Beispiel #1
0
def model_inputs():
	"""
	Create tf placeholders for inputs, targets, learning_rate, and lengths of source
	and target sequences.

	"""

	inputs = tf.placeholders(tf.int32, [None, None], name='input')

	targets = tf.placeholder(tf.float32, [None, None], name='target')

	learning_rate = tf.placeholder(tf.float32)

	keep_prob = tf.placeholder(tf.float32, name='keep_prob')

	target_sequence_length = tf.placeholder(tf.int32, [None,], name='target_sequence_length')

	max_target_sequence_length = tf.reduce_max(target_sequence_length, name='max_target_length')

	source_sequence_length = tf.placeholder(tf.int32, name='source_sequence_length')

	return (inputs,
			targets,
			learning_rate,
			keep_prob,
			target_sequence_length,
			max_target_sequence_length,
			source_sequence_length)
Beispiel #2
0
def loss(self, net_out):
    m = self.meta
    loss_type = self.meta['type']
    assert loss_type in _LOSS_TYPE, \
    'Loss type {} not implemented'.format(loss_type)

    out = net_out
    out_shape = out.get_shape()
    out_dtype = out.dtype.base_dtype
    _truth = tf.placeholders(out_dtype, out_shape)

    self.placeholders = dict({'truth': _truth})

    diff = _truth - out
    if loss_type in ['sse', '12']:
        loss = tf.nn.l2_loss(diff)

    elif loss_type == ['smooth']:
        small = tf.cast(diff < 1, tf.float32)
        large = 1. - small
        l1_loss = tf.nn.l1_loss(tf.multiply(diff, large))
        l2_loss = tf.nn.l2_loss(tf.multiply(diff, small))
        loss = l1_loss + l2_loss

    elif loss_type in ['sparse', 'l1']:
        loss = l1_loss(diff)

    elif loss_type == 'softmax':
        loss = tf.nn.softmax_cross_entropy_with_logits(
            labels=tf.stop_gradient(y))
        loss = tf.reduce_mean(input_tensor=loss)
        #loss = tf.reduce_mean(loss)

    elif loss_type == 'svm':
        assert 'train_size' in m, \
        'Must specify'
        size = m['train_size']
        self.nu = tf.Variable(tf.ones([train_size, num_classes]))
Beispiel #3
0
def loss(self, net_out):
	m = self.meta
	loss_type = self.meta['type']
	assert loss_type in _LOSS_TYPE, \
	'Loss type {} not implemented'.format(loss_type)

	out = net_out
	out_shape = out.get_shape()
	out_dtype = out.dtype.base_dtype
	_truth = tf.placeholders(out_dtype, out_shape)

	self.placeholders = dict({
			'truth': _truth
		})

	diff = _truth - out
	if loss_type in ['sse','12']:
		loss = tf.nn.l2_loss(diff)

	elif loss_type == ['smooth']:
		small = tf.cast(diff < 1, tf.float32)
		large = 1. - small
		l1_loss = tf.nn.l1_loss(tf.multiply(diff, large))
		l2_loss = tf.nn.l2_loss(tf.multiply(diff, small))
		loss = l1_loss + l2_loss

	elif loss_type in ['sparse', 'l1']:
		loss = l1_loss(diff)

	elif loss_type == 'softmax':
		loss = tf.nn.softmax_cross_entropy_with_logits(logits, y)
		loss = tf.reduce_mean(loss)

	elif loss_type == 'svm':
		assert 'train_size' in m, \
		'Must specify'
		size = m['train_size']
		self.nu = tf.Variable(tf.ones([train_size, num_classes]))
    def __init_(
        self, D, K, hidden_layer_sizes
    ):  #D=input_size, K=output_size, list of all hidden layers sizes
        # this part creates the main graph
        self.layers = []
        M1 = D
        for M2 in hidden_layer_sizes:
            layer = HiddenLayer(M1, M2)
            self.layers.append(layer)
            M1 = M2

        # final layer
        layer = HiddenLayer(M1, K, tf.nn.softmax, use_bias=False)
        self.layers.append(layer)

        # inputs and targets
        self.X = tf.placeholder(tf.float32, shape=(None, X), name='X')
        self.actions = tf.placeholders(tf.int32,
                                       shape=(None, ),
                                       name='actions')
        self.advantages = tf.placehodlder(tf.float32,
                                          shape=(None, ),
                                          name='advantages')

        # calculate output and costs
        Z = self.X
        for layer in self.layers:
            Z = layer.forward(Z)
        p_a_given_s = Z
        self.predict_op = p_a_given_s

        # cost function and train operation
        selected_probs = tf.log(
            tf.reduce_sum(p_a_given_s * tf.one_hot(self.actins, K),
                          reduction_indices=[1]))
        cost = -tf.reduce_sum(self.advantages * selected_probs)
        self.train_op = tf.train.AdagradOptimizer(1e-1).minimize(cost)
Beispiel #5
0
import tensorflow as tf 
import xlrd

import utils

DATA_FILE = 'data/fire_theft.xls'

# read data form excel file 

book = xlrd.open_workbook(DATA_FILE,encoding_override='utf-8')
sheet = book.sheet_by_index(0)
data = np.asarray([sheet.row_values(i) for i in range(i,sheet.nrows)])
n_data = sheet.nrows -1 

# create placeholders for input X , Y
Y = tf.placeholders(tf.float32,name='Y')
X = tf.placeholders(tf.float32,name='X')

# create W and bias with initialize value is zero
w = tf.Variable(0.0,name='weights')
bias = tf.variable(0.0,name='bias')

#build the model in tf
Y_predicted = w*X + bias

#definec the roor squared error for loss function
loss = tf.square(Y-Y_predicted,name='loss')
#Using gradient descent with learning rate euqal 0.01 to minimize the loss
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(loss)
def huber_loss_function(Y, predicted,delta=14.):
    residual = tf.abs(Y-predicted)
Beispiel #6
0
	support = [preprocess_adj(adj)]

	num_supports = 1
	model_func = GCN
elif FLAGS.model == 'gcn_cheby':
    support = chebyshev_polynomials(adj, FLAGS.max_degree)
    num_supports = 1 + FLAGS.max_degree
    model_func = GCN
elif FLAGS.model == 'dense':
    support = [preprocess_adj(adj)]  # Not used
    num_supports = 1
    model_func = MLP
else:
    raise ValueError('Invalid argument for model: ' + str(FLAGS.model))

placeholders = {'support': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)], 'features': tf.sparse_placeholder(tf.float32, shape=tf.constant(features[2], dtype=tf.int64)), 'labels': tf.placeholders(tf.float32, shape=(None, y_train.shape[1])), 'labels_mask': tf.placeholders(tf.int32), 'dropout':tf.placeholder_with_default(0., shape=()), 'num_features_nonzero':tf.placeholders(tf.int32)}

model = model_func(placeholders, input_dim=features[2][1], logging=True)

sess = tf.Session()

def evaluate(features, support, labels, mask, placeholders):
	t_test = time.time()
	feed_dict_val = construct_feed_dict(features, support, labels, mask, placeholders)

	outs_val = sess.run([model.loss, model.accuracy], feed_dict=feed_dict_val)

	return outs_val[0], outs_val[1], (time.time()-t_test)

sess.run(tf.global_variables_initializer())
Beispiel #7
0
def model_inputs():
    inputs = tf.placeholders(tf.int32, [None, None], name = 'input')
    targets = tf.placeholders(tf.int32, [None, None], name = 'target')
    lr = tf.placeholders(tf.float32, name = 'learning_rate') 
    keep_prob = tf.placeholder(tf.float32, name = 'keep_prob')  # control the dropout rate
    return inputs, targets, lr, keep_prob
Beispiel #8
0
def train(train_data, test_data=None):

    G = train_data[0]
    properties = train_data[1]
    id_map = train_data[2]
    class_map = train_data[4]

    num_classes = len(list(class_map.values())[0])

    if not properties is None:
        properties = np.vstack([properties, np.zeros((properties.shape[1], ))])

    context_pairs = train_data[3] if FLAGS.random_context else None
    placeholders = construct_placeholders(num_classes)

    minibatch = NodeMinibatchIterator(....)
    adj_info_ph = tf.placeholders(tf.int32, shape=minibatch.adj.shape)
    adj_info = tf.Variable(adj_info_ph, trainable=False, name='adj_info')

    # training using the proposed algorithm
    model = SupervisedPanda(num_classes, placeholders,
                            properties, adj_info,
                            minibatch.deg,
                            layer_info,
                            model_size=FLAGS.model_size,
                            sigmoid_loss=FLAGS.sigmoid,
                            identity_dim=FLAGS.identity_dim,
                            logging=True)

    config = tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)

    # Session initialization
    sess = tf.Session()
    merged = tf.summary.merge_all()
    summary_writer = tf.summary.FileWriter(log_dir(), sess.graph)

    # Variables initialization
    sess.run(tf.global_variables_initizalizer(), feed_dict={adj_info_ph: minibatch.adj})

    # Model Training
    total_steps = 0
    avg_time = 0.0
    epoch_val_costs = []

    train_adj_info = tf.assign(adj_info, minibatch.adj)
    val_adj_info = tf.assign(adj_info, minibatch.test_adj)

    for epoch in range(FLAGS.epochs):
        minibatch.shuffle()

        iter = 0
        print('epoch: %0.4d' % (epoch + 1))

        epoch_val_costs.append(0)

        while not minibatch.end():
            feed_dict, labels = minibatch.next_minibatch_feed_dict()
            feed_dict.update({placeholders['dropout']: FLAGS.dropout})

        t = time.time()

        outs = sess.run([merged, model.opt_op, model.loss, model.predictions], feed_dict=feed_dict)

        train_cost = outs[2]

        if iter % FLAGS.validate_iter == 0:
            sess.run(val_adj_info.op)
            if FLAGS.validate_batch_size == -1:
                val_cost, val_f1_mic, val_f1_mac, duration = incremental_evaluate(sess, model, minibatch, FLAGS.batch_size)
            else:
                val_cost, val_f1_min, val_f1_mac, duration = evaluate(sess, model, minibatch, FLAGS.validate_batch_size)

            sess.run(train_adj_info.op)
            epoch_val_costs[-1] += val_cost

        if total_steps % FLGAS.print_every == 0:
            summary_writer.add_summary(outs[0], total_steps)

        avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1)

        iter += 1
        total_steps += 1

        if total_steps > FLAGS.max_total_steps:
            break

    if total_steps > FLAGS.max_total_steps:
        break
Beispiel #9
0

# =============
# parameter configuration
# =============
batch_size = 32 # normally between 16 and 513
vocabulary_size = 10000
embedding_size = 100 
num_sampled = 1 #

embeddings = tf.Variable(
    tf.random_uniform(vocabulary_size, embedding_size), -1.0, 1.0))

nce_weights = tf.Variable(
	tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0/math.sqrt(embedding_size)))

nce_biases = tf.Variable(tf.zeros([vocabulary_size]))

# skip-gram model 
# placeholders for inputs 
train_inputs = tf.placeholders(tf.int32, shape=[batch_size])
train_labels = tf.placeholders(tf.int32, shape=[batch_size, 1])

# retrieve embeddings of the source words
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
# compute the NCE loss, using a sample of the negative labels each time 
loss = tf.reduce_mean(
    tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels, num_sampled, vocabulary_size))
# use the SGD optimizer 
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0).minimize(loss)
Beispiel #10
0
print("Data loaded and spiltted successfully........\n")
#---------------------------------------------------------------------

#Neural Net Construction

n_input = N_INPUT
n_hidden1 = HIDDEN_SIZE
n_hidden2 = HIDDEN_SIZE
n_hidden3 = HIDDEN_SIZE
n_hidden4 = HIDDEN_SIZE
n_classes = N_CLASSES

#Tf placeholders

X = tf.placeholders(tf.float32,[None, n_input])
Y = tf.placeholders(tf.float32,[None, n_classes])
dropout_keep_prob = tf.placeholder(tf.float32)

def mlp(_X, _weights, _biases, dropout_keep_prob):
    layer1 = tf.nn.dropout(tf.nn.tanh(tf.add(tf.matmul(_X,_weights['h1']),_biases['b1'])), dropout_keep_prob)
    layer2 = tf.nn.dropout(tf.nn.tanh(tf.add(tf.matmul(layer1, _weights['h2']),_biases['b2'])),dropout_keep_prob)
    layer3 = tf.nn.dropout(tf.nn.tanh(tf.add(tf.matmul(layer2, _weights['h3']),_biases['b3'])),dropout_keep_prob)
    layer4 = tf.nn.dropout(tf.nn.tanh(tf.add(tf.matmul(layer3, _weights['h3']),_biases['b3'])),dropout_keep_prob)
    out = ACTIVATION_FUNCTION_OUT(tf.add(tf.matmul(layer4,_weights['h4']),_biases['out']))
    return out 

weights ={
    'h1': tf.Variable(tf.random_normal([n_input, n_hidden1],stddev= STDDEV)),
    'h2': tf.Variable(tf.random_normal([n_hidden1, n_hidden2],stddev= STDDEV)),
    'h3': tf.Variable(tf.random_normal([n_hidden2, n_hidden3],stddev= STDDEV)),