_methods(self):
        # test predict, evaluate, test_on_batch, predict_on_batch
        # on different input types: list, dict
        num_classes = (2, 3)
        num_samples = 100
        input_dim = 50

        x1 = np.ones((num_samples, input_dim))
        x2 = np.ones((num_samples, input_dim))
        y1 = np.zeros((num_samples, num_classes[0]))
        y2 = np.zeros((num_samples, num_classes[1]))

        model = model_util.MultiIOTestModel(num_classes=num_classes,
                                            use_bn=True)
        model.compile(loss='mse',
                      optimizer='rmsprop',
                      run_eagerly=testing_utils.should_run_eagerly(),
                      experimental_run_tf_function=testing_utils.
                      should_run_tf_function())
        model.evaluate([x1, x2], [y1, y2])
        model.test_on_batch([x1, x2], [y1, y2])

        model = model_util.MultiIOTestModel(num_classes=num_classes,
                                            use_bn=True)
        model.predict([x1, x2])

        model = model_util.MultiIOTestModel(num_classes=num_classes,
                                            use_bn=True)
        model.predict_on_batch([x1, x2])
Beispiel #2
0
    def test_training_methods(self):
        # test fit, train_on_batch
        # on different input types: list, dict

        num_classes = (2, 3)
        num_samples = 100
        input_dim = 50

        x1 = np.ones((num_samples, input_dim))
        x2 = np.ones((num_samples, input_dim))
        y1 = np.zeros((num_samples, num_classes[0]))
        y2 = np.zeros((num_samples, num_classes[1]))

        model = model_util.MultiIOTestModel(num_classes=num_classes,
                                            use_bn=True)
        model.compile(loss='mse',
                      optimizer='rmsprop',
                      run_eagerly=testing_utils.should_run_eagerly(),
                      experimental_run_tf_function=testing_utils.
                      should_run_tf_function())
        model.fit([x1, x2], [y1, y2], epochs=2, batch_size=32, verbose=0)
        model.fit({
            'input_1': x1,
            'input_2': x2
        }, {
            'output_1': y1,
            'output_2': y2
        },
                  epochs=2,
                  batch_size=32)
        model.fit([x1, x2], [y1, y2],
                  epochs=2,
                  batch_size=32,
                  verbose=0,
                  validation_data=([x1, x2], [y1, y2]))

        model = model_util.MultiIOTestModel(num_classes=num_classes,
                                            use_bn=True)
        model.compile(loss='mse',
                      optimizer='rmsprop',
                      run_eagerly=testing_utils.should_run_eagerly(),
                      experimental_run_tf_function=testing_utils.
                      should_run_tf_function())
        model.train_on_batch([x1, x2], [y1, y2])
        model.train_on_batch({
            'input_1': x1,
            'input_2': x2
        }, {
            'output_1': y1,
            'output_2': y2
        })
Beispiel #3
0
    def test_summary(self):
        class ToString(object):
            def __init__(self):
                self.contents = ''

            def __call__(self, msg):
                self.contents += msg + '\n'

        # Single-io
        model = model_util.SimpleTestModel(num_classes=4,
                                           use_bn=True,
                                           use_dp=True)
        model._set_inputs(np.ones((3, 4)))  # need to build model first
        print_fn = ToString()
        model.summary(print_fn=print_fn)
        self.assertTrue('Trainable params: 356' in print_fn.contents)

        # Multi-io
        model = model_util.MultiIOTestModel(num_classes=(5, 6),
                                            use_bn=True,
                                            use_dp=True)
        model._set_inputs([np.ones((3, 4)), np.ones(
            (3, 4))])  # need to build model first
        print_fn = ToString()
        model.summary(print_fn=print_fn)
        self.assertTrue('Trainable params: 587' in print_fn.contents)
Beispiel #4
0
    def test_attributes(self):
        # layers, weights, trainable_weights, non_trainable_weights, inputs, outputs

        num_classes = (2, 3)
        num_samples = 100
        input_dim = 50

        model = model_util.MultiIOTestModel(num_classes=num_classes,
                                            use_bn=True)

        x1 = np.ones((num_samples, input_dim))
        x2 = np.ones((num_samples, input_dim))
        y1 = np.zeros((num_samples, num_classes[0]))
        y2 = np.zeros((num_samples, num_classes[1]))

        self.assertEqual(model.name, 'test_model')
        self.assertEqual(model.built, False)
        self.assertEqual(len(model.weights), 0)

        model.compile(loss='mse',
                      optimizer='rmsprop',
                      run_eagerly=testing_utils.should_run_eagerly(),
                      experimental_run_tf_function=testing_utils.
                      should_run_tf_function())
        model.train_on_batch([x1, x2], [y1, y2])

        self.assertEqual(model.built, True)
        self.assertEqual(len(model.layers), 4)
        self.assertEqual(len(model.weights), 10)
        self.assertEqual(len(model.trainable_weights), 8)
        self.assertEqual(len(model.non_trainable_weights), 2)
        self.assertEqual(len(model.inputs), 2)
        self.assertEqual(len(model.outputs), 2)
Beispiel #5
0
    def test_saving(self):
        num_classes = (2, 3)
        num_samples = 100
        input_dim = 50

        x1 = np.ones((num_samples, input_dim))
        x2 = np.ones((num_samples, input_dim))
        y1 = np.zeros((num_samples, num_classes[0]))
        y2 = np.zeros((num_samples, num_classes[1]))

        model = model_util.MultiIOTestModel(num_classes=num_classes,
                                            use_bn=True)
        model.compile(loss='mse',
                      optimizer='rmsprop',
                      run_eagerly=testing_utils.should_run_eagerly(),
                      experimental_run_tf_function=testing_utils.
                      should_run_tf_function())
        model.fit([x1, x2], [y1, y2], epochs=2, batch_size=32, verbose=0)
        y_ref_1, y_ref_2 = model.predict([x1, x2])

        tf_format_name = os.path.join(self.get_temp_dir(), 'ckpt')
        model.save_weights(tf_format_name)
        if h5py is not None:
            hdf5_format_name = os.path.join(self.get_temp_dir(), 'weights.h5')
            model.save_weights(hdf5_format_name)

        model = model_util.MultiIOTestModel(num_classes=num_classes,
                                            use_bn=True)

        if h5py is not None:
            with self.assertRaises(ValueError):
                model.load_weights(hdf5_format_name)

        model.load_weights(tf_format_name)

        y1, y2 = model.predict([x1, x2])
        self.assertAllClose(y_ref_1, y1, atol=1e-5)
        self.assertAllClose(y_ref_2, y2, atol=1e-5)

        if h5py is not None:
            model.load_weights(hdf5_format_name)

            y1, y2 = model.predict([x1, x2])
            self.assertAllClose(y_ref_1, y1, atol=1e-5)
            self.assertAllClose(y_ref_2, y2, atol=1e-5)
Beispiel #6
0
  def test_multi_io_workflow_with_tensors(self):
    num_classes = (2, 3)
    num_samples = 10
    input_dim = 50

    with self.cached_session():
      model = model_util.MultiIOTestModel(
          num_classes=num_classes, use_dp=True, use_bn=True)
      model.compile(loss='mse', optimizer='rmsprop')

      x1 = array_ops.ones((num_samples, input_dim))
      x2 = array_ops.ones((num_samples, input_dim))
      y1 = array_ops.zeros((num_samples, num_classes[0]))
      y2 = array_ops.zeros((num_samples, num_classes[1]))

      model.fit([x1, x2], [y1, y2], epochs=2, steps_per_epoch=10, verbose=0)
      _ = model.evaluate(steps=10, verbose=0)
Beispiel #7
0
 def test_multi_io_subclass_build(self):
   batch_size = None
   num_samples = 1000
   input_dim = 50
   model = model_util.MultiIOTestModel()
   self.assertFalse(model.built, 'Model should not have been built')
   self.assertFalse(model.weights, ('Model should have no weights since it '
                                    'has not been built.'))
   batch_input_shape = tensor_shape.TensorShape((batch_size, input_dim))
   model.build(
       input_shape=[batch_input_shape, batch_input_shape])
   self.assertTrue(model.weights, ('Model should have weights now that it '
                                   'has been properly built.'))
   self.assertTrue(model.built, 'Model should be built after calling `build`.')
   x1 = array_ops.ones((num_samples, input_dim))
   x2 = array_ops.ones((num_samples, input_dim))
   model([x1, x2])
Beispiel #8
0
  def test_multi_io_workflow_with_numpy_arrays_and_custom_placeholders(self):
    num_classes = (2, 3)
    num_samples = 1000
    input_dim = 50

    with self.cached_session():
      model = model_util.MultiIOTestModel(
          num_classes=num_classes, use_dp=True, use_bn=True)
      model.compile(loss='mse', optimizer='rmsprop')

      x1 = np.ones((num_samples, input_dim))
      x2 = np.ones((num_samples, input_dim))
      y1 = np.zeros((num_samples, num_classes[0]))
      y2 = np.zeros((num_samples, num_classes[1]))

      x2_placeholder = array_ops.placeholder(
          dtype='float32', shape=(None, input_dim))
      model._set_inputs([x1, x2_placeholder])

      model.fit([x1, x2], [y1, y2], epochs=2, batch_size=32, verbose=0)
      _ = model.evaluate([x1, x2], [y1, y2], verbose=0)
Beispiel #9
0
    def test_multi_io_workflow_with_np_arrays(self):
        num_classes = (2, 3)
        num_samples = 1000
        input_dim = 50

        model = model_util.MultiIOTestModel(num_classes=num_classes,
                                            use_dp=True,
                                            use_bn=True)
        model.compile(loss='mse',
                      optimizer='rmsprop',
                      metrics=['acc'],
                      run_eagerly=testing_utils.should_run_eagerly(),
                      experimental_run_tf_function=testing_utils.
                      should_run_tf_function())

        x1 = np.ones((num_samples, input_dim))
        x2 = np.ones((num_samples, input_dim))
        y1 = np.zeros((num_samples, num_classes[0]))
        y2 = np.zeros((num_samples, num_classes[1]))

        model.fit([x1, x2], [y1, y2], epochs=2, batch_size=32, verbose=0)
        _ = model.evaluate([x1, x2], [y1, y2], verbose=0)