class Agent(object):
    def __init__(self, name='model', input_num=None, output_num=None):
        """A learning agent that uses tensorflow to create a neural network"""
        assert input_num is not None
        assert output_num is not None
        self.input_num = input_num
        self.output_num = output_num
        self._build_net()

    def _build_net(self):
        """Construct the neural network"""

        # Change the network structure here
        S = Input(shape=[self.input_num])
        h0 = Dense(300, activation="sigmoid")(S)
        h1 = Dense(600, activation="sigmoid")(h0)
        h2 = Dense(29, activation="sigmoid")(h1)
        V = Dense(self.output_num, activation="sigmoid")(h2)
        self.model = Model(inputs=S, outputs=V)
        self.model.compile(optimizer="adam", loss='mse')

    def train(self, x, y, n_epoch=100, batch=32):
        """Train the network"""
        self.model.fit(x=x, y=y, epochs=n_epoch, batch_size=batch)

    def predict(self, x):
        """Input values to the neural network and return the result"""
        a = self.model.predict(x)
        return a
Beispiel #2
0
 def test_add_entropy_loss_on_functional_model(self):
     inputs = Input(shape=(1, ))
     targets = Input(shape=(1, ))
     outputs = testing_utils.Bias()(inputs)
     model = Model([inputs, targets], outputs)
     model.add_loss(losses.binary_crossentropy(targets, outputs))
     model.compile('sgd', run_eagerly=testing_utils.should_run_eagerly())
     with test.mock.patch.object(logging, 'warning') as mock_log:
         model.fit([self.x, self.y], batch_size=3, epochs=5)
         self.assertNotIn('Gradients do not exist for variables',
                          str(mock_log.call_args))
Beispiel #3
0
class NN:
    """
    The NN class wraps a keras Sequential model to reduce the interface methods
    Notice:
        Difference to dqn is just the setter and getter methods for the weights
    """
    def __init__(self, env, atoms, alpha: float = 0.001, decay: float = 0.0001):
        """
        We initialize our functional model, therefore we need Input Shape and Output Shape
        :param env:
        :param alpha:
        :param decay:
        """
        self.alpha = alpha
        self.decay = decay
        self.model = None
        self.atoms = atoms
        # new to D-DDQN
        self.init_model(env.observation_space.shape[0], env.action_space.n)

    def init_model(self, input_shape: int, n_actions: int):
        """
        Initializing our keras sequential model
        :return: initialized model
        """
        input = Input(shape=(input_shape,))
        h1 = Dense(64, activation='relu')(input)
        h2 = Dense(64, activation='relu')(h1)
        outputs = []
        for _ in range(n_actions):
            outputs.append(Dense(self.atoms, activation='softmax')(h2))
        self.model = Model(input, outputs)

    def predict(self, *args, **kwargs):
        """
        By wrapping the keras predict method we can handle our net as a standalone object
        :param args: interface to keras.model.predict
        :return: prediction
        """
        return self.model.predict(*args, **kwargs)

    def fit(self, *args, **kwargs):
        """
        By wrapping the keras fit method we can handle our net as a standalone object
        :param args: interface to keras.model.fit
        :return: history object
        """
        return self.model.fit(*args, **kwargs)

    def get_weights(self):
        """
        Passing the arguments to keras get_weights
        """
        return self.model.get_weights()

    def set_weights(self, *args, **kwargs):
        """
        Passing the arguments to keras set_weights
        """
        self.model.set_weights(*args, *kwargs)
Beispiel #4
0
    def test_loss_with_sample_weight_in_layer_call(self):
        class MyLayer(layers.Layer):
            def __init__(self):
                super(MyLayer, self).__init__()
                self.bias = testing_utils.Bias()

            def call(self, inputs):
                out = self.bias(inputs[0])
                self.add_loss(MAE()(inputs[1], out, inputs[2]))
                self.add_loss(
                    math_ops.reduce_mean(inputs[2] * mae(inputs[1], out)))
                return out

        inputs = Input(shape=(1, ))
        targets = Input(shape=(1, ))
        sw = Input(shape=(1, ))

        outputs = MyLayer()([inputs, targets, sw])
        model = Model([inputs, targets, sw], outputs)
        model.predict([self.x, self.y, self.w])
        model.compile(optimizer_v2.gradient_descent.SGD(0.05),
                      run_eagerly=testing_utils.should_run_eagerly(),
                      experimental_run_tf_function=testing_utils.
                      should_run_tf_function())

        history = model.fit([self.x, self.y, self.w], batch_size=3, epochs=5)
        self.assertAllClose(history.history['loss'], [2., 1.8, 1.6, 1.4, 1.2],
                            1e-3)

        output = model.evaluate([self.x, self.y, self.w])
        self.assertAlmostEqual(output, 1.0, 3)

        output = model.test_on_batch([self.x, self.y, self.w])
        self.assertAlmostEqual(output, 1.0, 3)
Beispiel #5
0
def fronzen():
    x = Input(shape=(32, ))
    layer = Dense(32)
    layer.trainable = False
    y = layer(x)

    frozen_model = Model(x, y)
    # 在下面的模型中,训练期间不会更新层的权重
    frozen_model.compile(optimizer='rmsprop', loss='mse')

    layer.trainable = True
    trainable_model = Model(x, y)
    # 使用这个模型,训练期间 `layer` 的权重将被更新
    # (这也会影响上面的模型,因为它使用了同一个网络层实例)
    trainable_model.compile(optimizer='rmsprop', loss='mse')

    frozen_model.fit(data, labels)  # 这不会更新 `layer` 的权重
    trainable_model.fit(data, labels)  # 这会更新 `layer` 的权重
Beispiel #6
0
def train_model(model: Model, images):
    time_str = datetime.datetime.now().strftime("%y-%m-%d_%H-%M-%S")

    callbacks = [
        keras.callbacks.TensorBoard(f'{LOGS_DIR}{time_str}'),
        TensorBoardImage(f'{LOGS_DIR}{time_str}', "Emojis", images,
                         period=100),
        CheckpointCallback(f'{LOGS_DIR}{time_str}', period=100),
    ]
    model.fit(
        images,
        images,
        epochs=100000,
        batch_size=len(images),
        # validation_data=(images, images),
        callbacks=callbacks,
        verbose=0)
    model.save(f"../logs/{time_str}/model.h5")
def attn_many_to_one(dataset_object: LSTM_data):

    X_train, X_test, Y_train, Y_test = dataset_object.get_memory()
    X_train, X_test = X_train[:, :, :-12], X_test[:, :, :-12]

    i = Input(shape=(X_train.shape[1], X_train.shape[2]))

    att_in = LSTM(NEURONS,
                    return_sequences=True,
                    activation=ACTIVATION,
                  recurrent_activation="sigmoid",
                    activity_regularizer=regularizers.l2(L2),
                    bias_regularizer=regularizers.l2(BIAIS_REG),
                  )(i)

    att_in = LSTM(NEURONS,
                  return_sequences=True,
                  activation=ACTIVATION,
                  recurrent_activation="sigmoid",
                  activity_regularizer=regularizers.l2(L2),
                  bias_regularizer=regularizers.l2(BIAIS_REG),
                  )(att_in)
    att_in = LSTM(NEURONS,
                  return_sequences=True,
                  activation=ACTIVATION,
                  recurrent_activation="sigmoid",
                  activity_regularizer=regularizers.l2(L2),
                  bias_regularizer=regularizers.l2(BIAIS_REG),
                  )(att_in)
    att_out = attention()(att_in)
    att_out = Dropout(DROPOUT)(att_out)
    outputs = Dense(1,
                    activation='relu',
                    trainable=True,
                    bias_regularizer=regularizers.l2(BIAIS_REG),
                    activity_regularizer=regularizers.l2(L2)
                    )(att_out)

    model = Model(inputs=[i], outputs=[outputs])
    optim = Adam()
    model.compile(optimizer=optim,
                  loss=['mean_squared_error']
                  )

    # Fitting the RNN to the Training set
    history = model.fit(X_train, Y_train,
                        epochs=EPOCHS,
                        batch_size=BATCH_SIZE,
                        validation_data=(X_test, Y_test),
                        callbacks=[EARLY_STOP, REDUCE_LR]
                        )
    model.save("data/weights/attn_based_lstm_no_senti")
    plot_train_loss(history)
    evaluate(model,X_test,Y_test, dataset_object,name="attn_evaluate", senti="no")
Beispiel #8
0
def run_model(model_fn,
              optimizer='adam',
              loss='binary_crossentropy',
              steps_per_epoch=1,
              epochs=1):
    inputs, outputs = model_fn(128, 128, 1)
    _model = Model(inputs=[inputs], outputs=[outputs])

    _model.compile(optimizer=optimizer, loss=loss)

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        # Write the session graph to the logs.
        tf.summary.FileWriter('./logs/', sess.graph)

        _model.fit(TensorFeed().build_dataset().dataset,
                   steps_per_epoch=steps_per_epoch,
                   epochs=epochs)

    return _model
  def test_loss_on_model_fit(self):
    inputs = Input(shape=(1,))
    targets = Input(shape=(1,))
    outputs = testing_utils.Bias()(inputs)
    model = Model([inputs, targets], outputs)
    model.add_loss(MAE()(targets, outputs))
    model.add_loss(math_ops.reduce_mean(mae(targets, outputs)))
    model.compile(
        optimizer_v2.gradient_descent.SGD(0.05),
        run_eagerly=testing_utils.should_run_eagerly())

    history = model.fit([self.x, self.y], batch_size=3, epochs=5)
    self.assertAllClose(history.history['loss'], [2., 1.8, 1.6, 1.4, 1.2], 1e-3)
  def test_loss_with_sample_weight_on_model_fit(self):
    inputs = Input(shape=(1,))
    targets = Input(shape=(1,))
    sw = Input(shape=(1,))
    outputs = testing_utils.Bias()(inputs)
    model = Model([inputs, targets, sw], outputs)
    model.add_loss(MAE()(targets, outputs, sw))
    model.add_loss(3 * math_ops.reduce_mean(sw * mae(targets, outputs)))
    model.compile(
        optimizer_v2.gradient_descent.SGD(0.025),
        run_eagerly=testing_utils.should_run_eagerly())

    history = model.fit([self.x, self.y, self.w], batch_size=3, epochs=5)
    self.assertAllClose(history.history['loss'], [4., 3.6, 3.2, 2.8, 2.4], 1e-3)
def train_model(model: Model, epochs: int) -> dict:
    model.compile(optimizer='adam',
                  loss='mean_squared_error',
                  metrics=[metrics.CategoricalAccuracy(), metrics.Recall(), metrics.Precision()])

    y_train = to_categorical(globals()['TRAINING_LABELS'])
    y_validate = to_categorical(globals()['VALIDATION_LABELS'])
    print(y_train.shape)

    history = model.fit(x=globals()['TRAINING_DATA'], y=y_train, batch_size=32, epochs=epochs,
                        validation_data=(globals()['VALIDATION_DATA'], y_validate),
                        validation_batch_size=32,
                        validation_freq=1)

    return history.history
Beispiel #12
0
def train_autoencoder(x: np.ndarray, cfg: dict, autoencoder: Model) -> History:
    r"""Train an already built AE model on new data.

    :param x: The data the AE shall be trained on.
    :param cfg: ConfigurationSpace values that were used to construct this AE.
    :param autoencoder: The constructed AE model.
    :return: The training history.
    """
    callbacks = None
    if cfg['ae_type'] == 'deep_ksparse':
        callbacks = [UpdateKSparseLevel()]
    return autoencoder.fit(x,
                           x,
                           callbacks=callbacks,
                           epochs=cfg['epochs'],
                           batch_size=BATCH_SIZE)
Beispiel #13
0
class GenericModel:
    @staticmethod
    def load_from(path):
        model = GenericModel()
        model.model = load_model(path)
        return model

    def __init__(self):
        self.model = None
        self.registered_callbacks = []
        self.id = 'generic_model'
        self.time = round(time())
        self.desc = None
        """config = ConfigProto()
        config.gpu_options.per_process_gpu_memory_fraction = 0.40
        config.gpu_options.allow_growth = True
        session = InteractiveSession(config=config)"""

    def build_model(self):
        img_input = Input(self.get_input_shape())
        last_layer = self.model_structure(img_input)
        self.model = Model(img_input, last_layer)
        self.model.summary()

    def compile(self,
                loss_function,
                metric_functions=None,
                optimizer=Adam(1e-3, epsilon=1e-6)):
        self.require_model_loaded()
        return self.model.compile(loss=loss_function,
                                  optimizer=optimizer,
                                  metrics=metric_functions)

    def model_structure(self, input_img):
        raise NotImplementedError

    def get_input_shape(self):
        raise NotImplementedError

    def register_std_callbacks(self,
                               tensorboard_logs_folder=None,
                               checkpoint_path=None):
        self.require_model_loaded()
        run_id = str(time())
        if self.desc is not None:
            run_id += "_" + self.desc
        folder_id = os.path.join(self.id, run_id)
        if tensorboard_logs_folder is not None:
            self.registered_callbacks.append(
                TensorBoard(log_dir=os.path.join(tensorboard_logs_folder,
                                                 folder_id),
                            histogram_freq=0,
                            write_graph=True,
                            write_images=True))

        if checkpoint_path is not None:
            store_path = os.path.join(checkpoint_path, folder_id)
            if not os.path.exists(store_path):
                os.makedirs(store_path)
            store_path = os.path.join(
                store_path, 'e{epoch:02d}-l{loss:.4f}-v{val_loss:.4f}.ckpt')
            print("Storing to %s" % store_path)
            self.registered_callbacks.append(
                ModelCheckpoint(store_path,
                                monitor='val_loss',
                                verbose=1,
                                period=1,
                                save_best_only=False,
                                mode='min'))

    def train_with_generator(self,
                             training_data_generator,
                             epochs,
                             steps_per_epoch,
                             validation_data=None):
        self.model.fit(training_data_generator,
                       use_multiprocessing=True,
                       workers=4,
                       steps_per_epoch=steps_per_epoch,
                       callbacks=self.registered_callbacks,
                       epochs=epochs,
                       verbose=1,
                       **({} if validation_data is None else {
                           "validation_data": validation_data
                       }))

    def require_model_loaded(self):
        if self.model is None:
            raise ValueError("Model is not build yet")

    def load_weights(self, path):
        self.require_model_loaded()
        return self.model.load_weights(path)

    def predict(self, batch):
        self.require_model_loaded()
        return self.model.predict(batch)
Beispiel #14
0
def train(review_data):
    ################################################################
    # declare input embeddings to the model
    #User input
    user_id_input = Input(shape=[1], name='user')
    #Item Input
    item_id_input = Input(shape=[1], name='item')
    price_id_input = Input(shape=[1], name='price')
    title_id_input = Input(shape=[1], name='title')

    # define the size of embeddings as a parameter
    # ****H: size_of_embedding - 5, 10 , 15, 20, 50
    size_of_embedding = 15
    user_embedding_size = size_of_embedding
    item_embedding_size = size_of_embedding
    price_embedding_size = size_of_embedding
    title_embedding_size = size_of_embedding

    # apply an embedding layer to all inputs
    user_embedding = Embedding(output_dim=user_embedding_size,
                               input_dim=users.shape[0],
                               input_length=1,
                               name='user_embedding')(user_id_input)

    item_embedding = Embedding(output_dim=item_embedding_size,
                               input_dim=items_reviewed.shape[0],
                               input_length=1,
                               name='item_embedding')(item_id_input)

    price_embedding = Embedding(output_dim=price_embedding_size,
                                input_dim=price.shape[0],
                                input_length=1,
                                name='price_embedding')(price_id_input)

    title_embedding = Embedding(output_dim=title_embedding_size,
                                input_dim=titles.shape[0],
                                input_length=1,
                                name='title_embedding')(title_id_input)

    # reshape from shape (batch_size, input_length,embedding_size) to (batch_size, embedding_size).
    user_vecs = Reshape([user_embedding_size])(user_embedding)
    item_vecs = Reshape([item_embedding_size])(item_embedding)
    price_vecs = Reshape([price_embedding_size])(price_embedding)
    title_vecs = Reshape([title_embedding_size])(title_embedding)

    ################################################################
    # Concatenate the item embeddings :
    item_vecs_complete = Concatenate()([item_vecs, price_vecs, title_vecs])

    # Concatenate user and item embeddings and use them as features for the neural network:
    input_vecs = Concatenate()([user_vecs, item_vecs_complete
                                ])  # can be changed by Multiply
    #input_vecs = Concatenate()([user_vecs, item_vecs]) # can be changed by Multiply

    # Multiply user and item embeddings and use them as features for the neural network:
    #input_vecs = Multiply()([user_vecs, item_vecs]) # can be changed by concat

    # Dropout is a technique where randomly selected neurons are ignored during training to prevent overfitting
    input_vecs = Dropout(0.1)(input_vecs)

    # Check one dense 128 or two dense layers (128,128) or (128,64) or three denses layers (128,64,32))

    # First layer
    # Dense(128) is a fully-connected layer with 128 hidden units.
    # Use rectified linear units (ReLU) f(x)=max(0,x) as an activation function.
    x = Dense(128, activation='relu')(input_vecs)
    x = Dropout(0.1)(x)  # Add droupout or not # To improve the performance

    # Next Layers
    #x = Dense(128, activation='relu')(x) # Add dense again or not
    x = Dense(64, activation='relu')(x)  # Add dense again or not
    x = Dropout(0.1)(x)  # Add droupout or not # To improve the performance
    x = Dense(32, activation='relu')(x)  # Add dense again or not #
    x = Dropout(0.1)(x)  # Add droupout or not # To improve the performance

    # The output
    y = Dense(1)(x)

    ################################################################
    model = Model(
        inputs=[user_id_input, item_id_input, price_id_input, title_id_input],
        outputs=y)

    ################################################################
    # ****H: loss
    # ****H: optimizer
    model.compile(loss='mse', optimizer="adam")

    ################################################################

    save_path = "./"
    mytime = time.strftime("%Y_%m_%d_%H_%M")
    # modname = 'dense_2_15_embeddings_2_epochs' + mytime
    modname = 'dense_2_15_embeddings_2_epochs'
    thename = save_path + '/' + modname + '.h5'
    mcheck = ModelCheckpoint(thename, monitor='val_loss', save_best_only=True)

    ################################################################

    # ****H: batch_size
    # ****H: epochs
    # ****H:
    # ****H:

    history = model.fit([
        ratings_train["user_id"], ratings_train["item_id"],
        ratings_train["price_id"], ratings_train["title_id"]
    ],
                        ratings_train["score"],
                        batch_size=64,
                        epochs=2,
                        validation_split=0.2,
                        callbacks=[mcheck],
                        shuffle=True)

    print("MSE: ", history.history)

    return model
Beispiel #15
0
class jyHEDModelV1(jyModelBase):
    def __init__(self):
        super(jyHEDModelV1, self).__init__()
        self.__listLayerName = []
        self.__pVisualModel = None

    def structureModel(self):
        Inputs = layers.Input(shape=self._inputShape, batch_size=self._iBatchSize)
        Con1 = layers.Conv2D(64, (3, 3), name='Con1', activation='relu', padding='SAME', input_shape=self._inputShape, strides=1)(Inputs)
        Con2 = layers.Conv2D(64, (3, 3), name='Con2', activation='relu', padding='SAME', strides=1)(Con1)
        Side1 = sideBranch(Con2, 1)
        MaxPooling1 = layers.MaxPooling2D((2, 2), name='MaxPooling1', strides=2, padding='SAME')(Con2)
        # outputs1
        Con3 = layers.Conv2D(128, (3, 3), name='Con3', activation='relu', padding='SAME', strides=1)(MaxPooling1)
        Con4 = layers.Conv2D(128, (3, 3), name='Con4', activation='relu', padding='SAME', strides=1)(Con3)
        Side2 = sideBranch(Con4, 2)
        MaxPooling2 = layers.MaxPooling2D((2, 2), name='MaxPooling2', strides=2, padding='SAME')(Con4)
        # outputs2
        Con5 = layers.Conv2D(256, (3, 3), name='Con5', activation='relu', padding='SAME', strides=1)(MaxPooling2)
        Con6 = layers.Conv2D(256, (3, 3), name='Con6', activation='relu', padding='SAME', strides=1)(Con5)
        Con7 = layers.Conv2D(256, (3, 3), name='Con7', activation='relu', padding='SAME', strides=1)(Con6)
        Side3 = sideBranch(Con7, 4)
        MaxPooling3 = layers.MaxPooling2D((2, 2), name='MaxPooling3', strides=2, padding='SAME')(Con7)
        # outputs3
        Con8 = layers.Conv2D(512, (3, 3), name='Con8', activation='relu', padding='SAME', strides=1)(MaxPooling3)
        Con9 = layers.Conv2D(512, (3, 3), name='Con9', activation='relu', padding='SAME', strides=1)(Con8)
        Con10 = layers.Conv2D(512, (3, 3), name='Con10', activation='relu', padding='SAME', strides=1)(Con9)
        Side4 = sideBranch(Con10, 8)
        MaxPooling4 = layers.MaxPooling2D((2, 2), name='MaxPooling4', strides=2, padding='SAME')(Con10)
        # outputs4
        Con11 = layers.Conv2D(512, (3, 3), name='Con11', activation='relu', padding='SAME', strides=1)(MaxPooling4)
        Con12 = layers.Conv2D(512, (3, 3), name='Con12', activation='relu', padding='SAME', strides=1)(Con11)
        Con13 = layers.Conv2D(512, (3, 3), name='Con13', activation='relu', padding='SAME', strides=1)(Con12)
        Side5 = sideBranch(Con13, 16)
        Fuse = layers.Concatenate(axis=-1)([Side1, Side2, Side3, Side4, Side5])

        # learn fusion weight
        Fuse = layers.Conv2D(1, (1, 1), name='Fuse', padding='SAME', use_bias=False, activation=None)(Fuse)

        output1 = layers.Activation('sigmoid', name='output1')(Side1)
        output2 = layers.Activation('sigmoid', name='output2')(Side2)
        output3 = layers.Activation('sigmoid', name='output3')(Side3)
        output4 = layers.Activation('sigmoid', name='output4')(Side4)
        output5 = layers.Activation('sigmoid', name='output5')(Side5)
        output6 = layers.Activation('sigmoid', name='output6')(Fuse)

        outputs = [output1, output2, output3, output4, output5, output6]
        self._pModel = Model(inputs=Inputs, outputs=outputs)
        pAdam = optimizers.adam(lr=0.0001)
        self._pModel.compile(loss={
                                   'output6': classBalancedSigmoidCrossEntropy
                                   }, optimizer=pAdam)

        # self._pModel.summary()

    def startTrain(self, listDS, iMaxLen, iBatchSize):
        itrTrain = tf.compat.v1.data.make_one_shot_iterator(listDS[0])
        itrValid = tf.compat.v1.data.make_one_shot_iterator(listDS[1])

        iStepsPerEpochTrain = int(iMaxLen[0] / iBatchSize[0])
        iStepsPerEpochValid = int(iMaxLen[1] / iBatchSize[1])

        self._pModel.fit(itrTrain, validation_data=itrValid, epochs=self._iEpochs,
                         callbacks=[self._pSaveModel, self._pTensorboard], steps_per_epoch=iStepsPerEpochTrain,
                         validation_steps=iStepsPerEpochValid)

    def loadWeights(self, strPath):
        # last = tf.train.latest_checkpoint(strPath)
        # checkPoint = tf.train.load_checkpoint(strPath)
        self._pModel.load_weights(strPath)
        # visual model
        outputs = []

        for myLayer in self._pModel.layers:
            self.__listLayerName.append(myLayer.name)
            outputs.append(myLayer.output)

        # print(self.__pModel.layers[0])
        # self.__pVisualModel = Model(self.__pModel.inputs, outputs=outputs)
        self.__pVisualModel = Model(self._pModel.inputs, outputs=self._pModel.outputs)
        return self.__pVisualModel

    def predict(self, IMG):
        # pImage = open(IMG, 'rb').read()
        # tensorIMG = tf.image.decode_jpeg(pImage)
        pIMG = image.array_to_img(IMG)# .resize((256, 144))
        tensorIMG = image.img_to_array(pIMG)
        x = np.array(tensorIMG / 255.0)
        # show image
        iColumn = 4
        # generate window
        plt.figure(num='Input')
        # plt.subplot(1, 1, 1)
        plt.imshow(x)

        # imagetest = x

        x = np.expand_dims(x, axis=0)
        # pyplot.imshow(x)
        time1 = datetime.datetime.now()
        outputs = self.__pVisualModel.predict(x)
        time2 = datetime.datetime.now()
        print(time2 - time1)
        i = 100
        listOutput = []
        for i in range(len(outputs)):
            outputShape = outputs[i].shape
            singleOut = outputs[i].reshape(outputShape[1], outputShape[2], outputShape[3])
        # singleOut *= 255
            listOutput.append(singleOut)
        singleOut = listOutput[-1]
        singleOut[singleOut > 0.5] = 1
        listOutput[-1] = singleOut
        return listOutput
        '''
        for output in outputs:
            # plt.figure(num='%s' % str(i))
            outputShape = output.shape
            singleOut = output.reshape(outputShape[1], outputShape[2], outputShape[3])
            singleOut *= 255
            if outputShape[3] == 1:
                # test = x - output
                # test = np.abs(test)
                # return mysum

                # plt.subplot(1, 1, 1)
                # plt.imshow(singleOut, camp='gray')
                # cv2.imwrite('D:\wyc\Projects\TrainDataSet\HED\Result/%s.jpg' % str(i), singleOut)
                return singleOut
                # i += 1
                # plt.show()
        '''
    def getModelConfig(self):
        return self._iBatchSize
Beispiel #16
0
class PPO:
    def __init__(self,
                 n_actions,
                 n_features,
                 actor_lr=0.0001,
                 critic_lr=0.0001,
                 reward_decay=0.9,
                 l2=0.001,
                 loss_clipping=0.2,
                 target_update_alpha=0.9):
        self.n_actions = n_actions
        self.n_features = n_features
        self.actor_lr = actor_lr  # 学习率
        self.critic_lr = critic_lr
        self.gamma = reward_decay  # reward 递减率
        self.states, self.actions, self.rewards, self.states_, self.dones, self.v_by_trace = [], [], [], [], [], []  # V(s)=r+g*V(s_)
        self.l2 = l2
        self.loss_clipping = loss_clipping
        self.target_update_alpha = target_update_alpha  # 模型参数平滑因子
        self._build_critic()
        self.actor = self._build_actor()
        self.actor_old = self._build_actor()
        self.actor_old.set_weights(self.actor.get_weights())
        self.dummy_advantage = np.zeros((1, 1))
        self.dummy_old_prediction = np.zeros((1, self.n_actions))

    def _build_critic(self):
        inputs = Input(shape=(self.n_features, ))
        x = Dense(32, activation='relu',
                  kernel_regularizer=l2(self.l2))(inputs)
        x = Dense(16, activation='relu', kernel_regularizer=l2(self.l2))(x)
        output = Dense(1, kernel_regularizer=l2(self.l2))(x)
        self.critic = Model(inputs=inputs, outputs=output)
        self.critic.compile(optimizer=Adam(lr=self.critic_lr),
                            loss='mean_squared_error',
                            metrics=['accuracy'])

    def _build_actor(self):
        state = Input(shape=(self.n_features, ), name="state")
        advantage = Input(shape=(1, ), name="Advantage")
        old_prediction = Input(shape=(self.n_actions, ), name="Old_Prediction")
        x = Dense(32, activation='relu', kernel_regularizer=l2(self.l2))(state)
        x = Dense(16, activation='relu', kernel_regularizer=l2(self.l2))(x)
        policy = Dense(self.n_actions,
                       activation='softmax',
                       kernel_regularizer=l2(self.l2))(x)
        model = Model(inputs=[state, advantage, old_prediction],
                      outputs=policy)
        model.compile(optimizer=Adam(lr=self.actor_lr),
                      loss=self.proximal_policy_optimization_loss(
                          advantage=advantage, old_prediction=old_prediction))
        return model

    def proximal_policy_optimization_loss(self, advantage, old_prediction):
        def loss(y_true, y_pred):
            prob = y_true * y_pred
            old_prob = y_true * old_prediction
            r = prob / (old_prob + 1e-10)
            return -K.mean(
                K.minimum(
                    r * advantage,
                    K.clip(r,
                           min_value=1 - self.loss_clipping,
                           max_value=1 + self.loss_clipping) * advantage))
            # + 0.2 * (prob * K.log(prob + 1e-10)))

        return loss

    def choose_action(self, observation, is_train_mode=True):
        observation = np.array(observation)
        observation = observation[np.newaxis, :]
        action_probs = self.actor.predict(
            [observation, self.dummy_advantage, self.dummy_old_prediction])
        # print('action_probs', action_probs)
        if is_train_mode:
            action = int(
                np.random.choice(range(action_probs.shape[1]),
                                 p=np.squeeze(action_probs)))  # 加入了随机性
        else:
            action = int(np.squeeze(np.argmax(action_probs, axis=1)))
        return action

    def store_transition(self, s, a, r, s_, d):
        self.states.append(s)
        self.actions.append(a)
        self.rewards.append(r)
        self.states_.append(s_)
        self.dones.append(d)

    def learn(self):
        # print('learn: sample length-',len(self.actions))
        # print('learn: states-',self.states)
        # print('learn: actions-',self.actions)
        self.cal_v_by_traceback()
        b_s, b_a, b_vt = np.array(self.states), np.array(
            self.actions), np.array(self.v_by_trace)
        b_v = self.get_v(b_s)

        # print('b_s:{}'.format(self.states))
        # print('b_a:{}'.format(self.actions))
        # print('b_r:{}'.format(self.rewards))
        # print('b_d:{}'.format(self.dones))
        # print('b_vt:{}'.format(self.v_by_trace))
        # print('b_v:{}'.format(b_v))

        b_adv = b_vt - b_v  # 可以对adv做标准化
        # b_adv = (b_adv - np.mean(b_adv)) / (np.std(b_adv) + 1e-10)
        b_old_prediction = self.get_old_prediction(b_s)
        b_a_onehot = np.zeros((b_a.shape[0], self.n_actions))
        b_a_onehot[:, b_a.flatten()] = 1

        # print('b_adv:{}'.format(b_adv))
        # print('b_old_prediction:{}'.format(b_old_prediction))
        history = self.actor.fit(x=[b_s, b_adv, b_old_prediction],
                                 y=b_a_onehot,
                                 epochs=5,
                                 verbose=0)
        # print('actor_loss_mean:{}'.format(history.history['loss']))
        actor_loss_mean = np.mean(history.history['loss'])

        self.critic.fit(x=b_s, y=b_vt, epochs=5,
                        verbose=0)  # critic目标就是让td-error尽可能小

        self.states, self.actions, self.rewards, self.states_, self.dones, self.v_by_trace = [], [], [], [], [], []
        self.update_target_network()
        return actor_loss_mean

    def update_target_network(self):
        self.actor_old.set_weights(self.target_update_alpha *
                                   np.array(self.actor.get_weights()) +
                                   (1 - self.target_update_alpha) *
                                   np.array(self.actor_old.get_weights()))

    def get_old_prediction(self, s):
        s = np.reshape(s, (-1, self.n_features))
        v = self.actor_old.predict([
            s,
            np.tile(self.dummy_advantage, (s.shape[0], 1)),
            np.tile(self.dummy_old_prediction, (s.shape[0], 1))
        ])
        return v

    def get_v(self, s):
        s = np.reshape(s, (-1, self.n_features))
        v = np.squeeze(self.critic.predict(s))
        return v

    def cal_v_by_traceback(self):
        '''
        截断后或episode结束后,通过回溯计算V(s)=r+g*V(s_)
        :return:
        '''
        # self.v_by_traceback = np.zeros_like(self.rewards)
        if self.dones[-1]:
            v = 0
        else:
            s = np.array(self.states_[-1])
            v = self.get_v(s)

        for t in reversed(range(0, len(self.rewards))):
            v = v * self.gamma + self.rewards[t]
            self.v_by_trace.append(v)
        self.v_by_trace.reverse()
Beispiel #17
0
data = np.array(
    pandas.read_csv(filepath_or_buffer="iris.data", header=None, nrows=150))
output = []
train_output = []
for i in range(150):
    if (data[i, 4] == "Iris-setosa"):
        output.append([1, 0, 0])
    if (data[i, 4] == "Iris-versicolor"):
        output.append([0, 1, 0])
    if (data[i, 4] == "Iris-virginica"):
        output.append([0, 0, 1])

train_input = np.concatenate(
    (data[0:40, 0:4], data[50:90, 0:4], data[100:140, 0:4]), axis=0)
train_output = np.concatenate((output[0:40], output[50:90], output[100:140]),
                              axis=0)
test_input = np.concatenate(
    (data[40:50, 0:4], data[90:100, 0:4], data[140:150, 0:4]), axis=0)
print(train_input.shape)
print(train_output.shape)

model.fit(x=train_input, y=train_output, epochs=10000)
model.save("model.hdf5")

# predict = model.predict(x=test_input)
#
# # Get the maximum values of each column i.e. along axis 0
# maxInColumns = np.amax(predict, axis=0)
# print('Max value of every column: ', maxInColumns)
# print(predict)
Beispiel #18
0
class NN:
    """
    The biggest change for the duelling DQN is, that we must define a more complex DQN architecture
    The architecture must define our Value and Advantage Layers
    The way we define our model:
        <<<>>>
        The Keras functional API is a way to create models that are more flexible than the tf.keras.Sequential API.
        The functional API can handle models with NON-LINEAR topology, SHARED layers, and even MULTIPLE inputs or outputs.
        Read more here: https://keras.io/guides/functional_api/
        <<<>>>
    """
    def __init__(self, env, alpha: float = 0.001, decay: float = 0.0001):
        """
        We initialize our functional model, therefore we need Input Shape and Output Shape
        :param env:
        :param alpha:
        :param decay:
        """
        self.alpha = alpha
        self.decay = decay
        self.model = None
        # new to D-DDQN
        self.init_model(env.observation_space.shape[0], env.action_space.n)

    def init_model(self, input_shape: int, n_actions: int):
        inp = Input(shape=(input_shape, ))
        layer_shared1 = Dense(64, activation='relu')(inp)
        layer_shared1 = BatchNormalization()(layer_shared1)
        layer_shared2 = Dense(64, activation='relu')(layer_shared1)
        layer_shared2 = BatchNormalization()(layer_shared2)

        layer_v1 = Dense(64, activation='relu')(layer_shared2)
        layer_v1 = BatchNormalization()(layer_v1)
        layer_a1 = Dense(64, activation='relu')(layer_shared2)
        layer_a1 = BatchNormalization()(layer_a1)
        # the value layer ouput is a scalar value
        layer_v2 = Dense(1, activation='linear')(layer_v1)
        # The advantage function subtracts the value of the state from the Q
        # function to obtain a relative measure of the importance of each action.
        layer_a2 = Dense(n_actions, activation='linear')(layer_a1)

        # the q layer combines the two streams of value and advantage function
        # the lambda functional layer can perform lambda expressions on keras layers
        # read more here : https://keras.io/api/layers/core_layers/lambda/
        # the lambda equation is defined in https://arxiv.org/pdf/1511.06581.pdf on equation (9)
        layer_q = Lambda(lambda x: x[0][:] + x[1][:] - K.mean(x[1][:]),
                         output_shape=(n_actions, ))([layer_v2, layer_a2])

        self.model = Model(inp, layer_q)
        self.model.compile(optimizer=Adam(lr=self.alpha), loss='mse')

    def predict(self, *args, **kwargs):
        """
        By wrapping the keras predict method we can handle our net as a standalone object
        :param args: interface to keras.model.predict
        :return: prediction
        """
        return self.model.predict(*args, **kwargs)

    def fit(self, *args, **kwargs):
        """
        By wrapping the keras fit method we can handle our net as a standalone object
        :param args: interface to keras.model.fit
        :return: history object
        """
        return self.model.fit(*args, **kwargs)

    def get_weights(self):
        """
        Passing the arguments to keras get_weights
        """
        return self.model.get_weights()

    def set_weights(self, *args, **kwargs):
        """
        Passing the arguments to keras set_weights
        """
        self.model.set_weights(*args, *kwargs)
class VBNChromosome:
    """ Class that wraps the neural network. Includes functionality
    for Virtual Batch Normalization and the mutation of weights."""

    def __init__(self, number_actions=6, input_channels=4):
        self.input_channels = input_channels
        self.number_actions = number_actions
        inputs, outputs = self.construct_layers()
        self.model = Model(inputs=inputs, outputs=outputs)

    def construct_layers(self):
        """ Construct the Mnih et al. DQN architecture."""
        inputs = Input(shape=(84, 84, self.input_channels))
        layer1 = Conv2D(32, [8, 8], strides=(4, 4), activation="relu")(inputs)
        layer1 = BatchNormalization(momentum=0.95, center=False, scale=False)(layer1)
        layer2 = Conv2D(64, [4, 4], strides=(2, 2), activation="relu")(layer1)
        layer2 = BatchNormalization(momentum=0.95, center=False, scale=False)(layer2)
        layer3 = Conv2D(64, [3, 3], strides=(1, 1), activation="relu")(layer2)
        layer3 = BatchNormalization(momentum=0.95, center=False, scale=False)(layer3)
        layer4 = Flatten()(layer3)
        layer5 = Dense(512, activation="relu")(layer4)
        layer5 = BatchNormalization(momentum=0.95, center=False, scale=False)(layer5)
        action = Dense(self.number_actions, activation="softmax")(layer5)
        return [inputs], action

    def virtual_batch_norm(self, samples):
        """ We apply Batch Normalization on a number of samples. By setting the learning
        rate to 0 we make sure that the weights and biases are not affected. This method
        is only ment to be used at the start of training."""
        optimizer = tf.keras.optimizers.SGD(learning_rate=0)
        loss = tf.keras.losses.MeanSquaredError()
        self.model.compile(loss=loss, optimizer=optimizer)
        fake_y = np.zeros((len(samples), self.number_actions))
        self.model.fit(np.array(samples), fake_y)

    def get_weights(self, layers=None):
        """ Retrieve all the weights of the network. """
        layers = layers if layers else self.model.layers
        layer_weights = chain(*[layer.get_weights() for layer in layers])
        flat_weights = [weights.flatten() for weights in layer_weights]
        return np.concatenate(flat_weights)

    def set_weights(self, flat_weights, layers=None):
        """ Set all the weights of the network. """
        i = 0
        layers = layers if layers else self.model.layers
        for layer in layers:
            new_weights = []
            for sub_layer in layer.get_weights():
                reshaped = flat_weights[i: i + sub_layer.size].reshape(sub_layer.shape)
                new_weights.append(reshaped)
                i += sub_layer.size
            layer.set_weights(new_weights)

    def get_perturbable_layers(self):
        """ Get all the perturbable layers of the network. This excludes the
        BatchNorm layers. """
        return [layer for layer in self.model.layers if
                not isinstance(layer, BatchNormalization)]

    def get_perturbable_weights(self):
        """ Get all the perturbable weights of the network. This excludes the
        BatchNorm weights. """
        return self.get_weights(self.get_perturbable_layers())

    def set_perturbable_weights(self, flat_weights):
        """ Set all the perturbable weights of the network. This excludes setting
         the BatchNorm weights. """
        self.set_weights(flat_weights, self.get_perturbable_layers())

    def mutate(self, mutation_power):
        """ Mutate the current weights by adding a normally distributed vector of
        noise to the current weights. """
        weights = self.get_perturbable_weights()
        noise = np.random.normal(loc=0.0, scale=mutation_power, size=weights.shape)
        self.set_perturbable_weights(weights + noise)
        return noise

    def determine_actions(self, inputs):
        """ Choose an action based on the pixel inputs. We do this by simply
        selecting the action with the highest outputted value. """
        actions = self.model(inputs)
        return [np.argmax(action_set) for action_set in actions]
Beispiel #20
0
                                                          patience=5,
                                                          verbose=True)
        reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss',
                                                         factor=0.2,
                                                         patience=3,
                                                         min_lr=lr,
                                                         verbose=True)
        file_name = 'models/weights-improvement-{epoch:02d}-{val_loss:.2f}.hdf5'
        save_model = tf.keras.callbacks.ModelCheckpoint('{}'.format(file_name),
                                                        monitor='val_loss')
        log_dir = "logs/fit/" + dt.datetime.now().strftime("%Y%m%d-%H%M%S")
        tensorboard = tf.keras.callbacks.TensorBoard(log_dir=log_dir,
                                                     histogram_freq=1)
        model_resnet.fit(
            ds_img_train,
            epochs=epochs,
            callbacks=[reduce_lr, early_stopping, save_model, tensorboard],
            validation_data=ds_img_valid,
            validation_steps=len(train_dg) // batch_size)

    # print('DenseNet121')  # runs with batch size of <32
    # base_model = DenseNet121(weights='imagenet', include_top=False, input_shape=input_shape)
    # x2 = Flatten()(base_model.get_output_at(-1))
    # x2 = Dense(32, activation='relu')(x2)
    # output2 = Dense(lab_dim, activation='sigmoid')(x2)
    # model_resnet = Model(base_model.input, output2)
    # model_resnet.compile(optimizer=tf.optimizers.Adam(learning_rate=lr),
    #                          loss=tf.nn.sigmoid_cross_entropy_with_logits, metrics=['accuracy'])
    # early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3)
    # reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=lr)
    # file_name = 'weights-improvement-{epoch:02d}-{val_loss:.2f}.hdf5'
    # save_model = tf.keras.callbacks.ModelCheckpoint('{}'.format(file_name), monitor='val_loss')

question_enc = np.array([
    x for x in df['question'].map(
        lambda x: encode_sentence(x, max_question)).values
])
answer_enc = np.array([
    x
    for x in df['answer'].map(lambda x: encode_sentence(x, max_answer)).values
])

print(df)

a = Input(shape=(max_question, WORD_SIZE))
b = Dense(1024)(a)
b = Dense(2048)(b)
b = Dense(4096)(b)
c = Dense(WORD_SIZE)(b)
model = Model(inputs=a, outputs=c)
model.compile(loss='mean_squared_error', optimizer='sgd')

model.fit(question_enc, answer_enc, epochs=10)
results = model.predict(question_enc)


def get_words_from_vecs(x):
    return [get_word(vec) for vec in x]


print("\n".join([" ".join(get_words_from_vecs(x)) for x in results]))
y_test = df2['label'].values

inputt = Input(shape=(21, ))
x = Dense(units=20, activation='sigmoid')(inputt)
x = Dense(units=18, activation='sigmoid')(x)
x = Dense(units=14, activation='sigmoid')(x)
x = Dense(units=5, activation='softmax')(x)

model = Model(inputs=inputt, outputs=x)

Optimizer = SGD(lr=0.01)

model.compile(optimizer=Optimizer,
              loss='mean_squared_error',
              metrics=['accuracy'])

print(X_train.shape)
print(y_train.shape)

History = model.fit(x=X_train,
                    y=y_train,
                    epochs=500,
                    validation_split=0.1,
                    shuffle=True,
                    batch_size=512)
print(History)
y_pred = model.predict(testData)

y_pred_bool = np.argmax(y_pred, axis=1)
print(classification_report(y_test, y_pred_bool))
def run_single_test(algorithm_def,
                    gen_train,
                    gen_val,
                    load_weights,
                    freeze_weights,
                    x_test,
                    y_test,
                    lr,
                    batch_size,
                    epochs,
                    epochs_warmup,
                    model_checkpoint,
                    scores,
                    loss,
                    metrics,
                    logging_path,
                    kwargs,
                    clipnorm=None,
                    clipvalue=None,
                    model_callback=None):
    print(metrics)
    print(loss)

    metrics = make_custom_metrics(metrics)
    loss = make_custom_loss(loss)

    if load_weights:
        enc_model = algorithm_def.get_finetuning_model(model_checkpoint)
    else:
        enc_model = algorithm_def.get_finetuning_model()

    pred_model = apply_prediction_model(
        input_shape=enc_model.outputs[0].shape[1:],
        algorithm_instance=algorithm_def,
        **kwargs)

    outputs = pred_model(enc_model.outputs)
    model = Model(inputs=enc_model.inputs[0], outputs=outputs)
    print_flat_summary(model)

    if epochs > 0:
        callbacks = [TerminateOnNaN()]

        logging_csv = False
        if logging_path is not None:
            logging_csv = True
            logging_path.parent.mkdir(exist_ok=True, parents=True)
            logger_normal = CSVLogger(str(logging_path), append=False)
            logger_after_warmup = LogCSVWithStart(
                str(logging_path), start_from_epoch=epochs_warmup, append=True)
        if freeze_weights or load_weights:
            enc_model.trainable = False

        if freeze_weights:
            print(("-" * 10) +
                  "LOADING weights, encoder model is completely frozen")
            if logging_csv:
                callbacks.append(logger_normal)
        elif load_weights:
            assert epochs_warmup < epochs, "warmup epochs must be smaller than epochs"

            print(("-" * 10) +
                  "LOADING weights, encoder model is trainable after warm-up")
            print(("-" * 5) + " encoder model is frozen")

            w_callbacks = list(callbacks)
            if logging_csv:
                w_callbacks.append(logger_normal)

            model.compile(optimizer=get_optimizer(clipnorm, clipvalue, lr),
                          loss=loss,
                          metrics=metrics)
            model.fit(
                x=gen_train,
                validation_data=gen_val,
                epochs=epochs_warmup,
                callbacks=w_callbacks,
            )
            epochs = epochs - epochs_warmup

            enc_model.trainable = True
            print(("-" * 5) + " encoder model unfrozen")

            if logging_csv:
                callbacks.append(logger_after_warmup)
        else:
            print(("-" * 10) +
                  "RANDOM weights, encoder model is fully trainable")
            if logging_csv:
                callbacks.append(logger_normal)

        # recompile model
        model.compile(optimizer=get_optimizer(clipnorm, clipvalue, lr),
                      loss=loss,
                      metrics=metrics)
        model.fit(x=gen_train,
                  validation_data=gen_val,
                  epochs=epochs,
                  callbacks=callbacks)

    model.compile(optimizer=get_optimizer(clipnorm, clipvalue, lr),
                  loss=loss,
                  metrics=metrics)
    y_pred = model.predict(x_test, batch_size=batch_size)
    scores_f = make_scores(y_test, y_pred, scores)

    if model_callback:
        model_callback(model)

    # cleanup
    del pred_model
    del enc_model
    del model

    algorithm_def.purge()
    K.clear_session()

    for i in range(15):
        gc.collect()

    for s in scores_f:
        print("{} score: {}".format(s[0], s[1]))

    return scores_f
                             save_best_only=True)

lr_scheduler = LearningRateScheduler(lr_schedule)

lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1),
                               cooldown=0,
                               patience=5,
                               min_lr=0.5e-6)

callbacks = [checkpoint, lr_reducer, lr_scheduler]

# choose training configs
sgd = SGD(lr=0.001, momentum=0.9)
model.compile(optimizer=sgd,
              loss=categorical_crossentropy,
              metrics=['accuracy'])
model.summary()

# train
hist = model.fit(x_train,
                 y_train,
                 batch_size=100,
                 epochs=10,
                 shuffle=True,
                 verbose=1,
                 validation_split=0.1,
                 callbacks=callbacks)

# test
model.evaluate(x_test, y_test, verbose=1)
def main(arg):

    directory = Path('./saved_predictions/')
    directory.mkdir(exist_ok=True)
    directory = Path('./saved_models/')
    directory.mkdir(exist_ok=True)
    directory = Path('./training_checkpoints/')
    directory.mkdir(exist_ok=True)
    input_yx_size = tuple(args.input_yx_size)
    batch_size = args.batch_size
    epochs = args.epochs
    learning_rate = args.learning_rate
    num_test_samples = args.num_test_samples
    save_weights = args.save_weights
    every = args.every
    num_samples = args.num_samples
    save_train_prediction = args.save_train_prediction
    save_test_prediction = args.save_test_prediction
    verbose = args.verbose
    validation_ratio = args.validation_ratio
    y_axis_len, x_axis_len = input_yx_size
    decay = args.decay
    decay = args.decay
    load_weights = args.load_weights
    y_axis_len, x_axis_len = input_yx_size
    num_points = y_axis_len * x_axis_len
    is_flat_channel_in = args.is_flat_channel_in
    input_points = Input(shape=(num_points, 4))

    x = input_points
    x = Convolution1D(64, 1, activation='relu', input_shape=(num_points, 4))(x)
    x = BatchNormalization()(x)
    x = Convolution1D(128, 1, activation='relu')(x)
    x = BatchNormalization()(x)
    x = Convolution1D(512, 1, activation='relu')(x)
    x = BatchNormalization()(x)
    x = MaxPooling1D(pool_size=num_points)(x)
    x = Dense(512, activation='relu')(x)
    x = BatchNormalization()(x)
    x = Dense(256, activation='relu')(x)
    x = BatchNormalization()(x)
    x = Dense(16,
              weights=[
                  np.zeros([256, 16]),
                  np.array([1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
                            1]).astype(np.float32)
              ])(x)
    input_T = Reshape((4, 4))(x)

    # forward net
    g = Lambda(mat_mul, arguments={'B': input_T})(input_points)
    g = Convolution1D(64, 1, input_shape=(num_points, 3), activation='relu')(g)
    g = BatchNormalization()(g)
    g = Convolution1D(64, 1, input_shape=(num_points, 3), activation='relu')(g)
    g = BatchNormalization()(g)

    # feature transformation net
    f = Convolution1D(64, 1, activation='relu')(g)
    f = BatchNormalization()(f)
    f = Convolution1D(128, 1, activation='relu')(f)
    f = BatchNormalization()(f)
    f = Convolution1D(128, 1, activation='relu')(f)
    f = BatchNormalization()(f)
    f = MaxPooling1D(pool_size=num_points)(f)
    f = Dense(512, activation='relu')(f)
    f = BatchNormalization()(f)
    f = Dense(256, activation='relu')(f)
    f = BatchNormalization()(f)
    f = Dense(64 * 64,
              weights=[
                  np.zeros([256, 64 * 64]),
                  np.eye(64).flatten().astype(np.float32)
              ])(f)
    feature_T = Reshape((64, 64))(f)

    # forward net
    g = Lambda(mat_mul, arguments={'B': feature_T})(g)
    seg_part1 = g
    g = Convolution1D(64, 1, activation='relu')(g)
    g = BatchNormalization()(g)
    g = Convolution1D(32, 1, activation='relu')(g)
    g = BatchNormalization()(g)
    g = Convolution1D(32, 1, activation='relu')(g)
    g = BatchNormalization()(g)

    # global_feature
    global_feature = MaxPooling1D(pool_size=num_points)(g)
    global_feature = Lambda(exp_dim, arguments={'num_points':
                                                num_points})(global_feature)

    # point_net_seg
    c = concatenate([seg_part1, global_feature])
    """ c = Convolution1D(512, 1, activation='relu')(c)
    c = BatchNormalization()(c)
    c = Convolution1D(256, 1, activation='relu')(c)
    c = BatchNormalization()(c)
    c = Convolution1D(128, 1, activation='relu')(c)
    c = BatchNormalization()(c)
    c = Convolution1D(128, 1, activation='relu')(c)
    c = BatchNormalization()(c) """
    c = Convolution1D(256, 1, activation='relu')(c)
    c = BatchNormalization()(c)
    c = Convolution1D(128, 4, activation='relu', strides=4)(c)
    c = BatchNormalization()(c)
    c = Convolution1D(128, 4, activation='relu', strides=4)(c)
    c = BatchNormalization()(c)
    c = Convolution1D(128, 4, activation='relu', strides=4)(c)
    c = BatchNormalization()(c)
    c = Convolution1D(64, 4, activation='relu', strides=4)(c)
    c = BatchNormalization()(c)
    c = Convolution1D(64, 4, activation='relu', strides=4)(c)
    c = BatchNormalization()(c)
    c = Convolution1D(32, 1, activation='relu')(c)
    c = BatchNormalization()(c)
    """ c = Convolution1D(128, 4, activation='relu',strides=4)(c)
    c = Convolution1D(64, 4, activation='relu',strides=4)(c)
    c = Convolution1D(32, 4, activation='relu',strides=4)(c)
    c = Convolution1D(16, 1, activation='relu')(c)
    c = Convolution1D(1, 1, activation='relu')(c) """
    #c = tf.keras.backend.squeeze(c,3);
    c = CuDNNLSTM(64, return_sequences=False)(c)
    #c =CuDNNLSTM(784, return_sequences=False))
    #c =CuDNNLSTM(256, return_sequences=False))

    #c = Reshape([16,16,1])(c)
    c = Reshape([8, 8, 1])(c)
    c = Conv2DTranspose(8, (3, 3),
                        padding="same",
                        activation="relu",
                        strides=(2, 2))(c)
    c = Conv2DTranspose(8, (3, 3), padding="valid", activation="relu")(c)
    #c =Dropout(0.4))
    c = tf.keras.layers.BatchNormalization()(c)
    c = Conv2DTranspose(16, (3, 3), padding="valid", activation="relu")(c)
    #c =Dropout(0.4))
    c = tf.keras.layers.BatchNormalization()(c)
    c = Conv2DTranspose(32, (3, 3), padding="valid", activation="relu")(c)
    #c =Dropout(0.4))
    c = tf.keras.layers.BatchNormalization()(c)
    c = Conv2DTranspose(32, (3, 3), padding="valid", activation="relu")(c)
    #c =Dropout(0.4))
    c = tf.keras.layers.BatchNormalization()(c)
    c = Conv2DTranspose(32, (3, 3), padding="valid", activation="relu")(c)
    #c =Dropout(0.4))
    c = tf.keras.layers.BatchNormalization()(c)
    c = Conv2DTranspose(64, (3, 3), padding="valid", activation="relu")(c)
    #c =Dropout(0.4))
    c = tf.keras.layers.BatchNormalization()(c)
    c = Conv2DTranspose(64, (3, 3), padding="valid", activation="relu")(c)
    #c =Dropout(0.4))
    c = tf.keras.layers.BatchNormalization()(c)

    #c =Dropout(0.4))

    c = Conv2DTranspose(128, (3, 3),
                        padding="same",
                        activation="relu",
                        strides=(2, 2))(c)
    c = tf.keras.layers.BatchNormalization()(c)

    c = Conv2DTranspose(128, (3, 3), padding="valid", activation="relu")(c)

    #c =Dropout(0.4))
    c = tf.keras.layers.BatchNormalization()(c)
    c = Conv2DTranspose(128, (3, 3),
                        padding="same",
                        activation="relu",
                        strides=(2, 2))(c)
    c = tf.keras.layers.BatchNormalization()(c)

    c = Conv2DTranspose(128, (3, 3), padding="valid", activation="relu")(c)
    c = tf.keras.layers.BatchNormalization()(c)

    #c =Dropout(0.4))
    #c =tf.keras.layers.BatchNormalization())
    c = Conv2DTranspose(64, (3, 3), padding="same", strides=(4, 2))(c)
    c = tf.keras.layers.BatchNormalization()(c)

    c = Conv2DTranspose(32, (3, 3), padding="valid", activation="relu")(c)
    c = tf.keras.layers.BatchNormalization()(c)

    c = Conv2DTranspose(32, (3, 3), padding="valid", activation="relu")(c)
    c = tf.keras.layers.BatchNormalization()(c)

    #c =Dropout(0.4))
    c = Conv2DTranspose(32, (3, 3),
                        padding="same",
                        activation="relu",
                        strides=(1, 1))(c)
    c = tf.keras.layers.BatchNormalization()(c)

    c = Conv2DTranspose(32, (3, 1), padding="valid", activation="relu")(c)
    c = tf.keras.layers.BatchNormalization()(c)

    c = Conv2DTranspose(32, (3, 1), padding="valid", activation="relu")(c)
    c = tf.keras.layers.BatchNormalization()(c)
    c = Conv2DTranspose(16, (1, 1), padding="valid", activation="relu")(c)
    c = tf.keras.layers.BatchNormalization()(c)
    c = Conv2DTranspose(8, (1, 1), padding="valid", activation="relu")(c)
    c = tf.keras.layers.BatchNormalization()(c)

    c = Conv2DTranspose(1, (1, 1), padding="valid")(c)
    """ c =Conv2DTranspose(4, (1,1),padding="same",activation="relu"))
    c =Conv2DTranspose(2, (1,1),padding="same",activation="relu"))
    #c =Dropout(0.4))
    c =Conv2DTranspose(1, (1,1),padding="same")) """
    prediction = tf.keras.layers.Reshape([512, 256])(c)
    """ c1 ,c2  = tf.split(c,[256,256],axis=1,name="split")
    complexNum = tf.dtypes.complex(
        c1,
        c2,
        name=None
    )

    complexNum =tf.signal.ifft2d(
        complexNum,
        name="IFFT"
    )
    real = tf.math.real(complexNum)
    imag = tf.math.imag(complexNum)

    con = concatenate([real,imag])

    prediction  =tf.keras.layers.Reshape([ 512, 256])(con)
    """
    # define model
    model = Model(inputs=input_points, outputs=prediction)
    opt = tf.keras.optimizers.Adam(lr=learning_rate, decay=decay)

    loss = tf.keras.losses.MeanSquaredError()
    mertric = ['mse']
    if args.loss is "MAE":
        loss = tf.keras.losses.MeanAbsoluteError()
        mertric = ['mae']

    model.compile(
        loss=loss,
        optimizer=opt,
        metrics=mertric,
    )

    model.summary()
    if load_weights:
        model.load_weights('./training_checkpoints/cp-best_loss.ckpt')

    #edit data_loader.py if you want to play with data
    input_ks, ground_truth = load_data(num_samples,
                                       is_flat_channel_in=is_flat_channel_in)

    input_ks = input_ks / np.max(input_ks)

    checkpoint_path = "./training_checkpoints/cp-{epoch:04d}.ckpt"
    checkpoint_dir = os.path.dirname(checkpoint_path)

    # Create checkpoint callback
    #do you want to save the model's wieghts? if so set this varaible to true

    cp_callback = []

    NAME = "NUFFT_NET"

    tensorboard = TensorBoard(log_dir="logs/{}".format(NAME))
    cp_callback.append(tensorboard)
    if save_weights:
        cp_callback.append(
            tf.keras.callbacks.ModelCheckpoint(checkpoint_dir,
                                               save_weights_only=True,
                                               verbose=verbose,
                                               period=every))

    if args.is_train:
        model.fit(input_ks,
                  ground_truth,
                  batch_size=batch_size,
                  epochs=epochs,
                  validation_split=validation_ratio,
                  callbacks=cp_callback)

    if args.name_model is not "":
        model.save('./saved_mdoels/' + args.name_model)
    dict_name = './saved_predictions/'
    #return to image size
    x_axis_len = int(x_axis_len / 4)
    np.random.seed(int(time()))

    if save_train_prediction <= num_samples:
        rand_ix = np.random.randint(0, num_samples - 1, save_train_prediction)
        #kspace = np.zeros((save_train_prediction,
        #y_axis_len,input_ks[rand_ix].shape[1]))
        kspace = input_ks[rand_ix]
        if args.save_input:
            np.save("./saved_predictions/inputs.npy", input_ks[rand_ix])
        ground_truth = ground_truth[rand_ix]
        preds = model.predict(kspace, batch_size=save_train_prediction)
        for i in range(save_train_prediction):

            output = np.reshape(preds[i], (y_axis_len * 2, x_axis_len))
            output = output * 255
            output[np.newaxis, ...]
            output_gt = ground_truth[i]
            output_gt[np.newaxis, ...]
            output = np.concatenate([output, output_gt], axis=0)
            np.save(dict_name + 'prediction%d.npy' % (i + 1), output)

        input_ks, ground_truth = load_data(
            num_test_samples, 'test', is_flat_channel_in=is_flat_channel_in)

        input_ks = input_ks / np.max(input_ks)
    if args.is_eval:
        model.evaluate(input_ks,
                       ground_truth,
                       batch_size,
                       verbose,
                       callbacks=cp_callback)

    if save_test_prediction <= num_test_samples:
        rand_ix = np.random.randint(0, num_test_samples - 1,
                                    save_test_prediction)
        kspace = input_ks[rand_ix]
        if args.save_input:
            np.save("./saved_predictions/test_inputs.npy", input_ks[rand_ix])
        ground_truth = ground_truth[rand_ix]
        preds = model.predict(kspace, batch_size=save_test_prediction)
        for i in range(save_test_prediction):

            output = np.reshape(preds[i], (y_axis_len * 2, x_axis_len))
            output = output * 255
            output[np.newaxis, ...]
            output_gt = ground_truth[i]
            output_gt[np.newaxis, ...]
            output = np.concatenate([output, output_gt], axis=0)
            np.save(dict_name + 'test_prediction%d.npy' % (i + 1), output)
def knowledge_transfer(current_student: Model, method: Method, loss: Union[LossType, List[LossType]]) -> \
        Tuple[Model, History]:
    """
    Performs KT.

    :param current_student: the student to be used for the current KT method.
    :param method: the method to be used for the KT.
    :param loss: the KT loss to be used.
    :return: Tuple containing a student Keras model and its training History object.
    """
    kt_logging.debug('Configuring student...')
    weights = None
    y_train_adapted = y_train_concat
    y_val_adapted = y_val_concat
    metrics = {}

    if method == Method.DISTILLATION:
        # Adapt student
        current_student = kd_student_adaptation(current_student, temperature)
        # Create KT metrics.
        metrics = generate_supervised_metrics(method)
        monitoring_metric = 'val_accuracy'
    elif method == Method.PKT_PLUS_DISTILLATION:
        # Adapt student
        current_student = pkt_plus_kd_student_adaptation(current_student, temperature)
        # Create importance weights for the different losses.
        weights = [kd_importance_weight, pkt_importance_weight]
        if selective_learning:
            selective_learning_weights = []
            for _ in range(n_submodels):
                selective_learning_weights.extend(weights)
            weights = selective_learning_weights

            #  Adapt the labels.
            y_train_adapted.extend(y_train_adapted)
            y_val_adapted.extend(y_val_adapted)
        else:
            #  Adapt the labels.
            y_train_adapted = [y_train_concat, y_train_concat]
            y_val_adapted = [y_val_concat, y_val_concat]

        # Create KT metrics.
        metrics = generate_supervised_metrics(method)
        monitoring_metric = 'val_concatenate_accuracy'
    else:
        # PKT performs KT, but also rotates the space, thus evaluating results has no meaning,
        # since the neurons representing the classes are not the same anymore.
        monitoring_metric = 'val_loss'

    if selective_learning:
        current_student = selective_learning_student_adaptation(current_student, n_submodels)
        monitoring_metric = 'val_loss'

    # Create optimizer.
    optimizer = initialize_optimizer(optimizer_name, learning_rate, decay, beta1, beta2, rho, momentum,
                                     clip_norm, clip_value)

    # Compile student.
    current_student.compile(optimizer, loss, metrics, weights)

    # Initialize callbacks list.
    kt_logging.debug('Initializing Callbacks...')
    # Create a temp file, in order to save the model, if needed.
    tmp_weights_path = None
    if use_best_model:
        tmp_weights_path = join(gettempdir(), next(mktemp()) + '.h5')

    callbacks_list = init_callbacks(monitoring_metric, lr_patience, lr_decay, lr_min, early_stopping_patience,
                                    verbosity, tmp_weights_path, selective_learning)

    # Train student.
    history = current_student.fit(x_train, y_train_adapted, batch_size=batch_size, callbacks=callbacks_list,
                                  epochs=epochs, validation_data=(x_val, y_val_adapted), verbose=verbosity)

    if exists(tmp_weights_path):
        # Load best weights and delete the temp file.
        current_student.load_weights(tmp_weights_path)
        remove(tmp_weights_path)

    # Rewind student to its normal state, if necessary.
    if selective_learning:
        current_student = selective_learning_student_rewind(current_student, optimizer=optimizer, loss=loss[0],
                                                            metrics=metrics)
    if method == Method.DISTILLATION:
        current_student = kd_student_rewind(current_student)
    elif method == Method.PKT_PLUS_DISTILLATION:
        current_student = pkt_plus_kd_rewind(current_student)

    return current_student, history
        internal = self.FC_1(attention_vector)
        # internal = self.FC_2(internal)
        final_output = self.classification_layer(internal)

        return final_output


# create the model
recurrent_fusion_model = Model()
recurrent_fusion_model.compile(optimizer=keras.optimizers.Adam(lr=lr),
                               loss=sparse_categorical_cross_entropy_loss,
                               metrics=[acc_top_1, acc_top_5])

# build internal tensors
recurrent_fusion_model.fit(*next(train_generator()),
                           batch_size=1,
                           epochs=1,
                           verbose=0)

# get tensorflow saver ready > will be used if a checkpoint found on drive
saver = tf.train.Saver(recurrent_fusion_model.variables)

if checkpoint_found:
    # restore the model from the checkpoint
    log("Model restored")
    eval_globals.best_video_level_accuracy_1 = float(
        zip_file_name.split("-")[1])
    log("Current Best", eval_globals.best_video_level_accuracy_1)

    saver.restore(tf.keras.backend.get_session(),
                  checkpoints)  # use tensorflow saver
    initial_epoch = int(zip_file_name.split("-")[0])  # get epoch number
Beispiel #28
0
y = tf.keras.layers.Dense(units=32,
                          activation='elu',
                          kernel_initializer='he_uniform')(y)
y = tf.keras.layers.Dense(units=2,
                          activation='softmax',
                          kernel_initializer='he_uniform')(y)
wenz_model = Model(inputs=[input1, input2], outputs=y)

adam = Adam(lr=0.02, decay=0.01)
wenz_model.compile(optimizer='adam',
                   loss=tf.keras.losses.BinaryCrossentropy(),
                   metrics=['accuracy'])

checkpoint_path = "training/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)

# Create a callback that saves the model's weights
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
                                                 save_weights_only=True,
                                                 verbose=1)

wenz_model.fit(XY, epochs=10,
               callbacks=[cp_callback])  # add validation training_data?
test_loss, test_acc = wenz_model.evaluate(XYt, verbose=2)

print('\nTest accuracy:', test_acc)

wenz_model.save(
    '/home/pirate/PycharmProjects/SchafkopfAI/models/trained_models/test-wenz-prediction6'
)
store.close()
Beispiel #29
0
x2 = []
for i in x:
    x1.append(i[0])
    x2.append(i[1])

y = np.array([7.8, 8.6, 8.7, 7.9, 8.4, 8.9, 10.4, 11.6, 13.9, 15.8])
print(x.shape)
print(y.shape)

with tf.device('/cpu:0'):
    inputs = layers.Input(shape=(2, ))
    out = layers.Dense(1,
                       use_bias=False,
                       kernel_initializer=initializers.RandomUniform())(inputs)
    model = Model(inputs=inputs, outputs=out)

dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(3).repeat()

# print(dataset.take(1))

model.compile(
    optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.0001),
    loss='mean_squared_error')

print_weights = callbacks.LambdaCallback(
    on_epoch_end=lambda batch, logs: print(model.layers[1].get_weights()))

model.summary()
model.fit(dataset, epochs=20, steps_per_epoch=1, callbacks=[print_weights])
# model.fit(dataset,epochs=20,steps_per_epoch=1)
Beispiel #30
0
         shared_model(right_input)])
    model = Model(inputs=[left_input, right_input], outputs=[malstm_distance])

    if gpus >= 2:
        # `multi_gpu_model()` is a so quite buggy. it breaks the saved model.
        model = tf.keras.utils.multi_gpu_model(model, gpus=gpus)
    model.compile(loss='mean_squared_error',
                  optimizer=tf.keras.optimizers.Adam(),
                  metrics=['accuracy'])
    model.summary()
    shared_model.summary()

    # Start trainings
    training_start_time = time()
    malstm_trained = model.fit([X_train['left'], X_train['right']],
                               Y_train,
                               batch_size=batch_size,
                               epochs=n_epoch)
    training_end_time = time()
    logging.info("Training time finished.\n%d epochs in %12.2f" %
                 (n_epoch, training_end_time - training_start_time))

    saver = tf.compat.v1.train.Saver()
    session = tf.compat.v1.keras.backend.get_session()
    saver.save(session, SESSION_PATH)

    model.save(get_model_path(n_epoch, embedding_dim, max_seq_length,
                              n_hidden))

    # plot(malstm_trained)