Beispiel #1
0
    def __init__(self, nclass, h, w, c):
        layers = []
        identityblk = IdentityBlock(input_channels=c,
                                    input_shape=[h, w],
                                    nlayers=10)
        layers.append(identityblk)

        layers.append(
            Conv2D(input_channels=c,
                   num_filters=16,
                   kernel_size=(3, 3),
                   stride=(1, 1),
                   padding='SAME'))
        layers.append(RELU())
        h, w = same(in_height=h, in_width=w, stride=(1, 1), kernel_size=(3, 3))
        layers.append(BatchNormalization(input_shape=[h, w, 16]))

        denseblk = DenseBlock(input_channels=16,
                              input_shape=[h, w],
                              growth_rate=4,
                              nlayers=4)
        layers.append(denseblk)

        layers.append(
            Conv2D(input_channels=denseblk.output_channels,
                   num_filters=32,
                   kernel_size=(3, 3),
                   stride=(2, 2),
                   padding='SAME'))
        layers.append(RELU())
        h, w = same(in_height=h, in_width=w, stride=(2, 2), kernel_size=(3, 3))
        layers.append(Dropout(0.5))

        layers.append(
            Conv2D(input_channels=32,
                   num_filters=nclass,
                   kernel_size=(1, 1),
                   stride=(1, 1),
                   padding='SAME'))
        layers.append(RELU())
        h, w = same(in_height=h, in_width=w, stride=(1, 1), kernel_size=(1, 1))
        layers.append(BatchNormalization(input_shape=[h, w, nclass]))

        layers.append(
            AvgPooling(poolsize=(h, w), stride=(1, 1), padding='VALID'))
        layers.append(Flatten())
        layers.append(Softmax())

        self.startnode = tg.StartNode(input_vars=[None])
        model_hn = tg.HiddenNode(prev=[self.startnode], layers=layers)
        self.endnode = tg.EndNode(prev=[model_hn])
Beispiel #2
0
def model(nclass, h, w, c):
    with tf.name_scope('Cifar10AllCNN'):
        seq = tg.Sequential()
        seq.add(Conv2D(input_channels=c, num_filters=96, kernel_size=(3, 3), stride=(1, 1), padding='SAME'))
        seq.add(RELU())
        seq.add(TFBatchNormalization(name='b1'))
        h, w = same(in_height=h, in_width=w, stride=(1,1), kernel_size=(3,3))

        seq.add(Conv2D(input_channels=96, num_filters=96, kernel_size=(3, 3), stride=(1, 1), padding='SAME'))
        seq.add(RELU())
        h, w = same(in_height=h, in_width=w, stride=(1,1), kernel_size=(3,3))
        seq.add(Dropout(0.5))

        seq.add(Conv2D(input_channels=96, num_filters=96, kernel_size=(3, 3), stride=(2, 2), padding='SAME'))
        seq.add(RELU())
        seq.add(TFBatchNormalization(name='b3'))
        h, w = same(in_height=h, in_width=w, stride=(2,2), kernel_size=(3,3))

        seq.add(Conv2D(input_channels=96, num_filters=192, kernel_size=(3, 3), stride=(1, 1), padding='SAME'))
        seq.add(RELU())
        h, w = same(in_height=h, in_width=w, stride=(1,1), kernel_size=(3,3))
        seq.add(Dropout(0.5))

        seq.add(Conv2D(input_channels=192, num_filters=192, kernel_size=(3, 3), stride=(1, 1), padding='SAME'))
        seq.add(RELU())
        seq.add(TFBatchNormalization(name='b5'))
        h, w = same(in_height=h, in_width=w, stride=(1,1), kernel_size=(3,3))

        seq.add(Conv2D(input_channels=192, num_filters=192, kernel_size=(3, 3), stride=(2, 2), padding='SAME'))
        seq.add(RELU())
        h, w = same(in_height=h, in_width=w, stride=(2,2), kernel_size=(3,3))
        seq.add(Dropout(0.5))

        seq.add(Conv2D(input_channels=192, num_filters=192, kernel_size=(3, 3), stride=(1, 1), padding='SAME'))
        seq.add(RELU())
        seq.add(TFBatchNormalization(name='b7'))
        h, w = same(in_height=h, in_width=w, stride=(1,1), kernel_size=(3,3))

        seq.add(Conv2D(input_channels=192, num_filters=192, kernel_size=(1, 1), stride=(1, 1), padding='SAME'))
        seq.add(RELU())
        h, w = same(in_height=h, in_width=w, stride=(1,1), kernel_size=(1,1))
        seq.add(Dropout(0.5))

        seq.add(Conv2D(input_channels=192, num_filters=nclass, kernel_size=(1, 1), stride=(1, 1), padding='SAME'))
        seq.add(RELU())
        seq.add(TFBatchNormalization(name='b9'))
        h, w = same(in_height=h, in_width=w, stride=(1,1), kernel_size=(1,1))

        seq.add(AvgPooling(poolsize=(h, w), stride=(1,1), padding='VALID'))
        seq.add(Flatten())
        seq.add(Softmax())
    return seq
Beispiel #3
0
def model():
    with tf.name_scope('MnistCNN'):
        seq = tg.Sequential()
        seq.add(
            Conv2D(input_channels=1,
                   num_filters=32,
                   kernel_size=(3, 3),
                   stride=(1, 1),
                   padding='SAME'))
        h, w = same(in_height=28,
                    in_width=28,
                    stride=(1, 1),
                    kernel_size=(3, 3))
        seq.add(BatchNormalization(input_shape=[h, w, 32]))
        seq.add(RELU())

        seq.add(MaxPooling(poolsize=(2, 2), stride=(2, 2), padding='SAME'))
        h, w = same(in_height=h, in_width=w, stride=(2, 2), kernel_size=(2, 2))
        seq.add(LRN())

        seq.add(
            Conv2D(input_channels=32,
                   num_filters=64,
                   kernel_size=(3, 3),
                   stride=(1, 1),
                   padding='SAME'))
        h, w = same(in_height=h, in_width=w, stride=(1, 1), kernel_size=(3, 3))
        seq.add(BatchNormalization(input_shape=[h, w, 64]))
        seq.add(RELU())

        seq.add(MaxPooling(poolsize=(2, 2), stride=(2, 2), padding='SAME'))
        h, w = same(in_height=h, in_width=w, stride=(2, 2), kernel_size=(2, 2))
        seq.add(LRN())
        seq.add(Flatten())
        seq.add(Linear(int(h * w * 64), 128))
        seq.add(BatchNormalization(input_shape=[128]))
        seq.add(Tanh())
        seq.add(Dropout(0.8))
        seq.add(Linear(128, 256))
        seq.add(BatchNormalization(input_shape=[256]))
        seq.add(Tanh())
        seq.add(Dropout(0.8))
        seq.add(Linear(256, 10))
        seq.add(Softmax())
    return seq
Beispiel #4
0
    def __init__(self, nclass, h, w, c):
        layers = []
        layers.append(
            Conv2D(input_channels=c,
                   num_filters=96,
                   kernel_size=(3, 3),
                   stride=(1, 1),
                   padding='SAME'))
        layers.append(RELU())
        h, w = same(in_height=h, in_width=w, stride=(1, 1), kernel_size=(3, 3))
        layers.append(BatchNormalization(input_shape=[h, w, 96]))

        layers.append(
            Conv2D(input_channels=96,
                   num_filters=96,
                   kernel_size=(3, 3),
                   stride=(1, 1),
                   padding='SAME'))
        layers.append(RELU())
        h, w = same(in_height=h, in_width=w, stride=(1, 1), kernel_size=(3, 3))
        layers.append(Dropout(0.5))

        layers.append(
            Conv2D(input_channels=96,
                   num_filters=96,
                   kernel_size=(3, 3),
                   stride=(2, 2),
                   padding='SAME'))
        layers.append(RELU())
        h, w = same(in_height=h, in_width=w, stride=(2, 2), kernel_size=(3, 3))
        layers.append(BatchNormalization(input_shape=[h, w, 96]))

        layers.append(
            Conv2D(input_channels=96,
                   num_filters=192,
                   kernel_size=(3, 3),
                   stride=(1, 1),
                   padding='SAME'))
        layers.append(RELU())
        h, w = same(in_height=h, in_width=w, stride=(1, 1), kernel_size=(3, 3))
        layers.append(Dropout(0.5))

        layers.append(
            Conv2D(input_channels=192,
                   num_filters=192,
                   kernel_size=(3, 3),
                   stride=(1, 1),
                   padding='SAME'))
        layers.append(RELU())
        h, w = same(in_height=h, in_width=w, stride=(1, 1), kernel_size=(3, 3))
        layers.append(BatchNormalization(input_shape=[h, w, 192]))

        layers.append(
            Conv2D(input_channels=192,
                   num_filters=192,
                   kernel_size=(3, 3),
                   stride=(2, 2),
                   padding='SAME'))
        layers.append(RELU())
        h, w = same(in_height=h, in_width=w, stride=(2, 2), kernel_size=(3, 3))
        layers.append(Dropout(0.5))

        layers.append(
            Conv2D(input_channels=192,
                   num_filters=192,
                   kernel_size=(3, 3),
                   stride=(1, 1),
                   padding='SAME'))
        layers.append(RELU())
        h, w = same(in_height=h, in_width=w, stride=(1, 1), kernel_size=(3, 3))
        layers.append(BatchNormalization(input_shape=[h, w, 192]))

        layers.append(
            Conv2D(input_channels=192,
                   num_filters=192,
                   kernel_size=(1, 1),
                   stride=(1, 1),
                   padding='SAME'))
        layers.append(RELU())
        h, w = same(in_height=h, in_width=w, stride=(1, 1), kernel_size=(1, 1))
        layers.append(Dropout(0.5))

        layers.append(
            Conv2D(input_channels=192,
                   num_filters=nclass,
                   kernel_size=(1, 1),
                   stride=(1, 1),
                   padding='SAME'))
        layers.append(RELU())
        h, w = same(in_height=h, in_width=w, stride=(1, 1), kernel_size=(1, 1))
        layers.append(BatchNormalization(input_shape=[h, w, nclass]))

        layers.append(
            AvgPooling(poolsize=(h, w), stride=(1, 1), padding='VALID'))
        layers.append(Flatten())
        layers.append(Softmax())
        self.startnode = tg.StartNode(input_vars=[None])
        model_hn = tg.HiddenNode(prev=[self.startnode], layers=layers)
        self.endnode = tg.EndNode(prev=[model_hn])
Beispiel #5
0
def classifier(X_ph, X_gen_ph, h, w):
    with tf.variable_scope('Classifier'):
        X_sn = tg.StartNode(input_vars=[X_ph])
        X_gen_sn = tg.StartNode(input_vars=[X_gen_ph])
        h1, w1 = same(in_height=h,
                      in_width=w,
                      stride=(1, 1),
                      kernel_size=(3, 3))
        h2, w2 = same(in_height=h1,
                      in_width=w1,
                      stride=(2, 2),
                      kernel_size=(2, 2))
        h3, w3 = same(in_height=h2,
                      in_width=w2,
                      stride=(1, 1),
                      kernel_size=(3, 3))
        h4, w4 = same(in_height=h3,
                      in_width=w3,
                      stride=(2, 2),
                      kernel_size=(2, 2))

        print('---', h, w)
        X_hn = tg.HiddenNode(prev=[X_sn],
                             layers=[
                                 Conv2D(input_channels=1,
                                        num_filters=32,
                                        kernel_size=(3, 3),
                                        stride=(1, 1),
                                        padding='SAME'),
                                 BatchNormalization(input_shape=[h1, w1, 32]),
                                 RELU(),
                                 MaxPooling(poolsize=(2, 2),
                                            stride=(2, 2),
                                            padding='SAME'),
                                 LRN(),
                                 Conv2D(input_channels=32,
                                        num_filters=64,
                                        kernel_size=(3, 3),
                                        stride=(1, 1),
                                        padding='SAME'),
                                 BatchNormalization(input_shape=[h3, w3, 64]),
                                 RELU(),
                                 MaxPooling(poolsize=(2, 2),
                                            stride=(2, 2),
                                            padding='SAME'),
                                 Flatten(),
                             ])

        X_gen_hn = tg.HiddenNode(
            prev=[X_gen_sn],
            layers=[
                Conv2D(input_channels=1,
                       num_filters=32,
                       kernel_size=(3, 3),
                       stride=(1, 1),
                       padding='SAME'),
                BatchNormalization(input_shape=[h1, w1, 32]),
                RELU(),
                MaxPooling(poolsize=(2, 2), stride=(2, 2), padding='SAME'),
                LRN(),
                Conv2D(input_channels=32,
                       num_filters=64,
                       kernel_size=(3, 3),
                       stride=(1, 1),
                       padding='SAME'),
                BatchNormalization(input_shape=[h3, w3, 64]),
                RELU(),
                MaxPooling(poolsize=(2, 2), stride=(2, 2), padding='SAME'),
                Flatten(),
            ])

        print('===', h4 * w4 * 64 * 2)

        merge_hn = tg.HiddenNode(prev=[X_hn, X_gen_hn],
                                 input_merge_mode=Concat(),
                                 layers=[
                                     Linear(h4 * w4 * 64 * 2, 100),
                                     RELU(),
                                     BatchNormalization(input_shape=[100]),
                                     Linear(100, 1),
                                     Sigmoid()
                                 ])

        en = tg.EndNode(prev=[merge_hn])

        graph = tg.Graph(start=[X_sn, X_gen_sn], end=[en])
        y_train, = graph.train_fprop()
        y_test, = graph.test_fprop()
    return y_train, y_test
Beispiel #6
0
    def discriminator_allconv(self):
        if not self.generator_called:
            raise Exception(
                'self.generator() has to be called first before self.discriminator()'
            )
        scope = 'Discriminator'
        with self.tf_graph.as_default():
            with tf.name_scope(scope):
                # h1, w1 = valid(self.h, self.w, kernel_size=(5,5), stride=(1,1))
                # h2, w2 = valid(h1, w1, kernel_size=(5,5), stride=(2,2))
                # h3, w3 = valid(h2, w2, kernel_size=(5,5), stride=(2,2))
                # flat_dim = int(h3*w3*32)

                dis_real_sn = tg.StartNode(input_vars=[self.real_ph])

                # fake_ph = tf.placeholder('float32', [None, self.h, self.w, 1], name='fake')
                # fake_sn = tg.StartNode(input_vars=[fake_ph])

                h, w = same(in_height=self.h,
                            in_width=self.w,
                            stride=(1, 1),
                            kernel_size=(3, 3))
                h, w = same(in_height=h,
                            in_width=w,
                            stride=(1, 1),
                            kernel_size=(3, 3))
                h, w = same(in_height=h,
                            in_width=w,
                            stride=(2, 2),
                            kernel_size=(3, 3))
                h, w = same(in_height=h,
                            in_width=w,
                            stride=(1, 1),
                            kernel_size=(3, 3))
                h, w = same(in_height=h,
                            in_width=w,
                            stride=(1, 1),
                            kernel_size=(3, 3))

                h, w = same(in_height=h,
                            in_width=w,
                            stride=(2, 2),
                            kernel_size=(3, 3))
                h, w = same(in_height=h,
                            in_width=w,
                            stride=(1, 1),
                            kernel_size=(1, 1))
                h, w = same(in_height=h,
                            in_width=w,
                            stride=(1, 1),
                            kernel_size=(3, 3))

                h, w = same(in_height=h,
                            in_width=w,
                            stride=(1, 1),
                            kernel_size=(1, 1))
                print('h, w', h, w)
                print('===============')
                # h, w = valid(in_height=h, in_width=w, stride=(1,1), kernel_size=(h,w))

                disc_hn = tg.HiddenNode(
                    prev=[dis_real_sn, self.gen_hn],
                    layers=[
                        Dropout(0.2),
                        # TFBatchNormalization(name='b0'),
                        Conv2D(input_channels=self.c,
                               num_filters=96,
                               kernel_size=(3, 3),
                               stride=(1, 1),
                               padding='SAME'),
                        LeakyRELU(),
                        TFBatchNormalization(name='b1'),
                        # Dropout(0.5),
                        Conv2D(input_channels=96,
                               num_filters=96,
                               kernel_size=(3, 3),
                               stride=(1, 1),
                               padding='SAME'),
                        LeakyRELU(),
                        # TFBatchNormalization(name='b2'),
                        Dropout(0.5),
                        Conv2D(input_channels=96,
                               num_filters=96,
                               kernel_size=(3, 3),
                               stride=(2, 2),
                               padding='SAME'),
                        LeakyRELU(),
                        TFBatchNormalization(name='b3'),
                        # Dropout(0.5),
                        Conv2D(input_channels=96,
                               num_filters=192,
                               kernel_size=(3, 3),
                               stride=(1, 1),
                               padding='SAME'),
                        LeakyRELU(),
                        # TFBatchNormalization(name='b4'),
                        Dropout(0.5),
                        Conv2D(input_channels=192,
                               num_filters=192,
                               kernel_size=(3, 3),
                               stride=(1, 1),
                               padding='SAME'),
                        LeakyRELU(),
                        TFBatchNormalization(name='b5'),
                        # Dropout(0.5),
                        Conv2D(input_channels=192,
                               num_filters=192,
                               kernel_size=(3, 3),
                               stride=(2, 2),
                               padding='SAME'),
                        LeakyRELU(),
                        # TFBatchNormalization(name='b6'),
                        Dropout(0.5),
                        Conv2D(input_channels=192,
                               num_filters=192,
                               kernel_size=(3, 3),
                               stride=(1, 1),
                               padding='SAME'),
                        LeakyRELU(),
                        TFBatchNormalization(name='b7'),
                        # Dropout(0.5),
                        Conv2D(input_channels=192,
                               num_filters=192,
                               kernel_size=(1, 1),
                               stride=(1, 1),
                               padding='SAME'),
                        LeakyRELU(),
                        # TFBatchNormalization(name='b8'),
                        Dropout(0.5),
                        Conv2D(input_channels=192,
                               num_filters=self.nclass,
                               kernel_size=(1, 1),
                               stride=(1, 1),
                               padding='SAME'),
                        LeakyRELU(),
                        TFBatchNormalization(name='b9'),
                        # Dropout(0.5),
                        AvgPooling(poolsize=(h, w),
                                   stride=(1, 1),
                                   padding='VALID'),
                        Flatten(),
                    ])

                print('h,w', h, w)
                print('==============')
                class_hn = tg.HiddenNode(
                    prev=[disc_hn],
                    layers=[
                        Linear(self.nclass, self.nclass),
                        # Softmax()
                    ])

                judge_hn = tg.HiddenNode(
                    prev=[disc_hn],
                    layers=[
                        Linear(self.nclass, 1),
                        #  Sigmoid()
                    ])

                real_class_en = tg.EndNode(prev=[class_hn])
                real_judge_en = tg.EndNode(prev=[judge_hn])

                fake_class_en = tg.EndNode(prev=[class_hn])
                fake_judge_en = tg.EndNode(prev=[judge_hn])

                graph = tg.Graph(start=[dis_real_sn],
                                 end=[real_class_en, real_judge_en])
                real_train = graph.train_fprop()
                real_valid = graph.test_fprop()

                graph = tg.Graph(start=[self.noise_sn, self.gen_real_sn],
                                 end=[fake_class_en, fake_judge_en])
                fake_train = graph.train_fprop()
                fake_valid = graph.test_fprop()

                dis_var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                                 scope=scope)

        return self.real_ph, real_train, real_valid, fake_train, fake_valid, dis_var_list
Beispiel #7
0
def train():

    batchsize = 64
    learning_rate = 0.001
    max_epoch = 10

    X_train = np.random.rand(1000, 32, 32, 3)
    M_train = np.random.rand(1000, 32, 32, 1)

    X_valid = np.random.rand(1000, 32, 32, 3)
    M_valid = np.random.rand(1000, 32, 32, 1)

    X_ph = tf.placeholder('float32', [None, 32, 32, 3])
    M_ph = tf.placeholder('float32', [None, 32, 32, 1])

    h, w = 32, 32

    model = tg.Sequential()
    model.add(
        Conv2D(input_channels=3,
               num_filters=8,
               kernel_size=(5, 5),
               stride=(2, 2),
               padding='SAME'))
    h1, w1 = same(h, w, kernel_size=(5, 5), stride=(2, 2))
    model.add(RELU())
    model.add(
        Conv2D(input_channels=8,
               num_filters=16,
               kernel_size=(5, 5),
               stride=(2, 2),
               padding='SAME'))
    h2, w2 = same(h1, w1, kernel_size=(5, 5), stride=(2, 2))
    model.add(RELU())
    model.add(
        Conv2D_Transpose(input_channels=16,
                         num_filters=8,
                         output_shape=(h1, w1),
                         kernel_size=(5, 5),
                         stride=(2, 2),
                         padding='SAME'))
    model.add(RELU())
    model.add(
        Conv2D_Transpose(input_channels=8,
                         num_filters=1,
                         output_shape=(h, w),
                         kernel_size=(5, 5),
                         stride=(2, 2),
                         padding='SAME'))
    model.add(RELU())

    iter_model = tg.Sequential()
    iter_model.add(
        Conv2D(input_channels=1,
               num_filters=8,
               kernel_size=(5, 5),
               stride=(2, 2),
               padding='SAME'))
    iter_model.add(RELU())
    iter_model.add(
        Conv2D_Transpose(input_channels=8,
                         num_filters=1,
                         output_shape=(h, w),
                         kernel_size=(5, 5),
                         stride=(2, 2),
                         padding='SAME'))
    model.add(Iterative(sequential=iter_model, num_iter=10))

    M_train_s = model.train_fprop(X_ph)
    M_valid_s = model.test_fprop(X_ph)

    train_mse = tf.reduce_mean((M_ph - M_train_s)**2)
    valid_mse = tf.reduce_mean((M_ph - M_valid_s)**2)

    data_train = tg.SequentialIterator(X_train, M_train, batchsize=batchsize)
    data_valid = tg.SequentialIterator(X_valid, M_valid, batchsize=batchsize)

    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(train_mse)

    with tf.Session() as sess:
        init = tf.global_variables_initializer()
        sess.run(init)
        for epoch in range(max_epoch):
            print('epoch:', epoch)
            print('..training')
            for X_batch, M_batch in data_train:
                sess.run(optimizer, feed_dict={X_ph: X_batch, M_ph: M_batch})

            print('..validating')
            valid_mse_score = sess.run(valid_mse,
                                       feed_dict={
                                           X_ph: X_valid,
                                           M_ph: M_valid
                                       })
            print('valid mse score:', valid_mse_score)