Beispiel #1
0
 def __init__(self,
              stage: str,
              speech_featurizer: SpeechFeaturizer,
              clean_dir: str,
              noisy_dir: str,
              cache: bool = False,
              shuffle: bool = False):
     self.speech_featurizer = speech_featurizer
     self.clean_dir = preprocess_paths(clean_dir)
     self.noisy_dir = preprocess_paths(noisy_dir)
     super(SeganTrainDataset, self).__init__(merge_dirs([self.clean_dir]),
                                             None, cache, shuffle, stage)
Beispiel #2
0
 def __init__(self,
              stage: str,
              speech_featurizer: SpeechFeaturizer,
              clean_dir: str,
              noises_config: dict,
              cache: bool = False,
              shuffle: bool = False):
     self.speech_featurizer = speech_featurizer
     self.clean_dir = preprocess_paths(clean_dir)
     self.noises = SignalNoise() if noises_config is None else SignalNoise(**noises_config)
     super(SeganAugTrainDataset, self).__init__(
         data_paths=merge_dirs([self.clean_dir]), augmentations=None, cache=cache, shuffle=shuffle, stage=stage)
                    help="Whether to use `SentencePiece` model")

parser.add_argument("--subwords",
                    type=str,
                    default=None,
                    help="Path to file that stores generated subwords")

parser.add_argument("transcripts",
                    nargs="+",
                    type=str,
                    default=None,
                    help="Paths to transcript files")

args = parser.parse_args()

transcripts = preprocess_paths(args.transcripts)
tfrecords_dir = preprocess_paths(args.tfrecords_dir)

config = Config(args.config)

if args.sentence_piece:
    print("Loading SentencePiece model ...")
    text_featurizer = SentencePieceFeaturizer.load_from_file(
        config.decoder_config, args.subwords)
elif args.subwords and os.path.exists(args.subwords):
    print("Loading subwords ...")
    text_featurizer = SubwordFeaturizer.load_from_file(config.decoder_config,
                                                       args.subwords)

ASRTFRecordDataset(data_paths=transcripts,
                   tfrecords_dir=tfrecords_dir,
Beispiel #4
0
parser.add_argument("--dir",
                    "-d",
                    type=str,
                    default=None,
                    help="Directory of dataset")

parser.add_argument("output",
                    type=str,
                    default=None,
                    help="The output .tsv transcript file path")

args = parser.parse_args()

assert args.dir and args.output

args.dir = preprocess_paths(args.dir)
args.output = preprocess_paths(args.output)

transcripts = []

text_files = glob.glob(os.path.join(args.dir, "**", "*.txt"), recursive=True)

for text_file in tqdm(text_files, desc="[Loading]"):
    current_dir = os.path.dirname(text_file)
    with open(text_file, "r", encoding="utf-8") as txt:
        lines = txt.read().splitlines()
    for line in lines:
        line = line.split(" ", maxsplit=1)
        audio_file = os.path.join(current_dir, line[0] + ".flac")
        y, sr = librosa.load(audio_file, sr=None)
        duration = librosa.get_duration(y, sr)
Beispiel #5
0
parser.add_argument("--config", type=str, default=None, help="The file path of model configuration file")

parser.add_argument("--sentence_piece", default=False, action="store_true", help="Whether to use `SentencePiece` model")

parser.add_argument("--metadata_prefix", type=str, default=None, help="Path to file containing metadata")

parser.add_argument("--subwords", type=str, default=None, help="Path to file that stores generated subwords")

parser.add_argument("transcripts", nargs="+", type=str, default=None, help="Paths to transcript files")

args = parser.parse_args()

assert args.metadata_prefix is not None, "metadata_prefix must be defined"

transcripts = preprocess_paths(args.transcripts)

config = Config(args.config)

speech_featurizer = TFSpeechFeaturizer(config.speech_config)

if args.sentence_piece:
    print("Loading SentencePiece model ...")
    text_featurizer = SentencePieceFeaturizer.load_from_file(config.decoder_config, args.subwords)
elif args.subwords and os.path.exists(args.subwords):
    print("Loading subwords ...")
    text_featurizer = SubwordFeaturizer.load_from_file(config.decoder_config, args.subwords)

dataset = ASRDataset(
    data_paths=transcripts,
    speech_featurizer=speech_featurizer, text_featurizer=text_featurizer,