Beispiel #1
0
    def test_save_no_dist_restore_dist(self, model_and_input, distribution):
        """Save a model without DS, and restore it with DS."""

        self.skipTest('Loading model with DS is not supported yet')

        saved_dir = os.path.join(self.get_temp_dir(),
                                 'test_save_no_dist_restore_dist')

        model, output_name = model_and_input.get_model()
        x_train, y_train, x_predict = model_and_input.get_data()
        batch_size = model_and_input.get_batch_size()

        self._train_model(model, x_train, y_train, batch_size)
        predict_dataset = self._get_predict_dataset(x_predict, batch_size)
        result_before_save = model.predict(predict_dataset)

        saved_model.save(model, saved_dir)

        with distribution.scope():
            predict_dataset = distribution.experimental_distribute_dataset(
                predict_dataset)
            actual_data = next(iter(predict_dataset))
            result_after_save = self._load_and_run_model(
                saved_dir, actual_data)

        self.assertAllEqual(result_before_save, result_after_save[output_name])
Beispiel #2
0
def _gen_uninitialized_variable(base_dir):
    """Generates a saved model with an uninitialized variable."""
    class SubModule(module.Module):
        """A module with an UninitializedVariable."""
        def __init__(self):
            self.uninitialized_variable = resource_variable_ops.UninitializedVariable(
                name="uninitialized_variable", dtype=dtypes.int64)

    class Module(module.Module):
        """A module with an UninitializedVariable."""
        def __init__(self):
            super(Module, self).__init__()
            self.sub_module = SubModule()
            self.initialized_variable = variables.Variable(
                1.0, name="initialized_variable")
            # An UninitializedVariable with the same name as the variable in the
            # SubModule, but with a different type.
            self.uninitialized_variable = resource_variable_ops.UninitializedVariable(
                name="uninitialized_variable", dtype=dtypes.float32)

        @def_function.function(
            input_signature=[tensor_spec.TensorSpec((), dtypes.float32)])
        def compute(self, value):
            return self.initialized_variable + value

    to_save = Module()
    saved_model.save(to_save,
                     export_dir=os.path.join(base_dir,
                                             "UninitializedVariable"))
Beispiel #3
0
  def testPostTrainingQuantize16x8(self):
    """Test for post-training quantization mode: activations/weights - int16/int8."""
    saved_model_dir = os.path.join(self.get_temp_dir(), 'simple_savedmodel')

    input_size = [5, 5, 3]
    kernel_size = [3, 3, 1]
    layer_name = 'test_conv2d'
    input_0 = keras.layers.Input(shape=input_size)
    layer_0 = keras.layers.Conv2D(
        filters=kernel_size[-1],
        kernel_size=kernel_size[0:2],
        use_bias=False,
        name=layer_name)(
            input_0)
    model = keras.models.Model(inputs=[input_0], outputs=[layer_0])
    keras_layer = [layer for layer in model.layers if layer.name == layer_name
                  ][0]
    keras_layer.set_weights([
        np.random.rand(
            input_size[-1],
            kernel_size[0],
            kernel_size[1],
            kernel_size[2],
        ).astype(np.float32)
    ])

    saved_model.save(model, saved_model_dir)

    model_coverage.test_saved_model(
        saved_model_dir,
        post_training_quantize_16x8=True,
        model_input_size=input_size)
Beispiel #4
0
    def test_save_dist_restore_no_dist(self, model_and_input, distribution):
        """Save a model with DS, and restore it without DS."""

        self.skipTest('Saving model with DS is not supported yet')

        saved_dir = os.path.join(self.get_temp_dir(),
                                 'test_save_no_dist_restore_dist')
        saved_dir_in_scope = os.path.join(saved_dir, _IN_SCOPE_SAVE_DIR)
        saved_dir_out_of_scope = os.path.join(saved_dir,
                                              _OUT_OF_SCOPE_SAVE_DIR)

        with distribution.scope():
            model, output_name = model_and_input.get_model()
            x_train, y_train, x_predict = model_and_input.get_data()
            batch_size = model_and_input.get_batch_size()

            self._train_model(model, x_train, y_train, batch_size)
            predict_dataset = self._get_predict_dataset(x_predict, batch_size)
            result_before_save = model.predict(predict_dataset)

            # save the model both in and out of the DS scope
            saved_model.save(model, saved_dir_in_scope)
        saved_model.save(model, saved_dir_out_of_scope)

        actual_data = next(iter(predict_dataset))
        result_load_from_save_in_scope = self._load_and_run_model(
            saved_dir_in_scope, actual_data)
        result_load_from_save_out_of_scope = self._load_and_run_model(
            saved_dir_out_of_scope, actual_data)

        self.assertAllEqual(result_before_save,
                            result_load_from_save_in_scope[output_name])
        self.assertAllEqual(result_before_save,
                            result_load_from_save_out_of_scope[output_name])
Beispiel #5
0
    def testKerasLenet(self):
        """Check that the output of PoplarExecutableRunner produces the same output as the original Graph execution.
    """
        if utils.running_on_ipu_model():
            self.skipTest(
                "PoplarExecutableRunner only works with physical IPUs")

        with tempfile.TemporaryDirectory() as tmp:
            poplar_binaries_folder = os.path.join(tmp, "poplar")
            model_path = os.path.join(tmp, "model")
            weights_file = os.path.join(tmp, "weights.bin")
            output_path = os.path.join(tmp, "output")
            input_values = np.random.uniform(size=(1, 32, 32, 1))
            input_file = "%s/input.bin" % tmp

            with self.session() as sess:

                self.configureIPU(poplar_binaries_folder, False)
                with ops.device("/device:IPU:0"):
                    out, inp, model = instantiate_lenet()

                utils.move_variable_initialization_to_cpu()
                sess.run(global_variables_initializer())

                utils.export_inputs_to_file([inp], input_file,
                                            {inp: input_values})

                # Run the model once to generate the poplar binaries.
                reference_values = sess.run(out, {inp: input_values})

                # Export the model & weights.
                saved_model.save(model, model_path)

            metadata_file = self.getSingleFileWithExt(poplar_binaries_folder,
                                                      "json")
            executable_file = self.getSingleFileWithExt(
                poplar_binaries_folder, "ipu_bin")

            self.runPythonCommand(
                (("./tensorflow/compiler/plugin/poplar/tools/"
                  "tensorflow_weights_extractor.py -o %s -s %s -m %s") %
                 (weights_file, model_path, metadata_file)).split())

            self.runCommand((("./third_party/ipus/tools/PoplarExecutableRunner"
                              " --binaries %s,%s,%s "
                              "--output_folder=%s --strict") % (
                                  executable_file,
                                  weights_file,
                                  input_file,
                                  output_path,
                              )).split())

            output_file = self.getSingleFileWithExt(output_path, "data")
            with open(output_file, 'r') as f:
                runner_values = np.array(json.load(f))
                logging.info("Reference %s\nRunner: %s", reference_values,
                             runner_values)
                self.assertAllClose(reference_values, runner_values)
    def test_savedmodel(self):
        class MyModule(module.Module):
            @def_function.function(input_signature=[])
            def foo(self):
                return constant_op.constant([1])

        saved_model.save(MyModule(), 'ram://my_module')

        loaded = saved_model.load('ram://my_module')
        self.assertAllEqual(loaded.foo(), [1])
Beispiel #7
0
def main(args):
  if len(args) != 3:
    print("Expected: {export_path} {ModuleName}")
    print("Allowed ModuleNames:", MODULE_CTORS.keys())
    return 1

  _, export_path, module_name = args
  module_ctor = MODULE_CTORS.get(module_name)
  if not module_ctor:
    print("Expected ModuleName to be one of:", MODULE_CTORS.keys())
    return 2
  os.makedirs(export_path)

  tf_module = module_ctor()
  options = save_options.SaveOptions(save_debug_info=True)
  saved_model.save(tf_module, export_path, options=options)
def _gen_simple_while_loop(base_dir):
    """Generates a saved model with a while loop."""
    class Module(module.Module):
        """A module with a while loop."""
        @def_function.function(
            input_signature=[tensor_spec.TensorSpec((), dtypes.float32)])
        def compute(self, value):
            acc, _ = control_flow_ops.while_loop(
                cond=lambda acc, i: i > 0,
                body=lambda acc, i: (acc + i, i - 1),
                loop_vars=(constant_op.constant(0.0), value))
            return acc

    to_save = Module()
    saved_model.save(to_save,
                     export_dir=os.path.join(base_dir, "SimpleWhileLoop"))
 def test_save_load_io_device(self, model_and_input, distribution):
   saved_dir = os.path.join(self.get_temp_dir(), 'io_device')
   with distribution.scope():
     model = model_and_input.get_model()
     x_train, y_train, _ = model_and_input.get_data()
     batch_size = model_and_input.get_batch_size()
     self._train_model(model, x_train, y_train, batch_size)
   call = model.__call__.get_concrete_function(tensor_spec.TensorSpec(None))
   save_options = save_options_lib.SaveOptions(
       experimental_io_device='/job:localhost')
   saved_model.save(model, saved_dir, signatures=call, options=save_options)
   load_options = load_options_lib.LoadOptions(
       experimental_io_device='/job:localhost')
   # Check that the model can be loaded and training continued without error.
   with distribution.scope():
     loaded_model = saved_model.load(saved_dir, options=load_options)
     self._train_model(loaded_model, x_train, y_train, batch_size)
Beispiel #10
0
    def test_save_dist_restore_dist(self, model_and_input, distribution_pair):
        """Save a model with DS, and restore it with potentially different DS."""

        self.skipTest('Saving model with DS is not supported yet')

        combinations.maybe_skip_test(self, distribution_pair.is_tpu_required,
                                     distribution_pair.num_gpus_required)

        saved_dir = os.path.join(self.get_temp_dir(),
                                 'test_save_dist_restore_dist')
        saved_dir_in_scope = os.path.join(saved_dir, _IN_SCOPE_SAVE_DIR)
        saved_dir_out_of_scope = os.path.join(saved_dir,
                                              _OUT_OF_SCOPE_SAVE_DIR)

        dist_for_save = distribution_pair.strategy_1
        dist_for_restore = distribution_pair.strategy_2

        with dist_for_save.scope():
            model, output_name = model_and_input.get_model()
            x_train, y_train, x_predict = model_and_input.get_data()
            batch_size = model_and_input.get_batch_size()

            self._train_model(model, x_train, y_train, batch_size)
            predict_dataset = self._get_predict_dataset(x_predict, batch_size)
            result_before_save = model.predict(predict_dataset)

            # save the model both in and out of the DS scope
            saved_model.save(model, saved_dir_in_scope)
        saved_model.save(model, saved_dir_out_of_scope)

        with dist_for_restore.scope():
            predict_dataset = dist_for_restore.experimental_distribute_dataset(
                predict_dataset)
            actual_data = next(iter(predict_dataset))

            result_load_from_save_in_scope = self._load_and_run_model(
                saved_dir_in_scope, actual_data)
            result_load_from_save_out_of_scope = self._load_and_run_model(
                saved_dir_out_of_scope, actual_data)

        self.assertAllEqual(result_before_save,
                            result_load_from_save_in_scope[output_name])
        self.assertAllEqual(result_before_save,
                            result_load_from_save_out_of_scope[output_name])
Beispiel #11
0
def main(args):
    if len(args) != 3:
        print("Expected: {export_path} {ModuleName}")
        print("Allowed ModuleNames:", MODULE_CTORS.keys())
        return 1

    _, export_path, module_name = args
    module_ctor, version = MODULE_CTORS.get(module_name)
    if not module_ctor:
        print("Expected ModuleName to be one of:", MODULE_CTORS.keys())
        return 2
    os.makedirs(export_path)

    tf_module = module_ctor()
    if version == 2:
        options = save_options.SaveOptions(save_debug_info=True)
        saved_model.save(tf_module, export_path, options=options)
    else:
        builder = saved_model.builder.SavedModelBuilder(export_path)
        builder.add_meta_graph_and_variables(tf_module, ["serve"])
        builder.save()
Beispiel #12
0
    def testWeightsExportersNoMetadata(self):
        """ Check that the weights extractor produces the same output with
     TF v1 and v2 models."""
        # Disable the IPU model
        poplar_flags = os.environ.get("TF_POPLAR_FLAGS",
                                      "").replace("--use_ipu_model", "")
        with test.mock.patch.dict("os.environ",
                                  {"TF_POPLAR_FLAGS": poplar_flags
                                   }), tempfile.TemporaryDirectory() as tmp:
            model_path_keras = os.path.join(tmp, "model_keras")
            model_path_session = os.path.join(tmp, "model_session")
            weights_keras = os.path.join(tmp, "weights_keras.bin")
            weights_session = os.path.join(tmp, "weights_session.bin")

            with self.session() as sess:
                self.configureIPU()
                with ops.device("/device:IPU:0"):
                    _, _, model = instantiate_lenet()
                utils.move_variable_initialization_to_cpu()
                sess.run(global_variables_initializer())

                # Export the model & weights.
                saved_model.save(model, model_path_keras)
                Saver().save(sess, model_path_session)

            self.runPythonCommand(
                (("./tensorflow/compiler/plugin/poplar/tools/"
                  "tensorflow_weights_extractor.py -o %s -s %s") %
                 (weights_keras, model_path_keras)).split())

            self.runPythonCommand(
                (("./tensorflow/compiler/plugin/poplar/tools/"
                  "tensorflow_weights_extractor.py -o %s -s %s") %
                 (weights_session, model_path_session)).split())

            with open(weights_session, 'rb') as s, open(weights_keras,
                                                        'rb') as k:
                self.assertEqual(s.read(), k.read())
Beispiel #13
0
 def _save_model(self, model, saved_dir):
   saved_model.save(model, saved_dir)
Beispiel #14
0
 def _save_model(self, model, saved_dir):
   call = model.__call__.get_concrete_function(tensor_spec.TensorSpec(None))
   saved_model.save(model, saved_dir, signatures=call)
def main(unused_argv):

    model = get_model(MODEL_NAME.value)
    path = os.path.join(TESTDATA_PATH.value, MODEL_NAME.value)
    saved_model.save(model, path)
Beispiel #16
0
 def save(self, path):
     saved_model.save(self.model_, path)