Beispiel #1
0
  def testNoOp(self):
    img_shape = [1, 6, 4, 1]
    single_shape = [6, 4, 1]
    # This test is also conducted with int8, so 127 is the maximum
    # value that can be used.
    data = [127, 127, 64, 64,
            127, 127, 64, 64,
            64, 64, 127, 127,
            64, 64, 127, 127,
            50, 50, 100, 100,
            50, 50, 100, 100]
    target_height = 6
    target_width = 4

    for nptype in self.TYPES:
      img_np = np.array(data, dtype=nptype).reshape(img_shape)

      for opt in self.OPTIONS:
        with self.test_session() as sess:
          image = constant_op.constant(img_np, shape=img_shape)
          y = image_ops.resize_images(image, target_height, target_width, opt)
          yshape = array_ops.shape(y)
          resized, newshape = sess.run([y, yshape])
          self.assertAllEqual(img_shape, newshape)
          self.assertAllClose(resized, img_np, atol=1e-5)

      # Resizing with a single image must leave the shape unchanged also.
      with self.test_session():
        img_single = img_np.reshape(single_shape)
        image = constant_op.constant(img_single, shape=single_shape)
        y = image_ops.resize_images(image, target_height, target_width,
                                    self.OPTIONS[0])
        yshape = array_ops.shape(y)
        newshape = yshape.eval()
        self.assertAllEqual(single_shape, newshape)
Beispiel #2
0
    def testNoOp(self):
        img_shape = [1, 6, 4, 1]
        single_shape = [6, 4, 1]
        # This test is also conducted with int8, so 127 is the maximum
        # value that can be used.
        data = [
            127, 127, 64, 64, 127, 127, 64, 64, 64, 64, 127, 127, 64, 64, 127,
            127, 50, 50, 100, 100, 50, 50, 100, 100
        ]
        target_height = 6
        target_width = 4

        for nptype in self.TYPES:
            img_np = np.array(data, dtype=nptype).reshape(img_shape)

            for opt in self.OPTIONS:
                with self.test_session() as sess:
                    image = constant_op.constant(img_np, shape=img_shape)
                    y = image_ops.resize_images(image, target_height,
                                                target_width, opt)
                    yshape = array_ops.shape(y)
                    resized, newshape = sess.run([y, yshape])
                    self.assertAllEqual(img_shape, newshape)
                    self.assertAllClose(resized, img_np, atol=1e-5)

            # Resizing with a single image must leave the shape unchanged also.
            with self.test_session():
                img_single = img_np.reshape(single_shape)
                image = constant_op.constant(img_single, shape=single_shape)
                y = image_ops.resize_images(image, target_height, target_width,
                                            self.OPTIONS[0])
                yshape = array_ops.shape(y)
                newshape = yshape.eval()
                self.assertAllEqual(single_shape, newshape)
  def testNoOp(self):
    img_shape = [1, 6, 4, 1]
    single_shape = [6, 4, 1]
    data = [128, 128, 64, 64,
            128, 128, 64, 64,
            64, 64, 128, 128,
            64, 64, 128, 128,
            50, 50, 100, 100,
            50, 50, 100, 100]
    img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

    target_height = 6
    target_width = 4

    for opt in self.OPTIONS:
      with self.test_session() as sess:
        image = constant_op.constant(img_np, shape=img_shape)
        y = image_ops.resize_images(image, target_height, target_width, opt)
        yshape = array_ops.shape(y)
        resized, newshape = sess.run([y, yshape])
        self.assertAllEqual(img_shape, newshape)
        self.assertAllClose(resized, img_np, atol=1e-5)

    # Resizing with a single image must leave the shape unchanged also.
    with self.test_session():
      img_single = img_np.reshape(single_shape)
      image = constant_op.constant(img_single, shape=single_shape)
      y = image_ops.resize_images(image, target_height, target_width,
                                  self.OPTIONS[0])
      yshape = array_ops.shape(y)
      newshape = yshape.eval()
      self.assertAllEqual(single_shape, newshape)
  def testResizeDownArea(self):
    img_shape = [1, 6, 6, 1]
    data = [128, 64, 32, 16, 8, 4,
            4, 8, 16, 32, 64, 128,
            128, 64, 32, 16, 8, 4,
            5, 10, 15, 20, 25, 30,
            30, 25, 20, 15, 10, 5,
            5, 10, 15, 20, 25, 30]
    img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

    target_height = 4
    target_width = 4
    expected_data = [73, 33, 23, 39,
                     73, 33, 23, 39,
                     14, 16, 19, 21,
                     14, 16, 19, 21]

    with self.test_session():
      image = constant_op.constant(img_np, shape=img_shape)
      y = image_ops.resize_images(image, target_height, target_width,
                                  image_ops.ResizeMethod.AREA)
      expected = np.array(expected_data).reshape(
          [1, target_height, target_width, 1])
      resized = y.eval()
      self.assertAllClose(resized, expected, atol=1)
def _make_sprite_image(thumbnails, thumbnail_dim):
  """Constructs a sprite image from thumbnails and returns the png bytes."""
  if len(thumbnails) < 1:
    raise ValueError('The length of "thumbnails" must be >= 1')

  if isinstance(thumbnails, np.ndarray) and thumbnails.ndim != 4:
    raise ValueError('"thumbnails" should be of rank 4, '
                     'but is of rank %d' % thumbnails.ndim)
  if isinstance(thumbnails, list):
    if not isinstance(thumbnails[0], np.ndarray) or thumbnails[0].ndim != 3:
      raise ValueError('Each element of "thumbnails" must be a 3D `ndarray`')
    thumbnails = np.array(thumbnails)

  with ops.Graph().as_default():
    s = session.Session()
    resized_images = image_ops.resize_images(thumbnails, thumbnail_dim).eval(
        session=s)
    images_per_row = int(math.ceil(math.sqrt(len(thumbnails))))
    thumb_height = thumbnail_dim[0]
    thumb_width = thumbnail_dim[1]
    master_height = images_per_row * thumb_height
    master_width = images_per_row * thumb_width
    num_channels = thumbnails.shape[3]
    master = np.zeros([master_height, master_width, num_channels])
    for idx, image in enumerate(resized_images):
      left_idx = idx % images_per_row
      top_idx = int(math.floor(idx / images_per_row))
      left_start = left_idx * thumb_width
      left_end = left_start + thumb_width
      top_start = top_idx * thumb_height
      top_end = top_start + thumb_height
      master[top_start:top_end, left_start:left_end, :] = image

    return image_ops.encode_png(master).eval(session=s)
Beispiel #6
0
 def model(x):
     x = var * x
     x = image_ops.resize_images(
         x,
         size=[img_width, img_width],
         method=image_ops.ResizeMethod.BILINEAR)
     return x
Beispiel #7
0
def _make_sprite_image(thumbnails, thumbnail_dim):
  """Constructs a sprite image from thumbnails and returns the png bytes."""
  if len(thumbnails) < 1:
    raise ValueError('The length of "thumbnails" must be >= 1')

  if isinstance(thumbnails, np.ndarray) and thumbnails.ndim != 4:
    raise ValueError('"thumbnails" should be of rank 4, '
                     'but is of rank %d' % thumbnails.ndim)
  if isinstance(thumbnails, list):
    if not isinstance(thumbnails[0], np.ndarray) or thumbnails[0].ndim != 3:
      raise ValueError('Each element of "thumbnails" must be a 3D `ndarray`')
    thumbnails = np.array(thumbnails)

  with ops.Graph().as_default():
    s = session.Session()
    resized_images = image_ops.resize_images(thumbnails, thumbnail_dim).eval(
        session=s)
    images_per_row = int(math.ceil(math.sqrt(len(thumbnails))))
    thumb_height = thumbnail_dim[0]
    thumb_width = thumbnail_dim[1]
    master_height = images_per_row * thumb_height
    master_width = images_per_row * thumb_width
    num_channels = thumbnails.shape[3]
    master = np.zeros([master_height, master_width, num_channels])
    for idx, image in enumerate(resized_images):
      left_idx = idx % images_per_row
      top_idx = int(math.floor(idx / images_per_row))
      left_start = left_idx * thumb_width
      left_end = left_start + thumb_width
      top_start = top_idx * thumb_height
      top_end = top_start + thumb_height
      master[top_start:top_end, left_start:left_end, :] = image

    return image_ops.encode_png(master).eval(session=s)
  def testResizeDown(self):

    data = [128, 128, 64, 64,
            128, 128, 64, 64,
            64, 64, 128, 128,
            64, 64, 128, 128,
            50, 50, 100, 100,
            50, 50, 100, 100]
    expected_data = [128, 64,
                     64, 128,
                     50, 100]
    target_height = 3
    target_width = 2

    # Test out 3-D and 4-D image shapes.
    img_shapes = [[1, 6, 4, 1], [6, 4, 1]]
    target_shapes = [[1, target_height, target_width, 1],
                     [target_height, target_width, 1]]

    for target_shape, img_shape in zip(target_shapes, img_shapes):
      img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

      for opt in self.OPTIONS:
        with self.test_session():
          image = constant_op.constant(img_np, shape=img_shape)
          y = image_ops.resize_images(image, target_height, target_width, opt)
          expected = np.array(expected_data).reshape(target_shape)
          resized = y.eval()
          self.assertAllClose(resized, expected, atol=1e-5)
Beispiel #9
0
  def testResizeDown(self):
    # This test is also conducted with int8, so 127 is the maximum
    # value that can be used.
    data = [127, 127, 64, 64,
            127, 127, 64, 64,
            64, 64, 127, 127,
            64, 64, 127, 127,
            50, 50, 100, 100,
            50, 50, 100, 100]
    expected_data = [127, 64,
                     64, 127,
                     50, 100]
    target_height = 3
    target_width = 2

    # Test out 3-D and 4-D image shapes.
    img_shapes = [[1, 6, 4, 1], [6, 4, 1]]
    target_shapes = [[1, target_height, target_width, 1],
                     [target_height, target_width, 1]]

    for target_shape, img_shape in zip(target_shapes, img_shapes):

      for nptype in self.TYPES:
        img_np = np.array(data, dtype=nptype).reshape(img_shape)

        for opt in self.OPTIONS:
          with self.test_session():
            image = constant_op.constant(img_np, shape=img_shape)
            y = image_ops.resize_images(image, target_height, target_width, opt)
            expected = np.array(expected_data).reshape(target_shape)
            resized = y.eval()
            self.assertAllClose(resized, expected, atol=1e-5)
Beispiel #10
0
    def testResizeUpBicubic(self):
        img_shape = [1, 6, 6, 1]
        data = [
            128, 128, 64, 64, 128, 128, 64, 64, 64, 64, 128, 128, 64, 64, 128,
            128, 50, 50, 100, 100, 50, 50, 100, 100, 50, 50, 100, 100, 50, 50,
            100, 100, 50, 50, 100, 100
        ]
        img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

        target_height = 8
        target_width = 8
        expected_data = [
            128, 135, 96, 55, 64, 114, 134, 128, 78, 81, 68, 52, 57, 118, 144,
            136, 55, 49, 79, 109, 103, 89, 83, 84, 74, 70, 95, 122, 115, 69,
            49, 55, 100, 105, 75, 43, 50, 89, 105, 100, 57, 54, 74, 96, 91, 65,
            55, 58, 70, 69, 75, 81, 80, 72, 69, 70, 105, 112, 75, 36, 45, 92,
            111, 105
        ]

        with self.test_session():
            image = constant_op.constant(img_np, shape=img_shape)
            y = image_ops.resize_images(image, target_height, target_width,
                                        image_ops.ResizeMethod.BICUBIC)
            resized = y.eval()
            expected = np.array(expected_data).reshape(
                [1, target_height, target_width, 1])
            self.assertAllClose(resized, expected, atol=1)
Beispiel #11
0
  def testResizeDownArea(self):
    img_shape = [1, 6, 6, 1]
    data = [128, 64, 32, 16, 8, 4,
            4, 8, 16, 32, 64, 128,
            128, 64, 32, 16, 8, 4,
            5, 10, 15, 20, 25, 30,
            30, 25, 20, 15, 10, 5,
            5, 10, 15, 20, 25, 30]
    img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

    target_height = 4
    target_width = 4
    expected_data = [73, 33, 23, 39,
                     73, 33, 23, 39,
                     14, 16, 19, 21,
                     14, 16, 19, 21]

    with self.test_session():
      image = constant_op.constant(img_np, shape=img_shape)
      y = image_ops.resize_images(image, target_height, target_width,
                                  image_ops.ResizeMethod.AREA)
      expected = np.array(expected_data).reshape(
          [1, target_height, target_width, 1])
      resized = y.eval()
      self.assertAllClose(resized, expected, atol=1)
Beispiel #12
0
    def testResizeDown(self):
        # This test is also conducted with int8, so 127 is the maximum
        # value that can be used.
        data = [
            127, 127, 64, 64, 127, 127, 64, 64, 64, 64, 127, 127, 64, 64, 127,
            127, 50, 50, 100, 100, 50, 50, 100, 100
        ]
        expected_data = [127, 64, 64, 127, 50, 100]
        target_height = 3
        target_width = 2

        # Test out 3-D and 4-D image shapes.
        img_shapes = [[1, 6, 4, 1], [6, 4, 1]]
        target_shapes = [[1, target_height, target_width, 1],
                         [target_height, target_width, 1]]

        for target_shape, img_shape in zip(target_shapes, img_shapes):

            for nptype in self.TYPES:
                img_np = np.array(data, dtype=nptype).reshape(img_shape)

                for opt in self.OPTIONS:
                    with self.test_session():
                        image = constant_op.constant(img_np, shape=img_shape)
                        y = image_ops.resize_images(image, target_height,
                                                    target_width, opt)
                        expected = np.array(expected_data).reshape(
                            target_shape)
                        resized = y.eval()
                        self.assertAllClose(resized, expected, atol=1e-5)
    def testResizeDown(self):

        data = [
            128, 128, 64, 64, 128, 128, 64, 64, 64, 64, 128, 128, 64, 64, 128,
            128, 50, 50, 100, 100, 50, 50, 100, 100
        ]
        expected_data = [128, 64, 64, 128, 50, 100]
        target_height = 3
        target_width = 2

        # Test out 3-D and 4-D image shapes.
        img_shapes = [[1, 6, 4, 1], [6, 4, 1]]
        target_shapes = [[1, target_height, target_width, 1],
                         [target_height, target_width, 1]]

        for target_shape, img_shape in zip(target_shapes, img_shapes):
            img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

            for opt in self.OPTIONS:
                with self.test_session():
                    image = constant_op.constant(img_np, shape=img_shape)
                    y = image_ops.resize_images(image, target_height,
                                                target_width, opt)
                    expected = np.array(expected_data).reshape(target_shape)
                    resized = y.eval()
                    self.assertAllClose(resized, expected, atol=1e-5)
Beispiel #14
0
  def testResizeUpBicubic(self):
    img_shape = [1, 6, 6, 1]
    data = [128, 128, 64, 64, 128, 128, 64, 64,
            64, 64, 128, 128, 64, 64, 128, 128,
            50, 50, 100, 100, 50, 50, 100, 100,
            50, 50, 100, 100, 50, 50, 100, 100,
            50, 50, 100, 100]
    img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

    target_height = 8
    target_width = 8
    expected_data = [128, 135, 96, 55, 64, 114, 134, 128,
                     78, 81, 68, 52, 57, 118, 144, 136,
                     55, 49, 79, 109, 103, 89, 83, 84,
                     74, 70, 95, 122, 115, 69, 49, 55,
                     100, 105, 75, 43, 50, 89, 105, 100,
                     57, 54, 74, 96, 91, 65, 55, 58,
                     70, 69, 75, 81, 80, 72, 69, 70,
                     105, 112, 75, 36, 45, 92, 111, 105]

    with self.test_session():
      image = constant_op.constant(img_np, shape=img_shape)
      y = image_ops.resize_images(image, target_height, target_width,
                                  image_ops.ResizeMethod.BICUBIC)
      resized = y.eval()
      expected = np.array(expected_data).reshape(
          [1, target_height, target_width, 1])
      self.assertAllClose(resized, expected, atol=1)
Beispiel #15
0
 def testCompareNearestNeighbor(self):
   input_shape = [1, 5, 5, 3]
   target_height = target_width = 10
   for nptype in [np.float]:
     for align_corners in [True, False]:
       img_np = np.arange(0, np.prod(input_shape), dtype=nptype).reshape(input_shape)
       with self.test_session(use_gpu=True):
         image = constant_op.constant(img_np, shape=input_shape)
         out_op = image_ops.resize_images(image, target_height, target_width,
                                          image_ops.ResizeMethod.NEAREST_NEIGHBOR,
                                          align_corners=align_corners)
         gpu_val = out_op.eval()
       with self.test_session(use_gpu=False):
         image = constant_op.constant(img_np, shape=input_shape)
         out_op = image_ops.resize_images(image, target_height, target_width,
                                          image_ops.ResizeMethod.NEAREST_NEIGHBOR,
                                          align_corners=align_corners)
         cpu_val = out_op.eval()
       self.assertAllClose(cpu_val, gpu_val, rtol=1e-5, atol=1e-5)
Beispiel #16
0
    def testTensorArguments(self):
        img_shape = [1, 6, 4, 1]
        single_shape = [6, 4, 1]
        # This test is also conducted with int8, so 127 is the maximum
        # value that can be used.
        data = [
            127, 127, 64, 64, 127, 127, 64, 64, 64, 64, 127, 127, 64, 64, 127,
            127, 50, 50, 100, 100, 50, 50, 100, 100
        ]
        target_height = array_ops.placeholder(dtypes.int32)
        target_width = array_ops.placeholder(dtypes.int32)

        img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

        for opt in self.OPTIONS:
            with self.test_session() as sess:
                image = constant_op.constant(img_np, shape=img_shape)
                y = image_ops.resize_images(image, target_height, target_width,
                                            opt)
                yshape = array_ops.shape(y)
                resized, newshape = sess.run([y, yshape], {
                    target_height: 6,
                    target_width: 4
                })
                self.assertAllEqual(img_shape, newshape)
                self.assertAllClose(resized, img_np, atol=1e-5)

        # Resizing with a single image must leave the shape unchanged also.
        with self.test_session():
            img_single = img_np.reshape(single_shape)
            image = constant_op.constant(img_single, shape=single_shape)
            y = image_ops.resize_images(image, target_height, target_width,
                                        self.OPTIONS[0])
            yshape = array_ops.shape(y)
            newshape = yshape.eval(feed_dict={
                target_height: 6,
                target_width: 4
            })
            self.assertAllEqual(single_shape, newshape)

        # Incorrect shape.
        with self.assertRaises(ValueError):
            _ = image_ops.resize_images(image, [12, 32], 4,
                                        image_ops.ResizeMethod.BILINEAR)
        with self.assertRaises(ValueError):
            _ = image_ops.resize_images(image, 6, [12, 32],
                                        image_ops.ResizeMethod.BILINEAR)

        # Incorrect dtypes.
        with self.assertRaises(ValueError):
            _ = image_ops.resize_images(image, 6.0, 4,
                                        image_ops.ResizeMethod.BILINEAR)
        with self.assertRaises(ValueError):
            _ = image_ops.resize_images(image, 6, 4.0,
                                        image_ops.ResizeMethod.BILINEAR)
    def testNoOp(self):
        img_shape = [1, 6, 4, 1]
        data = [
            128, 128, 64, 64, 128, 128, 64, 64, 64, 64, 128, 128, 64, 64, 128,
            128, 50, 50, 100, 100, 50, 50, 100, 100
        ]
        img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

        target_height = 6
        target_width = 4

        for opt in self.OPTIONS:
            with self.test_session():
                image = constant_op.constant(img_np, shape=img_shape)
                y = image_ops.resize_images(image, target_height, target_width,
                                            opt)
                resized = y.eval()
                self.assertAllClose(resized, img_np, atol=1e-5)
Beispiel #18
0
  def testResizeUp(self):
    img_shape = [1, 3, 2, 1]
    data = [64, 32,
            32, 64,
            50, 100]
    target_height = 6
    target_width = 4
    expected_data = {}
    expected_data[image_ops.ResizeMethod.BILINEAR] = [
        64.0, 48.0, 32.0, 32.0,
        48.0, 48.0, 48.0, 48.0,
        32.0, 48.0, 64.0, 64.0,
        41.0, 61.5, 82.0, 82.0,
        50.0, 75.0, 100.0, 100.0,
        50.0, 75.0, 100.0, 100.0]
    expected_data[image_ops.ResizeMethod.NEAREST_NEIGHBOR] = [
        64.0, 64.0, 32.0, 32.0,
        64.0, 64.0, 32.0, 32.0,
        32.0, 32.0, 64.0, 64.0,
        32.0, 32.0, 64.0, 64.0,
        50.0, 50.0, 100.0, 100.0,
        50.0, 50.0, 100.0, 100.0]
    expected_data[image_ops.ResizeMethod.AREA] = [
        64.0, 64.0, 32.0, 32.0,
        64.0, 64.0, 32.0, 32.0,
        32.0, 32.0, 64.0, 64.0,
        32.0, 32.0, 64.0, 64.0,
        50.0, 50.0, 100.0, 100.0,
        50.0, 50.0, 100.0, 100.0]

    for nptype in self.TYPES:
      for opt in [
          image_ops.ResizeMethod.BILINEAR,
          image_ops.ResizeMethod.NEAREST_NEIGHBOR,
          image_ops.ResizeMethod.AREA]:
        for use_gpu in self.availableGPUModes(opt, nptype):
          with self.test_session(use_gpu=use_gpu):
            img_np = np.array(data, dtype=nptype).reshape(img_shape)
            image = constant_op.constant(img_np, shape=img_shape)
            y = image_ops.resize_images(image, target_height, target_width, opt)
            resized = y.eval()
            expected = np.array(expected_data[opt]).reshape(
                [1, target_height, target_width, 1])
            self.assertAllClose(resized, expected, atol=1e-05)
Beispiel #19
0
  def testTensorArguments(self):
    img_shape = [1, 6, 4, 1]
    single_shape = [6, 4, 1]
    # This test is also conducted with int8, so 127 is the maximum
    # value that can be used.
    data = [127, 127, 64, 64,
            127, 127, 64, 64,
            64, 64, 127, 127,
            64, 64, 127, 127,
            50, 50, 100, 100,
            50, 50, 100, 100]
    target_height = array_ops.placeholder(dtypes.int32)
    target_width = array_ops.placeholder(dtypes.int32)

    img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

    for opt in self.OPTIONS:
      with self.test_session() as sess:
        image = constant_op.constant(img_np, shape=img_shape)
        y = image_ops.resize_images(image, target_height, target_width, opt)
        yshape = array_ops.shape(y)
        resized, newshape = sess.run([y, yshape], {target_height: 6,
                                                   target_width: 4})
        self.assertAllEqual(img_shape, newshape)
        self.assertAllClose(resized, img_np, atol=1e-5)

    # Resizing with a single image must leave the shape unchanged also.
    with self.test_session():
      img_single = img_np.reshape(single_shape)
      image = constant_op.constant(img_single, shape=single_shape)
      y = image_ops.resize_images(image, target_height, target_width,
                                  self.OPTIONS[0])
      yshape = array_ops.shape(y)
      newshape = yshape.eval(feed_dict={target_height: 6, target_width: 4})
      self.assertAllEqual(single_shape, newshape)

    # Incorrect shape.
    with self.assertRaises(ValueError):
      _ = image_ops.resize_images(
          image, [12, 32], 4, image_ops.ResizeMethod.BILINEAR)
    with self.assertRaises(ValueError):
      _ = image_ops.resize_images(
          image, 6, [12, 32], image_ops.ResizeMethod.BILINEAR)

    # Incorrect dtypes.
    with self.assertRaises(ValueError):
      _ = image_ops.resize_images(
          image, 6.0, 4, image_ops.ResizeMethod.BILINEAR)
    with self.assertRaises(ValueError):
      _ = image_ops.resize_images(
          image, 6, 4.0, image_ops.ResizeMethod.BILINEAR)
  def testResizeUp(self):
    img_shape = [1, 3, 2, 1]
    data = [64, 32,
            32, 64,
            50, 100]
    target_height = 6
    target_width = 4
    expected_data = {}
    expected_data[image_ops.ResizeMethod.BILINEAR] = [
        64.0, 48.0, 32.0, 32.0,
        48.0, 48.0, 48.0, 48.0,
        32.0, 48.0, 64.0, 64.0,
        41.0, 61.5, 82.0, 82.0,
        50.0, 75.0, 100.0, 100.0,
        50.0, 75.0, 100.0, 100.0]
    expected_data[image_ops.ResizeMethod.NEAREST_NEIGHBOR] = [
        64.0, 64.0, 32.0, 32.0,
        64.0, 64.0, 32.0, 32.0,
        32.0, 32.0, 64.0, 64.0,
        32.0, 32.0, 64.0, 64.0,
        50.0, 50.0, 100.0, 100.0,
        50.0, 50.0, 100.0, 100.0]
    expected_data[image_ops.ResizeMethod.AREA] = [
        64.0, 64.0, 32.0, 32.0,
        64.0, 64.0, 32.0, 32.0,
        32.0, 32.0, 64.0, 64.0,
        32.0, 32.0, 64.0, 64.0,
        50.0, 50.0, 100.0, 100.0,
        50.0, 50.0, 100.0, 100.0]

    for nptype in self.TYPES:
      for opt in [
          image_ops.ResizeMethod.BILINEAR,
          image_ops.ResizeMethod.NEAREST_NEIGHBOR,
          image_ops.ResizeMethod.AREA]:
        with self.test_session():
          img_np = np.array(data, dtype=nptype).reshape(img_shape)
          image = constant_op.constant(img_np, shape=img_shape)
          y = image_ops.resize_images(image, target_height, target_width, opt)
          resized = y.eval()
          expected = np.array(expected_data[opt]).reshape(
              [1, target_height, target_width, 1])
          self.assertAllClose(resized, expected, atol=1e-05)
Beispiel #21
0
  def testResizeUp(self):
    img_shape = [1, 3, 2, 1]
    data = [128, 64,
            64, 128,
            50, 100]
    img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

    target_height = 6
    target_width = 4
    expected_data = {}
    expected_data[image_ops.ResizeMethod.BILINEAR] = [
        128.0, 96.0, 64.0, 64.0,
        96.0, 96.0, 96.0, 96.0,
        64.0, 96.0, 128.0, 128.0,
        57.0, 85.5, 114.0, 114.0,
        50.0, 75.0, 100.0, 100.0,
        50.0, 75.0, 100.0, 100.0]
    expected_data[image_ops.ResizeMethod.NEAREST_NEIGHBOR] = [
        128.0, 128.0, 64.0, 64.0,
        128.0, 128.0, 64.0, 64.0,
        64.0, 64.0, 128.0, 128.0,
        64.0, 64.0, 128.0, 128.0,
        50.0, 50.0, 100.0, 100.0,
        50.0, 50.0, 100.0, 100.0]
    expected_data[image_ops.ResizeMethod.AREA] = [
        128.0, 128.0, 64.0, 64.0,
        128.0, 128.0, 64.0, 64.0,
        64.0, 64.0, 128.0, 128.0,
        64.0, 64.0, 128.0, 128.0,
        50.0, 50.0, 100.0, 100.0,
        50.0, 50.0, 100.0, 100.0]

    for opt in [
        image_ops.ResizeMethod.BILINEAR,
        image_ops.ResizeMethod.NEAREST_NEIGHBOR,
        image_ops.ResizeMethod.AREA]:
      with self.test_session():
        image = constant_op.constant(img_np, shape=img_shape)
        y = image_ops.resize_images(image, target_height, target_width, opt)
        resized = y.eval()
        expected = np.array(expected_data[opt]).reshape(
            [1, target_height, target_width, 1])
        self.assertAllClose(resized, expected, atol=1e-05)
Beispiel #22
0
  def testNoOp(self):
    img_shape = [1, 6, 4, 1]
    data = [128, 128, 64, 64,
            128, 128, 64, 64,
            64, 64, 128, 128,
            64, 64, 128, 128,
            50, 50, 100, 100,
            50, 50, 100, 100]
    img_np = np.array(data, dtype=np.uint8).reshape(img_shape)

    target_height = 6
    target_width = 4

    for opt in self.OPTIONS:
      with self.test_session():
        image = constant_op.constant(img_np, shape=img_shape)
        y = image_ops.resize_images(image, target_height, target_width, opt)
        resized = y.eval()
        self.assertAllClose(resized, img_np, atol=1e-5)