def testCovariance(self):
        vex = tfd.VectorExponentialDiag(loc=tf.ones([2, 3], dtype=tf.float32),
                                        validate_args=True)
        self.assertAllClose(np.diag(np.ones([3], dtype=np.float32)),
                            self.evaluate(vex.covariance()))

        vex = tfd.VectorExponentialDiag(loc=tf.ones([3], dtype=tf.float32),
                                        scale_identity_multiplier=[3., 2.],
                                        validate_args=True)
        self.assertAllEqual([2], vex.batch_shape)
        self.assertAllEqual([3], vex.event_shape)
        self.assertAllClose(
            np.array([[[3., 0, 0], [0, 3, 0], [0, 0, 3]],
                      [[2, 0, 0], [0, 2, 0], [0, 0, 2]]])**2.,
            self.evaluate(vex.covariance()))

        vex = tfd.VectorExponentialDiag(loc=tf.ones([3], dtype=tf.float32),
                                        scale_diag=[[3., 2, 1], [4, 5, 6]],
                                        validate_args=True)
        self.assertAllEqual([2], vex.batch_shape)
        self.assertAllEqual([3], vex.event_shape)
        self.assertAllClose(
            np.array([[[3., 0, 0], [0, 2, 0], [0, 0, 1]],
                      [[4, 0, 0], [0, 5, 0], [0, 0, 6]]])**2.,
            self.evaluate(vex.covariance()))
Beispiel #2
0
    def testStddev(self):
        vex = tfd.VectorExponentialDiag(loc=tf.zeros([2, 3], dtype=tf.float32))
        self.assertAllClose(np.ones([3], dtype=np.float32),
                            self.evaluate(vex.stddev()))

        vex = tfd.VectorExponentialDiag(loc=tf.zeros([3], dtype=tf.float32),
                                        scale_identity_multiplier=[3., 2.])
        self.assertAllClose(np.array([[3., 3, 3], [2., 2, 2]]),
                            self.evaluate(vex.stddev()))

        vex = tfd.VectorExponentialDiag(loc=tf.zeros([3], dtype=tf.float32),
                                        scale_diag=[[3., 2, 1], [4, 5, 6]])
        self.assertAllClose(np.array([[3., 2, 1], [4., 5, 6]]),
                            self.evaluate(vex.stddev()))
    def testSampleWithBroadcastScale(self):
        # mu corresponds to a 2-batch of 3-variate normals
        mu = np.zeros([2, 3])

        # diag corresponds to no batches of 3-variate normals
        diag = np.ones([3])

        dist = tfd.VectorExponentialDiag(mu, diag, validate_args=True)

        mean = dist.mean()
        self.assertAllEqual([2, 3], mean.shape)
        self.assertAllClose(mu + diag, self.evaluate(mean))

        n = int(1e4)
        samps = self.evaluate(dist.sample(n, seed=test_util.test_seed()))
        samps_centered = samps - samps.mean(axis=0)
        cov_mat = self.evaluate(tf.linalg.diag(diag))**2
        sample_cov = np.matmul(samps_centered.transpose([1, 2, 0]),
                               samps_centered.transpose([1, 0, 2])) / n

        self.assertAllClose(mu + diag,
                            samps.mean(axis=0),
                            atol=0.10,
                            rtol=0.05)
        self.assertAllClose([cov_mat, cov_mat],
                            sample_cov,
                            atol=0.10,
                            rtol=0.05)
 def testSupportBijectorOutsideRange(self):
     vex = tfd.VectorExponentialDiag(loc=tf.ones([3], dtype=tf.float32),
                                     scale_diag=[[3., 2., 1.], [4., 5.,
                                                                6.]],
                                     validate_args=True)
     x = np.array([[-8.3, -0.4, -1e-6]])
     bijector_inverse_x = vex.experimental_default_event_space_bijector(
     ).inverse(x)
     self.assertAllNan(self.evaluate(bijector_inverse_x))
    def testVariance(self):
        vex = tfd.VectorExponentialDiag(loc=tf.zeros([2, 3], dtype=tf.float32),
                                        validate_args=True)
        self.assertAllClose(np.ones([3], dtype=np.float32),
                            self.evaluate(vex.variance()))

        vex = tfd.VectorExponentialDiag(loc=tf.ones([3], dtype=tf.float32),
                                        scale_identity_multiplier=[3., 2.],
                                        validate_args=True)
        self.assertAllClose(
            np.array([[3., 3, 3], [2., 2, 2]])**2.,
            self.evaluate(vex.variance()))

        vex = tfd.VectorExponentialDiag(loc=tf.ones([3], dtype=tf.float32),
                                        scale_diag=[[3., 2, 1], [4., 5, 6]],
                                        validate_args=True)
        self.assertAllClose(
            np.array([[3., 2, 1], [4., 5, 6]])**2.,
            self.evaluate(vex.variance()))
  def testSample(self):
    mu = np.array([-2., 1])
    diag = np.array([1., -2])
    dist = tfd.VectorExponentialDiag(mu, diag, validate_args=True)
    samps = self.evaluate(dist.sample(int(1e4), seed=test_util.test_seed()))
    cov_mat = self.evaluate(tf.linalg.diag(diag))**2

    self.assertAllClose(
        [-2 + 1, 1. - 2], samps.mean(axis=0), atol=0., rtol=0.05)
    self.assertAllClose(cov_mat, np.cov(samps.T), atol=0.05, rtol=0.05)
 def testSingularScaleRaises(self):
     mu = [-1., 1]
     diag = [1., 0]
     dist = tfd.VectorExponentialDiag(mu, diag, validate_args=True)
     with self.assertRaisesOpError('Singular'):
         self.evaluate(dist.sample(seed=test_util.test_seed()))
 def testAssertValidSample(self):
     v = tfd.VectorExponentialDiag(loc=[4., 5.], validate_args=True)
     with self.assertRaisesOpError(
             'Sample is not contained in the support.'):
         self.evaluate(v.log_prob([3., 4.]))
 def testMeanWithBroadcastLoc(self):
     mu = [-1.]
     diag = [1., -5]
     dist = tfd.VectorExponentialDiag(mu, diag, validate_args=True)
     self.assertAllEqual([-1. + 1, -1. - 5], self.evaluate(dist.mean()))
 def testMode(self):
     mu = [-1.]
     diag = [1., -5]
     dist = tfd.VectorExponentialDiag(mu, diag, validate_args=True)
     self.assertAllEqual([-1., -1.], self.evaluate(dist.mode()))
 def testMean(self):
     mu = [-1., 1]
     diag = [1., -5]
     dist = tfd.VectorExponentialDiag(mu, diag, validate_args=True)
     self.assertAllEqual([-1. + 1., 1. - 5.], self.evaluate(dist.mean()))
 def testVectorParams(self):
     mu = [-1.]
     diag = [-5.]
     dist = tfd.VectorExponentialDiag(mu, diag, validate_args=True)
     self.assertAllEqual([3, 1],
                         dist.sample(3, seed=test_util.test_seed()).shape)
 def testScalarParams(self):
     mu = -1.
     diag = -5.
     with self.assertRaisesRegexp(ValueError, 'at least 1 dimension'):
         tfd.VectorExponentialDiag(mu, diag)