def svd(
     self,
     tensor: Tensor,
     pivot_axis: int = -1,
     max_singular_values: Optional[int] = None,
     max_truncation_error: Optional[float] = None,
     relative: Optional[bool] = False
 ) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
   return decompositions.svd(self.bs, tensor, pivot_axis, max_singular_values,
                             max_truncation_error, relative)
Beispiel #2
0
def test_singular_values(dtype, R, R1, num_charges):
    np.random.seed(10)
    D = 30
    charges = [
        BaseCharge(np.random.randint(-5, 6, (D, num_charges)),
                   charge_types=[U1Charge] * num_charges) for n in range(R)
    ]
    flows = [True] * R
    A = BlockSparseTensor.random(
        [Index(charges[n], flows[n]) for n in range(R)], dtype=dtype)
    _, s, _, _ = decompositions.svd(bs, A, R1)
    _, s_dense, _, _ = np_decompositions.svd(np, A.todense(), R1)
    np.testing.assert_almost_equal(np.sort(s.todense()),
                                   np.sort(s_dense[s_dense > 1E-13]))
Beispiel #3
0
def test_max_singular_values(dtype, R, R1, num_charges):
    np.random.seed(10)
    D = 30
    max_singular_values = 12
    charges = [
        BaseCharge(np.random.randint(-5, 6, (D, num_charges)),
                   charge_types=[U1Charge] * num_charges) for n in range(R)
    ]
    flows = [True] * R
    A = BlockSparseTensor.random(
        [Index(charges[n], flows[n]) for n in range(R)], dtype=dtype)
    _, s, _, _ = decompositions.svd(bs,
                                    A,
                                    R1,
                                    max_singular_values=max_singular_values)
    assert len(s.data) <= max_singular_values
Beispiel #4
0
def test_svds(dtype, R, R1, num_charges):
    np.random.seed(10)
    D = 30
    charges = [
        BaseCharge(np.random.randint(-5, 6, (D, num_charges)),
                   charge_types=[U1Charge] * num_charges) for n in range(R)
    ]
    flows = [True] * R
    A = BlockSparseTensor.random(
        [Index(charges[n], flows[n]) for n in range(R)], dtype=dtype)

    u, s, v, _ = decompositions.svd(bs, A, R1)
    u_dense, s_dense, v_dense, _ = np_decompositions.svd(np, A.todense(), R1)
    res1 = bs.tensordot(bs.tensordot(u, bs.diag(s), 1), v, 1)
    res2 = np.tensordot(np.tensordot(u_dense, np.diag(s_dense), 1), v_dense, 1)
    np.testing.assert_almost_equal(res1.todense(), res2)
Beispiel #5
0
def test_max_singular_values_larger_than_bond_dimension(dtype, num_charges):
    np.random.seed(10)
    R = 2
    D = 30
    charges = [
        BaseCharge(np.random.randint(-5, 6, (D, num_charges)),
                   charge_types=[U1Charge] * num_charges) for n in range(R)
    ]

    flows = [True] * R
    random_matrix = BlockSparseTensor.random(
        [Index(charges[n], flows[n]) for n in range(R)], dtype=dtype)
    U, S, V = bs.svd(random_matrix, full_matrices=False)
    S.data = np.array(range(len(S.data)))
    val = U @ bs.diag(S) @ V
    _, S2, _, _ = decompositions.svd(bs, val, 1, max_singular_values=40)
    assert S2.shape == S.shape
Beispiel #6
0
def test_max_truncation_error(dtype, num_charges):
    np.random.seed(10)
    R = 2
    D = 30
    charges = [
        BaseCharge(np.random.randint(-5, 6, (D, num_charges)),
                   charge_types=[U1Charge] * num_charges) for n in range(R)
    ]

    flows = [True] * R
    random_matrix = BlockSparseTensor.random(
        [Index(charges[n], flows[n]) for n in range(R)], dtype=dtype)

    U, S, V = bs.svd(random_matrix, full_matrices=False)
    svals = np.array(range(1, len(S.data) + 1)).astype(np.float64)
    S.data = svals[::-1]
    val = U @ bs.diag(S) @ V
    trunc = 8
    mask = np.sqrt(np.cumsum(np.square(svals))) >= trunc
    _, S2, _, _ = decompositions.svd(bs, val, 1, max_truncation_error=trunc)
    np.testing.assert_allclose(S2.data, svals[mask][::-1])