Beispiel #1
0
def fuse_prelu_with_fused_conv2d_or_matmul(input_graph_def):
  """Tensorflow does not support Prelu op, and the grappler remap optimizer
  will not fuse the prelu op with _FusedConv2D op. This method searches for
  the pattern and fuse the (_FusedConv2D||FusedDepthwiseConv2dNative + Prelu)
  nodes into a single _FusedConv2D||FusedDepthwiseConv2dNative op with
  activation information.

  Args:
    input_graph_def: A GraphDef containing a model.

  Returns:
    Modified graph with Prelu ops fused with _FusedConv2D or
    FusedDepthwiseConv2dNative as activation function

  Raises:
    ValueError: If the graph is badly formed with duplicate node names.
  """
  input_node_map = {}
  nodes_to_skip = {}
  inputs_to_remove = []
  for node in input_graph_def.node:
    if node.name not in input_node_map:
      input_node_map[node.name] = node
    else:
      raise ValueError('Duplicate node names detected for ', node.name)

  for node in input_graph_def.node:
    if node.op != 'Prelu':
      continue

    fused_op = graph_rewrite_util.node_from_map(
        input_node_map, node.input[0])
    if (not fused_op or
        (fused_op.op != '_FusedConv2D'
         and fused_op.op != '_FusedMatMul'
         and fused_op.op != 'FusedDepthwiseConv2dNative') or
        len(fused_op.attr['fused_ops'].list.s) > 1):
      continue

    alpha_tensor_name = node.input[1]

    fused_op.input.extend([alpha_tensor_name])
    fused_op.attr['fused_ops'].list.s.extend([b'Prelu'])
    fused_op.attr['num_args'].i = fused_op.attr['num_args'].i + 1
    node.op = 'Identity'
    node.input[:] = [node.input[0]]
    nodes_to_skip[node.name] = True
    inputs_to_remove.append(node)

  return graph_rewrite_util.cleanup_graph_def(
      input_graph_def, nodes_to_skip, inputs_to_remove)
      
def _find_contraction_with_bias(node, node_map):
    if node.op != 'BiasAdd':
        return False

    # Input to the BiasAdd must be a DepthwiseConv2dNative.
    if not node.input:
        return False

    conv2d_node = graph_rewrite_util.node_from_map(node_map, node.input[0])
    if conv2d_node.op != 'DepthwiseConv2dNative':
        return False

    return {'contraction': conv2d_node, 'bias': node, 'activation': None}
def _find_contraction_with_activation(node, node_map):
    if not _is_supported_activation(node):
        return False

    # And input to the activation node must match ContractionWithBiasAdd pattern.
    if len(node.input) != 1:
        return False

    conv2d_node = graph_rewrite_util.node_from_map(node_map, node.input[0])
    if conv2d_node.op != 'DepthwiseConv2dNative':
        return False

    return {'contraction': conv2d_node, 'bias': None, 'activation': node}
def _find_contraction_with_bias_and_activation(node, node_map):
    if not _is_supported_activation(node):
        return False

    # And input to the activation node must match ContractionWithBiasAdd pattern.
    if len(node.input) != 1:
        return False

    bias_add = graph_rewrite_util.node_from_map(node_map, node.input[0])

    match = _find_contraction_with_bias(bias_add, node_map)
    if not match:
        return False

    match['activation'] = node
    return match
Beispiel #5
0
def fuse_ops_for_prelu(input_graph_def):
  """Modifies the provided graph by fusing a set of ops into a single Prelu op.
  The formula of PReLU is:
  f(x) = alpha * x for x < 0, f(x) = x for x >= 0.

  `x` is the input, and `alpha` is a trainable tensor which can be broadcasted
  to the shape of `x`.

  There's no native PRelu op in TensorFlow, so Keras generates the following
  structure which does the equivalent calculation:
  f(x) = Relu(x) + (-alpha * Relu(-x))

  Practically, alpha is always a constant in the inference graph, and grappler
  can have other graph transformations which fold the activation functions to
  other ops. Therefore, we're looking for the structure:

  f(x) = Relu(x) + (negative_alpha * Neg(x, activation=Relu))

  Args:
    input_graph_def: A GraphDef containing a model.

  Returns:
    Modified graph with Prelu ops generated, and modified weights.

  Raises:
    ValueError: If the graph is badly formed with duplicate node names.
  """
  input_node_map = {}
  for node in input_graph_def.node:
    if node.name not in input_node_map:
      input_node_map[node.name] = node
    else:
      raise ValueError('Duplicate node names detected for ', node.name)

  nodes_to_skip = {}
  inputs_to_remove = []
  updated_alpha = []
  for node in input_graph_def.node:
    if (node.op not in ('Add', 'AddV2') or len(node.input) != 2):
      continue

    relu_input_op = graph_rewrite_util.node_from_map(
        input_node_map, node.input[0])
    if (not relu_input_op or relu_input_op.op != 'Relu'):
      continue

    mul_op = graph_rewrite_util.node_from_map(input_node_map, node.input[1])
    if (not mul_op or mul_op.op != 'Mul'):
      continue

    neg_alpha_op = None
    for name in mul_op.input:
      op = graph_rewrite_util.node_from_map(input_node_map, name)
      if op.op == 'Const':
        neg_alpha_op = op
        break

    if not neg_alpha_op:
      continue

    alpha_tensor_name = neg_alpha_op.name
    _create_alpha_node(neg_alpha_op, updated_alpha)

    relu_neg_input_op = None
    for name in mul_op.input:
      op = graph_rewrite_util.node_from_map(input_node_map, name)
      if op.op == 'Relu':
        relu_neg_input_op = op
        break

    if (not relu_neg_input_op or len(relu_neg_input_op.input) != 1 or
        relu_neg_input_op.op != 'Relu'):
      continue

    # This detects a Neg op followed by a separated Relu op.
    neg_input_op = graph_rewrite_util.node_from_map(
        input_node_map, relu_neg_input_op.input[0])
    if (not neg_input_op or len(neg_input_op.input) != 1 or
        neg_input_op.op != 'Neg'):
      continue
    final_input_op = neg_input_op

    if relu_input_op.input[0] != final_input_op.input[0]:
      continue

    relu_input_op.op = 'Prelu'
    relu_input_op.input.extend([alpha_tensor_name])
    # Remove the T attr that is defined in Relu op, since our custom Prelu op
    # definition does not have that.
    del relu_input_op.attr['T']

    node.op = 'Identity'
    del node.input[:]
    node.input.append(relu_input_op.name)

    nodes_to_skip[mul_op.name] = True
    nodes_to_skip[relu_neg_input_op.name] = True
    nodes_to_skip[neg_input_op.name] = True
    nodes_to_skip[node.name] = True
    inputs_to_remove.append(node)

  return graph_rewrite_util.cleanup_graph_def(
      input_graph_def, nodes_to_skip, inputs_to_remove)
Beispiel #6
0
def fold_batch_norms(input_graph_def):
  """Removes batch normalization ops by folding them into convolutions.

  Batch normalization during training has multiple dynamic parameters that are
  updated, but once the graph is finalized these become constants. That means
  there's an opportunity to reduce the computations down to a scale and
  addition, rather than the more expensive multiple ops, and even bake the
  scaling into the convolution weights. This function identifies the typical
  pattern of batch normalization subgraphs, and performs the transformation to
  fold the computations down into a simpler form. It currently only supports
  batch normalization that's performed by the BatchNormWithGlobalNormalization
  FusedBatchNorm and FusedBatchNormV3 ops, and will need to be extended in the
  future to handle the newer style.

  Args:
    input_graph_def: A GraphDef containing a model.

  Returns:
    Modified graph with BN ops removed, and modified weights.

  Raises:
    ValueError: If the graph is badly formed with duplicate node names.
  """
  input_node_map = {}
  for node in input_graph_def.node:
    if node.name not in input_node_map:
      input_node_map[node.name] = node
    else:
      raise ValueError("Duplicate node names detected for ", node.name)

  nodes_to_skip = {}
  new_ops = []
  for node in input_graph_def.node:
    if (node.op not in ("BatchNormWithGlobalNormalization",
                        "FusedBatchNorm", "FusedBatchNormV3")):
      continue

    bias = None
    conv_op = graph_rewrite_util.node_from_map(
        input_node_map,
        node.input[INPUT_ORDER[node.op].index("conv_op")])
    # There might be an Add/BiasAdd op between the conv and the batchnorm,
    # which we can fold into the mean param of the batchnorm.
    if conv_op.op in ['BiasAdd', 'Add', 'AddV2']:
      add_op = conv_op
      # Follow the first input of the add to get to the conv.
      conv_op = graph_rewrite_util.node_from_map(
          input_node_map, add_op.input[0])
      bias = graph_rewrite_util.node_from_map(input_node_map, add_op.input[1])
      if conv_op.op not in ["Conv2D", "DepthwiseConv2dNative"]:
        # Follow the second input of the add to get to the conv.
        conv_op = graph_rewrite_util.node_from_map(
            input_node_map, add_op.input[1])
        bias = graph_rewrite_util.node_from_map(input_node_map, add_op.input[0])
    if bias and bias.op != 'Const':
      tf_logging.warning("The bias %s after the conv %s was not a constant. "
                         "Maybe because freeze_graph wasn't "
                         "run first?" % (bias.name, conv_op.name))
      continue
    if conv_op.op not in ["Conv2D", "DepthwiseConv2dNative"]:
      tf_logging.warning("Didn't find expected Conv2D or DepthwiseConv2dNative"
                         " input to '%s'" % node.name)
      continue
    weights_op = graph_rewrite_util.node_from_map(
        input_node_map, conv_op.input[1])
    if weights_op.op != "Const":
      tf_logging.warning("Didn't find expected conv Constant input to '%s',"
                         " found %s instead. Maybe because freeze_graph wasn't"
                         " run first?" % (conv_op.name, weights_op))
      continue
    weights = graph_rewrite_util.values_from_const(weights_op)
    if conv_op.op == "Conv2D":
      channel_count = weights.shape[3]
    elif conv_op.op == "DepthwiseConv2dNative":
      channel_count = weights.shape[2] * weights.shape[3]

    mean_op = graph_rewrite_util.node_from_map(
        input_node_map,
        node.input[INPUT_ORDER[node.op].index("mean_op")])
    if mean_op.op != "Const":
      tf_logging.warning("Didn't find expected mean Constant input to '%s',"
                         " found %s instead. Maybe because freeze_graph wasn't"
                         " run first?" % (node.name, mean_op))
      continue
    mean_value = graph_rewrite_util.values_from_const(mean_op)
    if bias is not None:
      # Adjust the mean of the batchnorm based on the add op in-between the conv
      # and the batchnorm.
      mean_value = mean_value - graph_rewrite_util.values_from_const(bias)
    if mean_value.shape != (channel_count,):
      tf_logging.warning("Incorrect shape for mean, found %s, expected %s,"
                         " for node %s" % (str(mean_value.shape), str(
                             (channel_count,)), node.name))
      continue

    var_op = graph_rewrite_util.node_from_map(
        input_node_map,
        node.input[INPUT_ORDER[node.op].index("var_op")])
    if var_op.op != "Const":
      tf_logging.warning("Didn't find expected var Constant input to '%s',"
                         " found %s instead. Maybe because freeze_graph wasn't"
                         " run first?" % (node.name, var_op))
      continue
    var_value = graph_rewrite_util.values_from_const(var_op)
    if var_value.shape != (channel_count,):
      tf_logging.warning("Incorrect shape for var, found %s, expected %s,"
                         " for node %s" % (str(var_value.shape), str(
                             (channel_count,)), node.name))
      continue

    beta_op = graph_rewrite_util.node_from_map(
        input_node_map,
        node.input[INPUT_ORDER[node.op].index("beta_op")])
    if beta_op.op != "Const":
      tf_logging.warning("Didn't find expected beta Constant input to '%s',"
                         " found %s instead. Maybe because freeze_graph wasn't"
                         " run first?" % (node.name, beta_op))
      continue
    beta_value = graph_rewrite_util.values_from_const(beta_op)
    if beta_value.shape != (channel_count,):
      tf_logging.warning("Incorrect shape for beta, found %s, expected %s,"
                         " for node %s" % (str(beta_value.shape), str(
                             (channel_count,)), node.name))
      continue

    gamma_op = graph_rewrite_util.node_from_map(
        input_node_map,
        node.input[INPUT_ORDER[node.op].index("gamma_op")])
    if gamma_op.op != "Const":
      tf_logging.warning("Didn't find expected gamma Constant input to '%s',"
                         " found %s instead. Maybe because freeze_graph wasn't"
                         " run first?" % (node.name, gamma_op))
      continue
    gamma_value = graph_rewrite_util.values_from_const(gamma_op)
    if gamma_value.shape != (channel_count,):
      tf_logging.warning("Incorrect shape for gamma, found %s, expected %s,"
                         " for node %s" % (str(gamma_value.shape), str(
                             (channel_count,)), node.name))
      continue

    variance_epsilon_value = node.attr[EPSILON_ATTR[node.op]].f
    nodes_to_skip[node.name] = True
    nodes_to_skip[weights_op.name] = True
    nodes_to_skip[conv_op.name] = True
    if bias is not None:
      nodes_to_skip[add_op.name] = True

    if scale_after_normalization(node):
      scale_value = (
          (1.0 / np.vectorize(math.sqrt)(var_value + variance_epsilon_value)) *
          gamma_value)
    else:
      scale_value = (
          1.0 / np.vectorize(math.sqrt)(var_value + variance_epsilon_value))
    offset_value = (-mean_value * scale_value) + beta_value
    scaled_weights = np.copy(weights)
    it = np.nditer(
        scaled_weights, flags=["multi_index"], op_flags=["readwrite"])
    if conv_op.op == "Conv2D":
      while not it.finished:
        current_scale = scale_value[it.multi_index[3]]
        it[0] *= current_scale
        it.iternext()
    elif conv_op.op == "DepthwiseConv2dNative":
      channel_multiplier = weights.shape[3]
      while not it.finished:
        current_scale = scale_value[it.multi_index[2] * channel_multiplier +
                                    it.multi_index[3]]
        it[0] *= current_scale
        it.iternext()
    scaled_weights_op = node_def_pb2.NodeDef()
    scaled_weights_op.op = "Const"
    scaled_weights_op.name = conv_op.name + '_weights'
    scaled_weights_op.attr["dtype"].CopyFrom(weights_op.attr["dtype"])
    scaled_weights_op.attr["value"].CopyFrom(
        attr_value_pb2.AttrValue(tensor=tensor_util.make_tensor_proto(
            scaled_weights, weights.dtype.type, weights.shape)))
    # Replace the weights node with scaled weights node
    for i, weights_node in enumerate(conv_op.input):
      if weights_node == weights_op.name:
        conv_op.input[i] = scaled_weights_op.name

    new_conv_op = node_def_pb2.NodeDef()
    new_conv_op.CopyFrom(conv_op)
    offset_op = node_def_pb2.NodeDef()
    offset_op.op = "Const"
    offset_op.name = conv_op.name + "_bn_offset"
    offset_op.attr["dtype"].CopyFrom(mean_op.attr["dtype"])
    offset_op.attr["value"].CopyFrom(
        attr_value_pb2.AttrValue(tensor=tensor_util.make_tensor_proto(
            offset_value, mean_value.dtype.type, offset_value.shape)))
    bias_add_op = node_def_pb2.NodeDef()
    bias_add_op.op = "BiasAdd"
    bias_add_op.name = node.name
    bias_add_op.attr["T"].CopyFrom(conv_op.attr["T"])
    bias_add_op.attr["data_format"].CopyFrom(conv_op.attr["data_format"])
    bias_add_op.input.extend([new_conv_op.name, offset_op.name])
    new_ops.extend([scaled_weights_op, new_conv_op, offset_op, bias_add_op])

  result_graph_def = graph_pb2.GraphDef()
  for node in input_graph_def.node:
    if node.name in nodes_to_skip:
      continue
    new_node = node_def_pb2.NodeDef()
    new_node.CopyFrom(node)
    retained_input = []
    for input_node in new_node.input:
      if not input_node.startswith('^') or input_node[1:] not in nodes_to_skip:
        retained_input.append(input_node)
    new_node.input[:] = retained_input

    result_graph_def.node.extend([new_node])

  result_graph_def.node.extend(new_ops)
  result_graph_def.versions.CopyFrom(input_graph_def.versions)
  return result_graph_def