Beispiel #1
0
    def parse_range_image_and_camera_projection(self, frame):
        """Parse range images and camera projections given a frame.
        Args:
           frame: open dataset frame proto
        Returns:
           range_images: A dict of {laser_name,
             [range_image_first_return, range_image_second_return]}.
          range_image_top_pose: range image pixel pose for top lidar.
        """
        self.__range_images = {}

        for laser in frame.lasers:
            if len(laser.ri_return1.range_image_compressed) > 0:
                range_image_str_tensor = tf.decode_compressed(
                    laser.ri_return1.range_image_compressed, 'ZLIB')
                ri = open_dataset.MatrixFloat()
                ri.ParseFromString(bytearray(range_image_str_tensor.numpy()))
                self.__range_images[laser.name] = [ri]

                if laser.name == open_dataset.LaserName.TOP:
                    range_image_top_pose_str_tensor = tf.decode_compressed(
                        laser.ri_return1.range_image_pose_compressed, 'ZLIB')
                    range_image_top_pose = open_dataset.MatrixFloat()
                    range_image_top_pose.ParseFromString(
                        bytearray(range_image_top_pose_str_tensor.numpy()))

            if len(laser.ri_return2.range_image_compressed) > 0:
                range_image_str_tensor = tf.decode_compressed(
                    laser.ri_return2.range_image_compressed, 'ZLIB')
                ri = open_dataset.MatrixFloat()
                ri.ParseFromString(bytearray(range_image_str_tensor.numpy()))
                self.__range_images[laser.name].append(ri)

        return self.__range_images, range_image_top_pose
Beispiel #2
0
def parse_range_image_and_camera_projection(frame):
  """Parse range images and camera projections given a frame.

  Args:
     frame: open dataset frame proto
  Returns:
     range_images: A dict of {laser_name,
       [range_image_first_return, range_image_second_return]}.
     camera_projections: A dict of {laser_name,
       [camera_projection_from_first_return,
        camera_projection_from_second_return]}.
    range_image_top_pose: range image pixel pose for top lidar.
  """
  range_images = {}
  camera_projections = {}
  range_image_top_pose = None
  for laser in frame.lasers:
    if len(laser.ri_return1.range_image_compressed) > 0:
      # use tf.io.decode_compressed() if TF 2.0
      range_image_str_tensor = tf.decode_compressed(
          laser.ri_return1.range_image_compressed, 'ZLIB')
      ri = open_dataset.MatrixFloat()
      ri.ParseFromString(bytearray(range_image_str_tensor.numpy()))
      range_images[laser.name] = [ri]

      if laser.name == open_dataset.LaserName.TOP:
        # use tf.io.decode_compressed() if TF 2.0
        range_image_top_pose_str_tensor = tf.decode_compressed(
            laser.ri_return1.range_image_pose_compressed, 'ZLIB')
        range_image_top_pose = open_dataset.MatrixFloat()
        range_image_top_pose.ParseFromString(
            bytearray(range_image_top_pose_str_tensor.numpy()))

      # use tf.io.decode_compressed() if TF 2.0
      camera_projection_str_tensor = tf.decode_compressed(
          laser.ri_return1.camera_projection_compressed, 'ZLIB')
      cp = open_dataset.MatrixInt32()
      cp.ParseFromString(bytearray(camera_projection_str_tensor.numpy()))
      camera_projections[laser.name] = [cp]
    if len(laser.ri_return2.range_image_compressed) > 0:
      # use tf.io.decode_compressed() if TF 2.0
      range_image_str_tensor = tf.decode_compressed(
          laser.ri_return2.range_image_compressed, 'ZLIB')
      ri = open_dataset.MatrixFloat()
      ri.ParseFromString(bytearray(range_image_str_tensor.numpy()))
      range_images[laser.name].append(ri)

      # use tf.io.decode_compressed() if TF 2.0
      camera_projection_str_tensor = tf.decode_compressed(
          laser.ri_return2.camera_projection_compressed, 'ZLIB')
      cp = open_dataset.MatrixInt32()
      cp.ParseFromString(bytearray(camera_projection_str_tensor.numpy()))
      camera_projections[laser.name].append(cp)
  return range_images, camera_projections, range_image_top_pose