Beispiel #1
0
 def test_fold(self):
   const_ten = np.array(10.0, dtype='float32')
   ten_plus_sum = (tdb.Map(tdb.Scalar()) >>
                   tdb.Fold(tdb.Function(tf.add), const_ten))
   self.assertBuilds(16.0, ten_plus_sum, [1.0, 2.0, 3.0], max_depth=3)
   self.assertBuilds(16.0, ten_plus_sum, [3.0, 2.0, 1.0], max_depth=3)
   self.assertBuilds(20.0, ten_plus_sum, [1.0, 2.0, 3.0, 4.0], max_depth=4)
   self.assertBuilds(20.0, ten_plus_sum, [4.0, 3.0, 2.0, 1.0], max_depth=4)
Beispiel #2
0
 def test_forward_declaration_orphaned_nested(self):
   fwd1 = tdb.ForwardDeclaration(tdt.VoidType(), tdt.TensorType([]))
   fwd2 = tdb.ForwardDeclaration(tdt.SequenceType(tdt.TensorType([])),
                                 tdt.TensorType([]))
   b = tdb.Map(tdb.Scalar()) >> fwd2() >> tdb.Function(tf.negative)
   fwd2.resolve_to(tdb.Fold(tdb.Function(tf.add), fwd1()))
   fwd1.resolve_to(tdb.FromTensor(tf.ones([])))
   self.assertBuilds(-8., b, [3, 4], max_depth=3)
Beispiel #3
0
 def test_max_depth(self):
   self.assertEqual(0, tdb.Scalar().max_depth(42))
   block = (tdb.Map(tdb.Scalar()) >>
            tdb.Fold(tdb.Function(tf.add), tf.zeros([])))
   for i in xrange(5):
     self.assertEqual(i, block.max_depth(range(i)))
Beispiel #4
0
 def test_fold_pyobject(self):
   block = tdb.Fold((tdb.Identity(), tdb.Scalar()) >> tdb.Sum(), tdb.Zeros([]))
   self.assertBuilds(5., block, (2, 3), max_depth=None)
Beispiel #5
0
 def test_fold_tuple(self):
   block = ((tdb.Scalar(), tdb.Scalar()) >>
            tdb.Fold(tdb.Function(tf.add), tf.ones([])))
   self.assertBuilds(6., block, (2, 3), max_depth=2)
Beispiel #6
0
  def test_repr(self):
    goldens = {
        tdb.Tensor([]): '<td.Tensor dtype=\'float32\' shape=()>',
        tdb.Tensor([1, 2], 'int32', name='foo'):
        '<td.Tensor \'foo\' dtype=\'int32\' shape=(1, 2)>',

        tdb.Scalar('int64'): '<td.Scalar dtype=\'int64\'>',

        tdb.Vector(42): '<td.Vector dtype=\'float32\' size=42>',

        tdb.FromTensor(tf.zeros(3)): '<td.FromTensor \'zeros:0\'>',

        tdb.Function(tf.negative,
                     name='foo'): '<td.Function \'foo\' tf_fn=\'negative\'>',

        tdb.Identity(): '<td.Identity>',
        tdb.Identity('foo'): '<td.Identity \'foo\'>',

        tdb.InputTransform(ord): '<td.InputTransform py_fn=\'ord\'>',

        tdb.SerializedMessageToTree('foo'):
        '<td.SerializedMessageToTree \'foo\' '
        'py_fn=\'serialized_message_to_tree\'>',

        tdb.GetItem(3, 'mu'): '<td.GetItem \'mu\' key=3>',

        tdb.Length(): '<td.Length dtype=\'float32\'>',

        tdb.Slice(stop=2): '<td.Slice key=slice(None, 2, None)>',
        tdb.Slice(stop=2, name='x'):
        '<td.Slice \'x\' key=slice(None, 2, None)>',

        tdb.ForwardDeclaration(name='foo')():
        '<td.ForwardDeclaration() \'foo\'>',

        tdb.Composition(name='x').input: '<td.Composition.input \'x\'>',
        tdb.Composition(name='x').output: '<td.Composition.output \'x\'>',
        tdb.Composition(name='x'): '<td.Composition \'x\'>',

        tdb.Pipe(): '<td.Pipe>',
        tdb.Pipe(tdb.Scalar(), tdb.Identity()): '<td.Pipe>',

        tdb.Record({}, name='x'): '<td.Record \'x\' ordered=False>',
        tdb.Record((), name='x'): '<td.Record \'x\' ordered=True>',

        tdb.AllOf(): '<td.AllOf>',
        tdb.AllOf(tdb.Identity()): '<td.AllOf>',
        tdb.AllOf(tdb.Identity(), tdb.Identity()): '<td.AllOf>',

        tdb.AllOf(name='x'): '<td.AllOf \'x\'>',
        tdb.AllOf(tdb.Identity(), name='x'): '<td.AllOf \'x\'>',
        tdb.AllOf(tdb.Identity(), tdb.Identity(), name='x'): '<td.AllOf \'x\'>',

        tdb.Map(tdb.Scalar(), name='x'):
        '<td.Map \'x\' element_block=<td.Scalar dtype=\'float32\'>>',

        tdb.Fold(tdb.Function(tf.add), tf.ones([]), name='x'):
        '<td.Fold \'x\' combine_block=<td.Function tf_fn=\'add\'> '
        'start_block=<td.FromTensor \'ones:0\'>>',

        tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8))):
        '<td.RNN>',
        tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)), name='x'):
        '<td.RNN \'x\'>',
        tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)),
                initial_state=tf.ones(8)):
        '<td.RNN>',
        tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)),
                initial_state=tf.ones(8), name='x'):
        '<td.RNN \'x\'>',

        tdb.Reduce(tdb.Function(tf.add), name='x'):
        '<td.Reduce \'x\' combine_block=<td.Function tf_fn=\'add\'>>',

        tdb.Sum(name='foo'):
        '<td.Sum \'foo\' combine_block=<td.Function tf_fn=\'add\'>>',

        tdb.Min(name='foo'):
        '<td.Min \'foo\' combine_block=<td.Function tf_fn=\'minimum\'>>',

        tdb.Max(name='foo'):
        '<td.Max \'foo\' combine_block=<td.Function tf_fn=\'maximum\'>>',

        tdb.Mean(name='foo'): '<td.Mean \'foo\'>',

        tdb.OneOf(ord, (tdb.Scalar(), tdb.Scalar()), name='x'):
        '<td.OneOf \'x\'>',

        tdb.Optional(tdb.Scalar(), name='foo'):
        '<td.Optional \'foo\' some_case_block=<td.Scalar dtype=\'float32\'>>',

        tdb.Concat(1, True, 'x'):
        '<td.Concat \'x\' concat_dim=1 flatten=True>',

        tdb.Broadcast(name='x'): '<td.Broadcast \'x\'>',

        tdb.Zip(name='x'): '<td.Zip \'x\'>',

        tdb.NGrams(n=42, name='x'): '<td.NGrams \'x\' n=42>',

        tdb.OneHot(2, 3, name='x'):
        '<td.OneHot \'x\' dtype=\'float32\' start=2 stop=3>',
        tdb.OneHot(3): '<td.OneHot dtype=\'float32\' start=0 stop=3>',

        tdb.OneHotFromList(['a', 'b']): '<td.OneHotFromList>',
        tdb.OneHotFromList(['a', 'b'], name='foo'):
        '<td.OneHotFromList \'foo\'>',

        tdb.Nth(name='x'): '<td.Nth \'x\'>',

        tdb.Zeros([], 'x'): '<td.Zeros \'x\'>',

        tdb.Void(): '<td.Void>',
        tdb.Void('foo'): '<td.Void \'foo\'>',

        tdm.Metric('foo'): '<td.Metric \'foo\'>'}
    for block, expected_repr in sorted(six.iteritems(goldens),
                                       key=lambda kv: kv[1]):
      self.assertEqual(repr(block), expected_repr)