Beispiel #1
0
 def create_movement_model(self):
     if LOAD_MOVEMENT_MODEL != "":
         print(f"loading {LOAD_MOVEMENT_MODEL}")
         model = load_model(LOAD_MOVEMENT_MODEL)
         print(f"Model {LOAD_MOVEMENT_MODEL} is now loaded!")
     else:
         if not USE_CONV_NET:
             inputs = Input(shape=envs[0].OBSERVATION_SPACE_VALUES)
             movement_branch = self.build_movement_branch(inputs)
             model = Model(inputs=inputs,
                           outputs=[movement_branch],
                           name="movementnet")
             model.compile(loss="mse",
                           optimizer=AdamKeras(lr=0.001),
                           metrics=['accuracy'])
         else:
             print(
                 "using a convolutional neural network to see if loss improves"
             )
             model = self.build_conv_branch()
     return model
def SingleOutputCNN(
    input_shape,
    output_shape,
    cnns_per_maxpool=1,
    maxpool_layers=1,
    dense_layers=1,
    dense_units=64,
    dropout=0.25,
    regularization=False,
    global_maxpool=False,
    name='',
) -> Model:
    function_name = cast(types.FrameType,
                         inspect.currentframe()).f_code.co_name
    model_name = f"{function_name}-{name}" if name else function_name
    # model_name  = seq([ function_name, name ]).filter(lambda x: x).make_string("-")  # remove dependency on pyfunctional - not in Kaggle repo without internet

    inputs = Input(shape=input_shape)
    x = inputs

    for cnn1 in range(0, maxpool_layers):
        for cnn2 in range(1, cnns_per_maxpool + 1):
            x = Conv2D(32 * cnn2,
                       kernel_size=(3, 3),
                       padding='same',
                       activation='relu')(x)
        x = MaxPooling2D(pool_size=(2, 2))(x)
        x = BatchNormalization()(x)
        x = Dropout(dropout)(x)

    if global_maxpool:
        x = GlobalMaxPooling2D()(x)

    x = Flatten()(x)

    for nn1 in range(0, dense_layers):
        if regularization:
            x = Dense(dense_units,
                      activation='relu',
                      kernel_regularizer=regularizers.l2(0.01),
                      activity_regularizer=regularizers.l1(0.01))(x)
        else:
            x = Dense(dense_units, activation='relu')(x)

        x = BatchNormalization()(x)
        x = Dropout(dropout)(x)

    x = Dense(output_shape, activation='softmax')(x)

    model = Model(inputs, x, name=model_name)
    # plot_model(model, to_file=os.path.join(os.path.dirname(__file__), f"{name}.png"))
    return model
def modelDemoStandardConvLSTM(row, col):
    # define LSTM
    input = Input(shape=(None, row, col, 1), name='main_input')
    # x = TimeDistributed(Flatten())(x)
    x = ConvLSTM2D(filters=75,
                   kernel_size=(3, 3),
                   padding='same',
                   return_sequences=False)(input)
    x = (Flatten())(x)

    x = RepeatVector(4)(x)
    x = LSTM(50, return_sequences=True)(x)

    output = TimeDistributed(Dense(4, activation='softmax'),
                             name='main_output')(x)

    model = Model(inputs=[input], outputs=[output])
    model.compile(loss={'main_output': 'categorical_crossentropy'},
                  loss_weights={'main_output': 1.},
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Beispiel #4
0
def get_model(X, N_class, total_words=86627, EMBEDDING_DIM=100, maxlen=53):

    embeddings_index = {}

    f = open('glove.6B/glove.6B.100d.txt')
    for line in f:
        values = line.split()
        word = values[0]
        coefs = np.asarray(values[1:], dtype='float32')
        embeddings_index[word] = coefs
    f.close()

    embedding_matrix = np.zeros((total_words, EMBEDDING_DIM))
    for word, i in X.items():
        embedding_vector = embeddings_index.get(word)
        if embedding_vector is not None:
            embedding_matrix[i] = embedding_vector

    inp = Input(shape=(maxlen, ), dtype='int32')
    embedding = Embedding(total_words,
                          EMBEDDING_DIM,
                          embeddings_initializer=Constant(embedding_matrix),
                          input_length=maxlen,
                          trainable=False)(inp)
    x = LSTM(300, dropout=0.25, recurrent_dropout=0.25,
             return_sequences=True)(embedding)
    x = Dropout(0.25)(x)
    merged = Attention_COSTUM(maxlen)(x)
    merged = Dense(256, activation='relu')(merged)
    merged = Dropout(0.25)(merged)
    merged = BatchNormalization()(merged)
    outp = Dense(N_class, activation='softmax')(merged)

    AttentionLSTM = Model(inputs=inp, outputs=outp)
    AttentionLSTM.compile(loss='sparse_categorical_crossentropy',
                          optimizer='adam',
                          metrics=['acc'])

    return AttentionLSTM
def ModelSharedVision():
    # First, define the vision modules
    digit_input = Input(shape=(27, 27, 1))
    x = Conv2D(64, (3, 3))(digit_input)
    x = Conv2D(64, (3, 3))(x)
    x = MaxPooling2D((2, 2))(x)
    out = Flatten()(x)

    vision_model = Model(digit_input, out)

    # Then define the tell-digits-apart model
    digit_a = Input(shape=(27, 27, 1))
    digit_b = Input(shape=(27, 27, 1))

    # The vision model will be shared, weights and all
    out_a = vision_model(digit_a)
    out_b = vision_model(digit_b)

    concatenated = concatenate([out_a, out_b])
    out = Dense(1, activation='sigmoid')(concatenated)

    classification_model = Model([digit_a, digit_b], out)
    return classification_model
def modelA(row, col):
    # define LSTM
    input = Input(shape=(None, row, col, 1), name='main_input')
    x = TimeDistributed(Conv2D(16, (2, 2), activation='relu'))(input)
    x = Dropout(0.25)(x)
    x = BatchNormalization()(x)
    x = TimeDistributed(MaxPooling2D(pool_size=(2, 2), strides=2))(x)
    x = Dropout(0.25)(x)
    x = TimeDistributed(Flatten())(x)
    lstm_output = LSTM(75)(x)
    lstm_output = BatchNormalization()(lstm_output)

    auxiliary_output = Dense(1, activation='sigmoid',
                             name='aux_output')(lstm_output)
    auxiliary_input = Input(shape=(4, ), name='aux_input')
    x = concatenate([lstm_output, auxiliary_input])

    x = RepeatVector(8)(x)
    x = LSTM(50, return_sequences=True)(x)
    # model.add(Dropout(0.25))
    x = BatchNormalization()(x)
    output = TimeDistributed(Dense(5, activation='softmax'),
                             name='main_output')(x)

    model = Model(inputs=[input, auxiliary_input],
                  outputs=[output, auxiliary_output])
    model.compile(loss={
        'main_output': 'categorical_crossentropy',
        'aux_output': 'binary_crossentropy'
    },
                  loss_weights={
                      'main_output': 1.,
                      'aux_output': 0.2
                  },
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
def modelStandardB(row, col):
    # define LSTM
    input_img = Input(shape=(None, row, col, 1), name='input')
    x = TimeDistributed(Conv2D(16, (2, 2), activation='relu'))(input_img)
    x = Dropout(0.25)(x)
    x = BatchNormalization()(x)
    x = TimeDistributed(MaxPooling2D(pool_size=(2, 2), strides=2))(x)
    x = Dropout(0.25)(x)
    x = TimeDistributed(Flatten())(x)
    x = LSTM(75)(x)
    # model.add(Dropout(0.25))
    x = BatchNormalization()(x)

    x = RepeatVector(4)(x)
    x = LSTM(50, return_sequences=True)(x)
    # model.add(Dropout(0.25))
    x = BatchNormalization()(x)
    output = TimeDistributed(Dense(4, activation='softmax'))(x)

    model = Model(input_img, output)
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Beispiel #8
0
def create_model(step: Tensorflow2ModelStep) -> tf.keras.Model:
    """
    Create a TensorFlow v2 sequence to sequence (seq2seq) encoder-decoder model.

    :param step: The base Neuraxle step for TensorFlow v2 (Tensorflow2ModelStep)
    :return: TensorFlow v2 Keras model
    """
    # shape: (batch_size, seq_length, input_dim)
    encoder_inputs = Input(shape=(None, step.hyperparams['input_dim']),
                           batch_size=None,
                           dtype=tf.dtypes.float32,
                           name='encoder_inputs')

    last_encoder_outputs, last_encoders_states = _create_encoder(
        step, encoder_inputs)
    decoder_outputs = _create_decoder(step, last_encoder_outputs,
                                      last_encoders_states)

    return Model(encoder_inputs, decoder_outputs)
def ModelVisualQuestionAnswering():
    # First, let's define a vision model using a Sequential model.
    # This model will encode an image into a vector.
    vision_model = Sequential()
    vision_model.add(
        Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               input_shape=(224, 224, 3)))
    vision_model.add(Conv2D(64, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
    vision_model.add(Conv2D(128, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
    vision_model.add(Conv2D(256, (3, 3), activation='relu'))
    vision_model.add(Conv2D(256, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Flatten())

    # Now let's get a tensor with the output of our vision model:
    image_input = Input(shape=(224, 224, 3))
    encoded_image = vision_model(image_input)

    # Next, let's define a language model to encode the question into a vector.
    # Each question will be at most 100 words long,
    # and we will index words as integers from 1 to 9999.
    question_input = Input(shape=(100, ), dtype='int32')
    embedded_question = Embedding(input_dim=10000,
                                  output_dim=256,
                                  input_length=100)(question_input)
    encoded_question = LSTM(256)(embedded_question)

    # Let's concatenate the question vector and the image vector:
    merged = concatenate([encoded_question, encoded_image])

    # And let's train a logistic regression over 1000 words on top:
    output = Dense(1000, activation='softmax')(merged)

    # This is our final model:
    vqa_model = Model(inputs=[image_input, question_input], outputs=output)
    return vqa_model
Beispiel #10
0
def plugmodel():
    sbbox = tf.keras.layers.Input(shape=(52, 52, 768))
    mbbox = tf.keras.layers.Input(shape=(26, 26, 1536))
    lbbox = tf.keras.layers.Input(shape=(13, 13, 3072))
    conv_spose = common.convolutional(sbbox, (1, 1, 256, 256))
    conv_spose = common.convolutional(conv_spose, (1, 1, 256, 3 * (NUM_POSES)),
                                      activate=False,
                                      bn=False)

    conv_mpose = common.convolutional(mbbox, (1, 1, 512, 512))
    conv_mpose = common.convolutional(conv_mpose, (1, 1, 512, 3 * (NUM_POSES)),
                                      activate=False,
                                      bn=False)

    conv_lpose = common.convolutional(lbbox, (1, 1, 255, 1024))
    conv_lpose = common.convolutional(conv_lpose, (1, 1, 1024, 3 * NUM_POSES),
                                      activate=False,
                                      bn=False)

    return Model(inputs=[sbbox, mbbox, lbbox],
                 outputs=[conv_spose, conv_mpose, conv_lpose])
Beispiel #11
0
    def build(self):
        input_img = Input(shape=(28, 28, 1))

        cnn = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
        cnn = MaxPooling2D((2, 2), padding='same')(cnn)
        cnn = Conv2D(32, (3, 3), activation='relu', padding='same')(cnn)
        cnn = MaxPooling2D((2, 2), padding='same')(cnn)
        cnn = Conv2D(32, (3, 3), activation='relu', padding='same')(cnn)
        encoded = MaxPooling2D((2, 2), padding='same')(cnn)

        cnn = Conv2D(32, (3, 3), activation='relu', padding='same')(encoded)
        cnn = UpSampling2D((2, 2))(cnn)
        cnn = Conv2D(32, (3, 3), activation='relu', padding='same')(cnn)
        cnn = UpSampling2D((2, 2))(cnn)
        cnn = Conv2D(32, (3, 3), activation='relu')(cnn)
        cnn = UpSampling2D((2, 2))(cnn)
        decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(cnn)

        cnn_autoencoder = Model(input_img, decoded)
        cnn_autoencoder.compile(optimizer='adam', loss='binary_crossentropy')

        x_train = self.x_train.reshape(-1, 28, 28, 1)

        x_train_split, x_valid_split = train_test_split(x_train, test_size=self.train_test_split,
                                                        random_state=self.seed)

        cnn_autoencoder.fit(x_train_split, x_train_split,
                            epochs=self.epochs,
                            batch_size=self.batch_size,
                            validation_data=(x_valid_split, x_valid_split),
                            verbose=self.verbosity)

        x_train_pred = cnn_autoencoder.predict(x_train)
        mse = np.mean(np.power(x_train - x_train_pred, 2), axis=1)

        # Semi-supervised due to given threshold
        self.threshold = np.quantile(mse, 0.9)
        self.cnn_autoencoder = cnn_autoencoder
Beispiel #12
0
    def build(self):
        inputs = Input(shape=self.input_shape, name='encoder_input')
        x = Dense(self.intermediate_dim,
                  activation=self.activation_fct)(inputs)
        z_mean = Dense(self.latent_dim, name='z_mean')(x)
        z_log_var = Dense(self.latent_dim, name='z_log_var')(x)

        # use reparameterization trick to push the sampling out as input
        # note that "output_shape" isn't necessary with the TensorFlow backend
        z = Lambda(sampling, output_shape=(self.latent_dim, ),
                   name='z')([z_mean, z_log_var])

        # instantiate encoder model
        encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')

        # build decoder model
        latent_inputs = Input(shape=(self.latent_dim, ), name='z_sampling')
        x = Dense(self.intermediate_dim,
                  activation=self.activation_fct)(latent_inputs)
        outputs = Dense(self.original_dim, activation='sigmoid')(x)

        # instantiate decoder model
        decoder = Model(latent_inputs, outputs, name='decoder')

        # instantiate VAE model
        outputs = decoder(encoder(inputs)[2])
        vae = Model(inputs, outputs, name='vae_mlp')

        # VAE Loss = mse_loss or xent_loss + kl_loss
        reconstruction_loss = mse(inputs, outputs)

        reconstruction_loss *= self.original_dim
        kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
        kl_loss = K.sum(kl_loss, axis=-1)
        kl_loss *= -0.5
        vae_loss = K.mean(reconstruction_loss + kl_loss)
        vae.add_loss(vae_loss)

        vae.compile(optimizer=self.optimizer,
                    loss=self.loss,
                    metrics=['accuracy'])

        x_train_split, x_valid_split = train_test_split(
            self.x_train,
            test_size=self.train_test_split,
            random_state=self.seed)

        vae.fit(x_train_split,
                x_train_split,
                batch_size=self.batch_size,
                epochs=self.epochs,
                verbose=self.verbosity,
                shuffle=True,
                validation_data=(x_valid_split, x_valid_split))

        x_train_pred = vae.predict(self.x_train)
        train_mse = np.mean(np.power(self.x_train - x_train_pred, 2), axis=1)
        self.threshold = np.quantile(train_mse, 0.9)
        self.vae = vae
Beispiel #13
0
def ModelVideoQuestionAnswering():
    # First, let's define a vision model using a Sequential model.
    # This model will encode an image into a vector.
    vision_model = Sequential()
    vision_model.add(
        Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               input_shape=(224, 224, 3)))
    vision_model.add(Conv2D(64, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
    vision_model.add(Conv2D(128, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
    vision_model.add(Conv2D(256, (3, 3), activation='relu'))
    vision_model.add(Conv2D(256, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Flatten())

    # Now let's get a tensor with the output of our vision model:
    image_input = Input(shape=(224, 224, 3))
    encoded_image = vision_model(image_input)

    # Next, let's define a language model to encode the question into a vector.
    # Each question will be at most 100 words long,
    # and we will index words as integers from 1 to 9999.
    question_input = Input(shape=(100, ), dtype='int32')
    embedded_question = Embedding(input_dim=10000,
                                  output_dim=256,
                                  input_length=100)(question_input)
    encoded_question = LSTM(256)(embedded_question)

    # Let's concatenate the question vector and the image vector:
    merged = concatenate([encoded_question, encoded_image])

    # And let's train a logistic regression over 1000 words on top:
    output = Dense(1000, activation='softmax')(merged)

    # This is our final model:
    # vqa_model = Model(inputs=[image_input, question_input], outputs=output)

    video_input = Input(shape=(100, 224, 224, 3))
    # This is our video encoded via the previously trained vision_model (weights are reused)
    encoded_frame_sequence = TimeDistributed(vision_model)(
        video_input)  # the output will be a sequence of vectors
    encoded_video = LSTM(256)(
        encoded_frame_sequence)  # the output will be a vector

    # This is a model-level representation of the question encoder, reusing the same weights as before:
    question_encoder = Model(inputs=question_input, outputs=encoded_question)

    # Let's use it to encode the question:
    video_question_input = Input(shape=(100, ), dtype='int32')
    encoded_video_question = question_encoder(video_question_input)

    # And this is our video question answering model:
    merged = concatenate([encoded_video, encoded_video_question])
    output = Dense(1000, activation='softmax')(merged)
    video_qa_model = Model(inputs=[video_input, video_question_input],
                           outputs=output)

    return video_qa_model
def construct_keras_api_model(embedding_weights):
    # input_no_time_no_repeat = Input(shape=max_len, dtype='int32')
    # embedded_no_time_no_repeat = Embedding(
    #     creative_id_window,embedding_size,weights=[embedding_weights],trainable=False
    # )(input_no_time_no_repeat)
    # ==================================================================================
    Input_fix_creative_id = Input(shape=(math.ceil(time_id_max / period_days) *
                                         period_length),
                                  dtype='int32',
                                  name='input_fix_creative_id')
    Embedded_fix_creative_id = Embedding(
        creative_id_window,
        embedding_size,
        weights=[embedding_weights],
        trainable=False)(Input_fix_creative_id)
    # ==================================================================================
    # input_no_time_with_repeat = Input(shape=max_len, dtype='int32')
    # embedded_no_time_with_repeat = Embedding(creative_id_window,embedding_size,weights=[embedding_weights],trainable=False)(input_no_time_with_repeat)

    # ----------------------------------------------------------------------
    GM_x = keras.layers.GlobalMaxPooling1D()(Embedded_fix_creative_id)
    GM_x = Dropout(0.5)(GM_x)
    GM_x = Dense(embedding_size // 2, kernel_regularizer=l2(0.001))(GM_x)
    GM_x = BatchNormalization()(GM_x)
    GM_x = Activation('relu')(GM_x)
    GM_x = Dropout(0.5)(GM_x)
    GM_x = Dense(embedding_size // 4, kernel_regularizer=l2(0.001))(GM_x)
    GM_x = BatchNormalization()(GM_x)
    GM_x = Activation('relu')(GM_x)
    GM_x = Dense(1, 'sigmoid')(GM_x)

    # ----------------------------------------------------------------------
    GA_x = GlobalAveragePooling1D()(Embedded_fix_creative_id)
    GA_x = Dropout(0.5)(GA_x)
    GA_x = Dense(embedding_size // 2, kernel_regularizer=l2(0.001))(GA_x)
    GA_x = BatchNormalization()(GA_x)
    GA_x = Activation('relu')(GA_x)
    GA_x = Dropout(0.5)(GA_x)
    GA_x = Dense(embedding_size // 4, kernel_regularizer=l2(0.001))(GA_x)
    GA_x = BatchNormalization()(GA_x)
    GA_x = Activation('relu')(GA_x)
    GA_x = Dense(1, 'sigmoid')(GA_x)

    # ==================================================================================
    Conv_creative_id = Conv1D(embedding_size, 15, 5,
                              activation='relu')(Embedded_fix_creative_id)
    # ----------------------------------------------------------------------
    Conv_GM_x = MaxPooling1D(7)(Conv_creative_id)
    Conv_GM_x = Conv1D(embedding_size, 2, 1, activation='relu')(Conv_GM_x)
    Conv_GM_x = GlobalMaxPooling1D()(Conv_GM_x)
    Conv_GM_x = Dropout(0.5)(Conv_GM_x)
    Conv_GM_x = Dense(embedding_size // 2,
                      kernel_regularizer=l2(0.001))(Conv_GM_x)
    Conv_GM_x = BatchNormalization()(Conv_GM_x)
    Conv_GM_x = Activation('relu')(Conv_GM_x)
    Conv_GM_x = Dropout(0.5)(Conv_GM_x)
    Conv_GM_x = Dense(embedding_size // 4,
                      kernel_regularizer=l2(0.001))(Conv_GM_x)
    Conv_GM_x = BatchNormalization()(Conv_GM_x)
    Conv_GM_x = Activation('relu')(Conv_GM_x)
    Conv_GM_x = Dense(1, 'sigmoid')(Conv_GM_x)

    # ----------------------------------------------------------------------
    Conv_GA_x = AveragePooling1D(7)(Conv_creative_id)
    Conv_GA_x = Conv1D(embedding_size, 2, 1, activation='relu')(Conv_GA_x)
    Conv_GA_x = GlobalAveragePooling1D()(Conv_GA_x)
    Conv_GA_x = Dropout(0.5)(Conv_GA_x)
    Conv_GA_x = Dense(embedding_size // 2,
                      kernel_regularizer=l2(0.001))(Conv_GA_x)
    Conv_GA_x = BatchNormalization()(Conv_GA_x)
    Conv_GA_x = Activation('relu')(Conv_GA_x)
    Conv_GA_x = Dropout(0.5)(Conv_GA_x)
    Conv_GA_x = Dense(embedding_size // 4,
                      kernel_regularizer=l2(0.001))(Conv_GA_x)
    Conv_GA_x = BatchNormalization()(Conv_GA_x)
    Conv_GA_x = Activation('relu')(Conv_GA_x)
    Conv_GA_x = Dense(1, 'sigmoid')(Conv_GA_x)

    # ----------------------------------------------------------------------
    LSTM_x = Conv1D(embedding_size, 14, 7, activation='relu')(Conv_creative_id)
    LSTM_x = LSTM(embedding_size, return_sequences=True)(LSTM_x)
    LSTM_x = LSTM(embedding_size, return_sequences=True)(LSTM_x)
    LSTM_x = LSTM(embedding_size)(LSTM_x)
    LSTM_x = Dropout(0.5)(LSTM_x)
    LSTM_x = Dense(embedding_size // 2, kernel_regularizer=l2(0.001))(LSTM_x)
    LSTM_x = BatchNormalization()(LSTM_x)
    LSTM_x = Activation('relu')(LSTM_x)
    LSTM_x = Dropout(0.5)(LSTM_x)
    LSTM_x = Dense(embedding_size // 4, kernel_regularizer=l2(0.001))(LSTM_x)
    LSTM_x = BatchNormalization()(LSTM_x)
    LSTM_x = Activation('relu')(LSTM_x)
    LSTM_x = Dense(1, 'sigmoid')(LSTM_x)

    # ----------------------------------------------------------------------
    concatenated = concatenate([
        GM_x,
        GA_x,
        Conv_GM_x,
        Conv_GA_x,
        LSTM_x,
    ],
                               axis=-1)
    output_tensor = Dense(1, 'sigmoid')(concatenated)

    keras_api_model = Model(
        [
            # input_no_time_no_repeat,
            Input_fix_creative_id,
            # input_no_time_with_repeat,
        ],
        output_tensor)
    keras_api_model.summary()
    plot_model(keras_api_model, to_file='model/keras_api_word2vec_model.png')
    print('-' * 5 + ' ' * 3 + "编译模型" + ' ' * 3 + '-' * 5)
    keras_api_model.compile(optimizer=optimizers.RMSprop(lr=RMSProp_lr),
                            loss=losses.binary_crossentropy,
                            metrics=[metrics.binary_accuracy])
    return keras_api_model
class QueryReformulation:
    def __init__(self, model_path=None, output_path=''):
        self.model = None
        self.model_name = None
        self.model_output = output_path + '/qr_{name}_model_[e{epoch}]_[p{precision}]_' \
                            + str(datetime.now().date()) + '.h5'
        if model_path:
            self.model = load_model(model_path)
            self.model.summary()

    def build_model(self, model_name, query_dim, terms_dim, output_dim,
                    word_embedding):

        self.model_name = model_name

        query_input = Input(shape=(query_dim, ), name='query_input')
        terms_input = Input(shape=(terms_dim, ), name='terms_input')

        if model_name == 'lstm':
            embedding_feature_block = Sequential(layers=[
                Embedding(word_embedding.vocabulary_size,
                          word_embedding.dimensions,
                          weights=[word_embedding.embedding_matrix],
                          trainable=True,
                          mask_zero=False),
                BatchNormalization(),
                LSTM(64, return_sequences=True)
            ])

        elif model_name == 'bilstm':
            embedding_feature_block = Sequential(layers=[
                Embedding(word_embedding.vocabulary_size,
                          word_embedding.dimensions,
                          weights=[word_embedding.embedding_matrix],
                          trainable=True,
                          mask_zero=False),
                BatchNormalization(),
                Bidirectional(LSTM(64, return_sequences=True))
            ])

        else:  # default cnn
            embedding_feature_block = Sequential(layers=[
                Embedding(word_embedding.vocabulary_size,
                          word_embedding.dimensions,
                          weights=[word_embedding.embedding_matrix],
                          trainable=True,
                          mask_zero=False),
                BatchNormalization(),
                Conv1D(filters=64, kernel_size=3, strides=1),
                MaxPooling1D(pool_size=3)
            ])

        # Features
        query_feature = embedding_feature_block(query_input)
        terms_feature = embedding_feature_block(terms_input)

        # Query-Terms alignment
        attention = Dot(axes=-1)([query_feature, terms_feature])
        softmax_attention = Lambda(lambda x: softmax(x, axis=1),
                                   output_shape=unchanged_shape)(attention)
        terms_aligned = Dot(axes=1)([softmax_attention, terms_feature])

        # Aligned features
        if model_name == 'lstm':
            flatten_layer = LSTM(128, return_sequences=False)(terms_aligned)

        elif model_name == 'bilstm':
            flatten_layer = Bidirectional(LSTM(
                128, return_sequences=False))(terms_aligned)

        else:  # default cnn
            merged_cnn = Conv1D(filters=128, kernel_size=3,
                                strides=1)(terms_aligned)
            merged_cnn = MaxPooling1D(pool_size=3)(merged_cnn)
            flatten_layer = Flatten()(merged_cnn)

        # Output
        dense = BatchNormalization()(flatten_layer)
        dense = Dense(64, activation='sigmoid')(dense)
        out = Dense(output_dim, activation='linear')(dense)

        self.model = Model(inputs=[query_input, terms_input], outputs=out)
        self.model.compile(optimizer='adam', loss=losses.mean_squared_error)
        self.model.summary()

    def train_model(self,
                    query_objs,
                    query_sequence,
                    terms_sequence,
                    candidate_terms,
                    epochs=20,
                    batch_size=4):
        best_precision = 0
        pool = Pool(batch_size)
        for e in range(epochs):
            print('Epochs: %3d/%d' % (e + 1, epochs))

            reward = np.zeros(shape=(len(query_objs)))
            precision = np.zeros(shape=(len(query_objs)))
            for i, query, q_seq, t_seq, terms in get_batch_data(
                    query_objs, query_sequence, terms_sequence,
                    candidate_terms, batch_size):
                print('  [%4d-%-4d/%d]' % (i, i + batch_size, len(query_objs)))

                weights = self.model.predict(x=[q_seq, t_seq])

                batch_reward_precision = pool.map(evaluate_reward_precision,
                                                  zip(weights, terms, query))
                batch_reward_precision = np.array(batch_reward_precision)

                batch_reward = 0.8 * np.asarray(
                    batch_reward_precision[:,
                                           0]) + 0.2 * reward[i:i + batch_size]

                self.model.train_on_batch(x=[q_seq, t_seq],
                                          y=weights,
                                          sample_weight=batch_reward)

                reward[i:i + batch_size] = batch_reward_precision[:, 0]
                precision[i:i + batch_size] = batch_reward_precision[:, 1]

            # Save model
            avg_precision = precision.mean()
            print('  Average precision %.5f on epoch %d, best precision %.5f' %
                  (avg_precision, e + 1, best_precision))
            if avg_precision > best_precision:
                best_precision = avg_precision
                self.model.save(filepath=self.model_output.format(
                    name=self.model_name,
                    epoch=e + 1,
                    precision=round(avg_precision, 4)))

        pool.close()
        pool.join()

    def test_model(self,
                   query_objs,
                   query_sequence,
                   terms_sequence,
                   candidate_terms,
                   batch_size=4):

        pool = Pool(batch_size)
        precision_recall = np.zeros(shape=(len(query_objs), 2))
        for i, query, q_seq, t_seq, terms in get_batch_data(
                query_objs, query_sequence, terms_sequence, candidate_terms,
                batch_size):
            print('[%4d-%-4d/%d]' % (i, i + batch_size, len(query_objs)))

            weights = self.model.predict(x=[q_seq, t_seq])

            batch_precision_recall = pool.map(evaluate_precision_recall,
                                              zip(weights, terms, query))

            precision_recall[i:i +
                             batch_size] = np.array(batch_precision_recall)

        pool.close()
        pool.join()

        return precision_recall.mean(axis=0)

    def reformulate_query(self,
                          query_sequence,
                          terms_sequence,
                          candidate_terms,
                          threshold=0.5):
        weights = self.model.predict(x=[[query_sequence], [terms_sequence]])
        reformulated_query = recreate_query(terms=candidate_terms,
                                            weights=weights[0],
                                            threshold=threshold)
        return reformulated_query
    def build_model(self, model_name, query_dim, terms_dim, output_dim,
                    word_embedding):

        self.model_name = model_name

        query_input = Input(shape=(query_dim, ), name='query_input')
        terms_input = Input(shape=(terms_dim, ), name='terms_input')

        if model_name == 'lstm':
            embedding_feature_block = Sequential(layers=[
                Embedding(word_embedding.vocabulary_size,
                          word_embedding.dimensions,
                          weights=[word_embedding.embedding_matrix],
                          trainable=True,
                          mask_zero=False),
                BatchNormalization(),
                LSTM(64, return_sequences=True)
            ])

        elif model_name == 'bilstm':
            embedding_feature_block = Sequential(layers=[
                Embedding(word_embedding.vocabulary_size,
                          word_embedding.dimensions,
                          weights=[word_embedding.embedding_matrix],
                          trainable=True,
                          mask_zero=False),
                BatchNormalization(),
                Bidirectional(LSTM(64, return_sequences=True))
            ])

        else:  # default cnn
            embedding_feature_block = Sequential(layers=[
                Embedding(word_embedding.vocabulary_size,
                          word_embedding.dimensions,
                          weights=[word_embedding.embedding_matrix],
                          trainable=True,
                          mask_zero=False),
                BatchNormalization(),
                Conv1D(filters=64, kernel_size=3, strides=1),
                MaxPooling1D(pool_size=3)
            ])

        # Features
        query_feature = embedding_feature_block(query_input)
        terms_feature = embedding_feature_block(terms_input)

        # Query-Terms alignment
        attention = Dot(axes=-1)([query_feature, terms_feature])
        softmax_attention = Lambda(lambda x: softmax(x, axis=1),
                                   output_shape=unchanged_shape)(attention)
        terms_aligned = Dot(axes=1)([softmax_attention, terms_feature])

        # Aligned features
        if model_name == 'lstm':
            flatten_layer = LSTM(128, return_sequences=False)(terms_aligned)

        elif model_name == 'bilstm':
            flatten_layer = Bidirectional(LSTM(
                128, return_sequences=False))(terms_aligned)

        else:  # default cnn
            merged_cnn = Conv1D(filters=128, kernel_size=3,
                                strides=1)(terms_aligned)
            merged_cnn = MaxPooling1D(pool_size=3)(merged_cnn)
            flatten_layer = Flatten()(merged_cnn)

        # Output
        dense = BatchNormalization()(flatten_layer)
        dense = Dense(64, activation='sigmoid')(dense)
        out = Dense(output_dim, activation='linear')(dense)

        self.model = Model(inputs=[query_input, terms_input], outputs=out)
        self.model.compile(optimizer='adam', loss=losses.mean_squared_error)
        self.model.summary()
Beispiel #17
0
class Autoencoder(object):
    """docstring for Autoencoder"""

    # def __init__(self, sample_weights, sample_weight_mode):
    def __init__(self, epochs, verbosity):
        self.epochs = epochs
        self.batch_size = 256
        self.shuffle = True
        self.validation_split = 0.05
        self.optimizer = 'adadelta'
        self.loss = 'mse'
        self.verbosity = verbosity

        self.code_layer_type = None
        self.model = None
        self.sample_weight_mode = None
        self.sample_weights = None
        self.y_true = None
        self.y_pred = None

    def model(self, code_layer_type, input_dim, code_dim):
        self.code_layer_type = code_layer_type
        assert len(code_dim) > 0

        if self.code_layer_type == 'lstm':
            assert len(input_dim) == 2
            input_data = Input(shape=(input_dim[0], input_dim[1]))

            if len(code_dim) == 1:
                encoded = LSTM(code_dim[0])(input_data)
                decoded = RepeatVector(input_dim[0])(encoded)
            elif len(code_dim) > 1:
                encoded = input_data
                for i, units in enumerate(code_dim):
                    if i == len(code_dim) - 1:
                        encoded = LSTM(units)(encoded)
                        continue
                    encoded = LSTM(units, return_sequences=True)(encoded)

                for i, units in enumerate(reversed(code_dim)):
                    if i == 1:
                        decoded = LSTM(units, return_sequences=True)(
                            RepeatVector(input_dim[0])(encoded))
                    elif i > 1:
                        decoded = LSTM(units, return_sequences=True)(decoded)
            else:
                raise ValueError("The codDim must be over 0.")

            decoded = LSTM(input_dim[-1], return_sequences=True)(decoded)
            self.model = Model(input_data, decoded)

        elif self.code_layer_type == 'dense':
            assert len(input_dim) == 1
            input_data = Input(shape=(input_dim[0], ))
            encoded = input_data
            for i, units in enumerate(code_dim):
                encoded = Dense(units, activation='relu')(encoded)
            decoded = Dense(input_dim[-1], activation='sigmoid')(encoded)
            self.model = Model(input_data, decoded)

        elif self.code_layer_type == 'cov':
            pass

    def modelMasking(self, code_layer_type, input_dim, code_dim):

        self.code_layer_type = code_layer_type
        assert len(code_dim) > 0

        if self.code_layer_type == 'lstm':
            assert len(input_dim) == 2
            input_data = Input(shape=(input_dim[0], input_dim[1]))
            mask = Masking(mask_value=0.)(input_data)
            if len(code_dim) == 1:
                encoded = LSTM(code_dim[0])(mask)
                decoded = RepeatVector(input_dim[0])(encoded)
            elif len(code_dim) > 1:
                encoded = mask
                for i, units in enumerate(code_dim):
                    if i == len(code_dim) - 1:
                        encoded = LSTM(units)(encoded)
                        continue
                    encoded = LSTM(units, return_sequences=True)(encoded)

                for i, units in enumerate(reversed(code_dim)):
                    if i == 1:
                        decoded = LSTM(units, return_sequences=True)(
                            RepeatVector(input_dim[0])(encoded))
                    elif i > 1:
                        decoded = LSTM(units, return_sequences=True)(decoded)
            else:
                raise ValueError("The codDim must be over 0.")

            decoded = LSTM(input_dim[-1], return_sequences=True)(decoded)
            self.model = Model(input_data, decoded)

        elif self.code_layer_type == 'cov':
            pass
        elif self.code_layer_type == 'dense':
            assert len(input_dim) == 1
            input_data = Input(shape=(input_dim[0], ))
            # encoded = input_data
            # for i, units in enumerate(codeDim):
            # 	encoded = Dense(units, activation='relu')(encoded)
            # decoded = Dense(inputDim[-1], activation='sigmoid')(encoded)
            # self.model = Model(input_data, decoded)
            encoder = Dense(
                code_dim[0],
                activation="tanh",
                activity_regularizer=regularizers.l1(10e-5))(input_data)
            encoder = Dense(int(code_dim[0] / 2), activation="relu")(encoder)
            decoder = Dense(int(code_dim[0] / 2), activation='tanh')(encoder)
            decoder = Dense(input_dim[0], activation='relu')(decoder)
            self.model = Model(input_data, decoder)

    def compile(self, *args):

        if len(args) == 0:
            self.model.compile(optimizer=self.optimizer, loss=self.loss)
        elif len(args) == 1:
            if args[0] == 'temporal':
                self.sample_weight_mode = args[0]
                self.model.compile(optimizer=self.optimizer,
                                   loss=self.loss,
                                   sample_weight_mode=self.sample_weight_mode)
            elif args[0] == 'customFunction':
                self.model.compile(optimizer=self.optimizer,
                                   loss=self.weighted_vector_mse)
            else:
                raise ValueError(
                    "Invalid maskType, please input 'sample_weights' or 'customFunction'"
                )
        else:
            raise ValueError("argument # must be 0 or 1.")

    def fit(self, *args):

        # early_stopping = EarlyStopping(monitor='val_loss', min_delta=0.01, patience=3, verbose=1, mode='auto')
        if len(args) == 2:
            if args[1] == 'nor':
                self.model.fit(args[0],
                               args[0],
                               epochs=self.epochs,
                               batch_size=self.batch_size,
                               shuffle=self.shuffle,
                               validation_split=self.validation_split,
                               verbose=self.verbosity)
            # callbacks = [early_stopping])
            elif args[1] == 'rev':
                self.model.fit(args[0],
                               np.flip(args[0], 1),
                               epochs=self.epochs,
                               batch_size=self.batch_size,
                               shuffle=self.shuffle,
                               validation_split=self.validation_split,
                               verbose=self.verbosity)
            # callbacks=[early_stopping])
            else:
                raise ValueError(
                    "decoding sequence type: 'normal' or 'reverse'.")

        elif len(args) == 3:
            self.sample_weights = args[2]
            if args[1] == 'nor':
                self.model.fit(args[0],
                               args[0],
                               epochs=self.epochs,
                               batch_size=self.batch_size,
                               shuffle=self.shuffle,
                               validation_split=self.validation_split,
                               sample_weight=self.sample_weights,
                               verbose=self.verbosity)
            # callbacks=[early_stopping])
            elif args[1] == 'rev':
                self.model.fit(args[0],
                               np.flip(args[0], 1),
                               epochs=self.epochs,
                               batch_size=self.batch_size,
                               shuffle=self.shuffle,
                               validation_split=self.validation_split,
                               sample_weight=self.sample_weights,
                               verbose=self.verbosity)
            # callbacks=[early_stopping])
            else:
                raise ValueError(
                    "Please input, 'data', 'nor' or 'rev', 'sample_weights'")

    def predict(self, data):
        return self.model.predict(data)

    def weighted_vector_mse(self, y_true, y_pred):

        self.y_true = y_true
        self.y_pred = y_pred

        weight = T.ceil(self.y_true)
        loss = T.square(weight * (self.y_true - self.y_pred))
        # use appropriate relations for other objectives. E.g, for binary_crossentropy:
        # loss = weights * (y_true * T.log(y_pred) + (1.0 - y_true) * T.log(1.0 - y_pred))
        return T.mean(T.sum(loss, axis=-1))