Beispiel #1
0
def test_fuse_charges_raises():
    num_charges = 5
    B = 6
    D = 10
    np_charges = [
        np.random.randint(-B // 2, B // 2 + 1, D).astype(np.int16)
        for _ in range(num_charges)
    ]
    charges = [U1Charge(c) for c in np_charges]
    flows = [True, False, True, False]
    with pytest.raises(ValueError):
        fuse_charges(charges, flows)
def compute_sparse_lookup(
    charges: List[BaseCharge], flows: Union[np.ndarray, List[bool]],
    target_charges: BaseCharge) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
  """
  Compute lookup table for how dense index positions map 
  to sparse index positions, treating only those elements as non-zero
  whose charges fuse to `target_charges`.
  Args:
    charges: List of `BaseCharge` objects.
    flows: A list of `bool`; the flow directions.
    target_charges: A `BaseCharge`; the target charges for which 
      the fusion of `charges` is non-zero.
  Returns:
    lookup: An np.ndarray of positive numbers between `0` and
      `len(unique_charges)`. The position of values `n` in `lookup` 
      are positions with charge values `unique_charges[n]`.
    unique_charges: The unique charges of fusion of `charges`
    label_to_unique: The integer labels of the unique charges.
  """

  fused_charges = fuse_charges(charges, flows)
  unique_charges, inverse = fused_charges.unique(
      return_inverse=True, sort=False)
  _, label_to_unique, _ = unique_charges.intersect(
      target_charges, return_indices=True)
  tmp = np.full(
      len(unique_charges), fill_value=-1, dtype=charges[0].label_dtype)

  tmp[label_to_unique] = label_to_unique
  lookup = tmp[inverse]
  lookup = lookup[lookup >= 0]

  return lookup, unique_charges, np.sort(label_to_unique)
Beispiel #3
0
def test_BlockSparseTensor_init():
    np.random.seed(10)
    D = 10
    rank = 4
    flows = np.random.choice([True, False], size=rank, replace=True)
    charges = [
        U1Charge.random(dimension=D, minval=-5, maxval=5) for _ in range(rank)
    ]
    fused = fuse_charges(charges, flows)
    data = np.random.uniform(0,
                             1,
                             size=len(
                                 np.nonzero(fused == np.zeros((1, 1)))[0]))
    order = [[n] for n in range(rank)]
    arr = BlockSparseTensor(data, charges, flows, order=order)
    np.testing.assert_allclose(data, arr.data)
    for c1, c2 in zip(charges, arr.charges):
        assert charge_equal(c1, c2[0])
    for c1, c2 in zip(charges, arr._charges):
        assert charge_equal(c1, c2)
    data = np.random.uniform(
        0, 1, size=len(np.nonzero(fused == np.zeros((1, 1)))[0]) + 1)
    with pytest.raises(ValueError):
        arr = BlockSparseTensor(data,
                                charges,
                                flows,
                                order=order,
                                check_consistency=True)
Beispiel #4
0
def test_diagonal(Ds, dtype, num_charges, flow):
    np.random.seed(10)
    backend = symmetric_backend.SymmetricBackend()
    np_flow = -np.int((np.int(flow) - 0.5) * 2)
    indices = [
        Index(
            BaseCharge(np.random.randint(-2, 3, (Ds[n], num_charges)),
                       charge_types=[U1Charge] * num_charges), flow)
        for n in range(2)
    ]
    arr = BlockSparseTensor.random(indices, dtype=dtype)
    fused = fuse_charges(arr.flat_charges, arr.flat_flows)
    inds = np.nonzero(fused == np.zeros((1, num_charges), dtype=np.int16))[0]
    # pylint: disable=no-member
    left, _ = np.divmod(inds, Ds[1])
    unique = np.unique(np_flow * (indices[0]._charges[0].charges[left, :]),
                       axis=0)
    diagonal = backend.diagonal(arr)

    sparse_blocks, _, block_shapes = _find_diagonal_sparse_blocks(
        arr.flat_charges, arr.flat_flows, 1)
    data = np.concatenate([
        np.diag(np.reshape(arr.data[sparse_blocks[n]], block_shapes[:, n]))
        for n in range(len(sparse_blocks))
    ])
    np.testing.assert_allclose(data, diagonal.data)
    np.testing.assert_allclose(unique, diagonal.flat_charges[0].unique_charges)
    with pytest.raises(NotImplementedError):
        diagonal = backend.diagonal(arr, axis1=0)
    with pytest.raises(NotImplementedError):
        diagonal = backend.diagonal(arr, axis2=1)
    with pytest.raises(NotImplementedError):
        diagonal = backend.diagonal(arr, offset=1)
def test_get_diag(dtype, num_charges, Ds, flow):
  np.random.seed(10)
  np_flow = -np.int((np.int(flow) - 0.5) * 2)
  indices = [
      Index(
          BaseCharge(
              np.random.randint(-2, 3, (num_charges, Ds[n])),
              charge_types=[U1Charge] * num_charges), flow) for n in range(2)
  ]
  arr = BlockSparseTensor.random(indices, dtype=dtype)
  fused = fuse_charges(arr.flat_charges, arr.flat_flows)
  inds = np.nonzero(fused == np.zeros((num_charges, 1), dtype=np.int16))[0]
  # pylint: disable=no-member
  left, _ = np.divmod(inds, Ds[1])
  unique = np.unique(
      np_flow * (indices[0]._charges[0].charges[:, left]), axis=1)
  diagonal = diag(arr)
  sparse_blocks, _, block_shapes = _find_diagonal_sparse_blocks(
      arr.flat_charges, arr.flat_flows, 1)
  data = np.concatenate([
      np.diag(np.reshape(arr.data[sparse_blocks[n]], block_shapes[:, n]))
      for n in range(len(sparse_blocks))
  ])
  np.testing.assert_allclose(data, diagonal.data)
  np.testing.assert_allclose(unique, diagonal.flat_charges[0].unique_charges)
Beispiel #6
0
def test_index_charges():
    D = 10
    B = 4
    dtype = np.int16
    np.random.seed(10)
    q1 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype))
    q2 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype))
    i = Index(charges=[q1, q2], flow=[False, True])
    fused = fuse_charges([q1, q2], [False, True])
    np.testing.assert_allclose(i.charges.charges, fused.charges)
def compute_fused_charge_degeneracies(
        charges: List[BaseCharge],
        flows: Union[np.ndarray, List[bool]]) -> Tuple[BaseCharge, np.ndarray]:
    """
  For a list of charges, computes all possible fused charges resulting
  from fusing `charges` and their respective degeneracies
  Args:
    charges: List of `BaseCharge`, one for each leg of a 
      tensor. 
    flows: A list of bool, one for each leg of a tensor.
      with values `False` or `True` denoting inflowing and 
      outflowing charge direction, respectively.
  Returns:
    BaseCharge: The unique fused charges.
    np.ndarray: The degeneracies of each unqiue fused charge.
  """
    if len(charges) == 1:
        return (charges[0] * flows[0]).unique(return_counts=True)
    dims = [c.dim for c in charges]
    # for small dims is faster to fuse all and use unique
    # directly
    if reduce(mul, dims, 1) < 20000:
        fused = fuse_charges(charges, flows)
        return fused.unique(return_counts=True)

    partition = _find_best_partition(dims)
    fused_left = fuse_charges(charges[:partition], flows[:partition])
    fused_right = fuse_charges(charges[partition:], flows[partition:])
    left_unique, left_degens = fused_left.unique(return_counts=True)
    right_unique, right_degens = fused_right.unique(return_counts=True)
    fused = left_unique + right_unique
    unique_charges, charge_labels = fused.unique(return_inverse=True)
    fused_degeneracies = fuse_degeneracies(left_degens, right_degens)
    new_ord = np.argsort(charge_labels)
    all_degens = np.cumsum(fused_degeneracies[new_ord])
    cum_degens = all_degens[np.flatnonzero(np.diff(charge_labels[new_ord]))]
    final_degeneracies = np.append(cum_degens, all_degens[-1]) - np.append(
        0, cum_degens)
    return unique_charges, final_degeneracies
 def todense(self) -> np.ndarray:
     """
 Map the sparse tensor to dense storage.
 
 """
     if len(self.shape) == 0:
         return self.data
     out = np.asarray(np.zeros(self.shape, dtype=self.dtype).flat)
     out[np.nonzero(
         fuse_charges(self._charges, self._flows) ==
         self._charges[0].identity_charges)[0]] = self.data
     result = np.reshape(out, [c.dim for c in self._charges])
     flat_order = flatten(self._order)
     return result.transpose(flat_order).reshape(self.shape)
Beispiel #9
0
def test_fuse_charges():
    num_charges = 5
    B = 6
    D = 10
    np_charges = [
        np.random.randint(-B // 2, B // 2 + 1, D).astype(np.int16)
        for _ in range(num_charges)
    ]
    charges = [U1Charge(c) for c in np_charges]
    flows = [True, False, True, False, True]
    np_flows = np.ones(5, dtype=np.int16)
    np_flows[flows] = -1
    fused = fuse_charges(charges, flows)
    np_fused = fuse_ndarrays([c * f for c, f in zip(np_charges, np_flows)])
    np.testing.assert_allclose(np.squeeze(fused.charges), np_fused)
Beispiel #10
0
def test_todense(num_charges, chargetype):
    np.random.seed(10)
    Ds = [8, 9, 10, 11]
    rank = 4
    flows = np.random.choice([True, False], size=rank, replace=True)
    charges = [get_charge(chargetype, num_charges, Ds[n]) for n in range(rank)]
    fused = fuse_charges(charges, flows)
    mask = fused == np.zeros((num_charges, 1))
    inds = np.nonzero(mask)[0]
    inds2 = np.nonzero(np.logical_not(mask))[0]
    indices = [Index(charges[n], flows[n]) for n in range(rank)]
    arr = BlockSparseTensor.randn(indices)
    dense = np.array(arr.todense().flat)
    np.testing.assert_allclose(dense[inds], arr.data)
    np.testing.assert_allclose(dense[inds2], 0)
Beispiel #11
0
def test_fromdense(num_charges, chargetype):
    np.random.seed(10)
    Ds = [8, 9, 10, 11]
    rank = 4
    flows = np.random.choice([True, False], size=rank, replace=True)
    charges = [get_charge(chargetype, num_charges, Ds[n]) for n in range(rank)]
    fused = fuse_charges(charges, flows)
    mask = fused == np.zeros((1, num_charges))
    inds = np.nonzero(mask)[0]
    inds2 = np.nonzero(np.logical_not(mask))[0]
    indices = [Index(charges[n], flows[n]) for n in range(rank)]

    dense = np.random.random_sample(Ds)
    arr = BlockSparseTensor.fromdense(indices, dense)
    dense_arr = arr.todense()

    np.testing.assert_allclose(np.ravel(dense)[inds], arr.data)
    np.testing.assert_allclose(np.ravel(dense_arr)[inds2], 0)
def _find_transposed_diagonal_sparse_blocks(
    charges: List[BaseCharge],
    flows: Union[np.ndarray, List[bool]],
    tr_partition: int,
    order: Optional[Union[List, np.ndarray]] = None,
) -> Tuple[List, BaseCharge, np.ndarray]:
  """
  Find the diagonal blocks of a transposed tensor with 
  meta-data `charges` and `flows`. `charges` and `flows` 
  are the charges and flows of the untransposed tensor, 
  `order` is the final transposition, and `tr_partition`
  is the partition of the transposed tensor according to 
  which the diagonal blocks should be found.
  Args:
    charges: List of `BaseCharge`, one for each leg of a tensor. 
    flows: A list of bool, one for each leg of a tensor.
      with values `False` or `True` denoting inflowing and 
      outflowing charge direction, respectively.
    tr_partition: Location of the transposed tensor partition 
    (i.e. such that the tensor is viewed as a matrix between 
    `charges[order[:partition]]` and `charges[order[partition:]]`).
    order: Order with which to permute the tensor axes. 
  Returns:
    block_maps (List[np.ndarray]): list of integer arrays, which each 
      containing the location of a symmetry block in the data vector.
    block_qnums (BaseCharge): The charges of the corresponding blocks.
    block_dims (np.ndarray): 2-by-m array of matrix dimensions of each block.
  """
  flows = np.asarray(flows)
  cacher = get_cacher()
  if cacher.do_caching:
    hash_val = _to_string(charges, flows, tr_partition, order)
    if hash_val in cacher.cache:
      return cacher.cache[hash_val]

  if np.array_equal(order, None) or (np.array_equal(
      np.array(order), np.arange(len(charges)))):
    # no transpose order
    return _find_diagonal_sparse_blocks(charges, flows, tr_partition)

  # general case: non-trivial transposition is required
  num_inds = len(charges)
  tensor_dims = np.array([charges[n].dim for n in range(num_inds)], dtype=int)
  strides = np.append(np.flip(np.cumprod(np.flip(tensor_dims[1:]))), 1)

  # compute qnums of row/cols in original tensor
  orig_partition = _find_best_partition(tensor_dims)
  orig_width = np.prod(tensor_dims[orig_partition:])

  orig_unique_row_qnums = compute_unique_fused_charges(charges[:orig_partition],
                                                       flows[:orig_partition])
  orig_unique_col_qnums, orig_col_degen = compute_fused_charge_degeneracies(
      charges[orig_partition:], np.logical_not(flows[orig_partition:]))

  orig_block_qnums, row_map, col_map = intersect(
      orig_unique_row_qnums.unique_charges,
      orig_unique_col_qnums.unique_charges,
      axis=0,
      return_indices=True)
  orig_num_blocks = orig_block_qnums.shape[0]
  if orig_num_blocks == 0:
    # special case: trivial number of non-zero elements
    obj = charges[0].__new__(type(charges[0]))
    obj.__init__(
        np.empty((0, charges[0].num_symmetries), dtype=charges[0].dtype),
        np.arange(0, dtype=charges[0].label_dtype), charges[0].charge_types)

    return [], obj, np.empty((2, 0), dtype=SIZE_T)

  orig_row_ind = fuse_charges(charges[:orig_partition], flows[:orig_partition])
  orig_col_ind = fuse_charges(charges[orig_partition:],
                              np.logical_not(flows[orig_partition:]))

  inv_row_map = -np.ones(
      orig_unique_row_qnums.unique_charges.shape[0],
      dtype=charges[0].label_dtype)
  inv_row_map[row_map] = np.arange(len(row_map), dtype=charges[0].label_dtype)

  all_degens = np.append(orig_col_degen[col_map],
                         0)[inv_row_map[orig_row_ind.charge_labels]]
  all_cumul_degens = np.cumsum(np.insert(all_degens[:-1], 0, 0)).astype(SIZE_T)
  dense_to_sparse = np.empty(orig_width, dtype=SIZE_T)
  for n in range(orig_num_blocks):
    dense_to_sparse[orig_col_ind.charge_labels == col_map[n]] = np.arange(
        orig_col_degen[col_map[n]], dtype=SIZE_T)

  # define properties of new tensor resulting from transposition
  new_strides = strides[order]
  new_row_charges = [charges[n] for n in order[:tr_partition]]
  new_col_charges = [charges[n] for n in order[tr_partition:]]
  new_row_flows = flows[order[:tr_partition]]
  new_col_flows = flows[order[tr_partition:]]

  if tr_partition == 0:
    # special case: reshape into row vector

    # compute qnums of row/cols in transposed tensor
    unique_col_qnums, new_col_degen = compute_fused_charge_degeneracies(
        new_col_charges, np.logical_not(new_col_flows))
    identity_charges = charges[0].identity_charges(dim=1)
    block_qnums, new_row_map, new_col_map = intersect(
        identity_charges.unique_charges,
        unique_col_qnums.unique_charges,
        axis=0,
        return_indices=True)
    block_dims = np.array([[1], new_col_degen[new_col_map]], dtype=SIZE_T)
    num_blocks = 1
    col_ind, col_locs = reduce_charges(
        new_col_charges,
        np.logical_not(new_col_flows),
        block_qnums,
        return_locations=True,
        strides=new_strides[tr_partition:])

    # find location of blocks in transposed tensor (w.r.t positions in original)
    #pylint: disable=no-member
    orig_row_posR, orig_col_posR = np.divmod(
        col_locs[col_ind.charge_labels == 0], orig_width)
    block_maps = [(all_cumul_degens[orig_row_posR] +
                   dense_to_sparse[orig_col_posR]).ravel()]
    obj = charges[0].__new__(type(charges[0]))
    obj.__init__(block_qnums,
                 np.arange(block_qnums.shape[0], dtype=charges[0].label_dtype),
                 charges[0].charge_types)

  elif tr_partition == len(charges):
    # special case: reshape into col vector

    # compute qnums of row/cols in transposed tensor
    unique_row_qnums, new_row_degen = compute_fused_charge_degeneracies(
        new_row_charges, new_row_flows)
    identity_charges = charges[0].identity_charges(dim=1)
    block_qnums, new_row_map, new_col_map = intersect(
        unique_row_qnums.unique_charges,
        identity_charges.unique_charges,
        axis=0,
        return_indices=True)
    block_dims = np.array([new_row_degen[new_row_map], [1]], dtype=SIZE_T)
    num_blocks = 1
    row_ind, row_locs = reduce_charges(
        new_row_charges,
        new_row_flows,
        block_qnums,
        return_locations=True,
        strides=new_strides[:tr_partition])

    # find location of blocks in transposed tensor (w.r.t positions in original)
    #pylint: disable=no-member
    orig_row_posL, orig_col_posL = np.divmod(
        row_locs[row_ind.charge_labels == 0], orig_width)
    block_maps = [(all_cumul_degens[orig_row_posL] +
                   dense_to_sparse[orig_col_posL]).ravel()]
    obj = charges[0].__new__(type(charges[0]))
    obj.__init__(block_qnums,
                 np.arange(block_qnums.shape[0], dtype=charges[0].label_dtype),
                 charges[0].charge_types)
  else:

    unique_row_qnums, new_row_degen = compute_fused_charge_degeneracies(
        new_row_charges, new_row_flows)

    unique_col_qnums, new_col_degen = compute_fused_charge_degeneracies(
        new_col_charges, np.logical_not(new_col_flows))
    block_qnums, new_row_map, new_col_map = intersect(
        unique_row_qnums.unique_charges,
        unique_col_qnums.unique_charges,
        axis=0,
        return_indices=True)
    block_dims = np.array(
        [new_row_degen[new_row_map], new_col_degen[new_col_map]], dtype=SIZE_T)
    num_blocks = len(new_row_map)
    row_ind, row_locs = reduce_charges(
        new_row_charges,
        new_row_flows,
        block_qnums,
        return_locations=True,
        strides=new_strides[:tr_partition])

    col_ind, col_locs = reduce_charges(
        new_col_charges,
        np.logical_not(new_col_flows),
        block_qnums,
        return_locations=True,
        strides=new_strides[tr_partition:])

    block_maps = [0] * num_blocks
    for n in range(num_blocks):
      #pylint: disable=no-member
      orig_row_posL, orig_col_posL = np.divmod(
          row_locs[row_ind.charge_labels == n], orig_width)
      #pylint: disable=no-member
      orig_row_posR, orig_col_posR = np.divmod(
          col_locs[col_ind.charge_labels == n], orig_width)
      block_maps[n] = (
          all_cumul_degens[np.add.outer(orig_row_posL, orig_row_posR)] +
          dense_to_sparse[np.add.outer(orig_col_posL, orig_col_posR)]).ravel()
    obj = charges[0].__new__(type(charges[0]))
    obj.__init__(block_qnums,
                 np.arange(block_qnums.shape[0], dtype=charges[0].label_dtype),
                 charges[0].charge_types)
  if cacher.do_caching:
    cacher.cache[hash_val] = (block_maps, obj, block_dims)
    return cacher.cache[hash_val]
  return block_maps, obj, block_dims
def reduce_charges(charges: List[BaseCharge],
                   flows: Union[np.ndarray, List[bool]],
                   target_charges: np.ndarray,
                   return_locations: Optional[bool] = False,
                   strides: Optional[np.ndarray] = None) -> Any:
  """
  Add quantum numbers arising from combining two or more charges into a
  single index, keeping only the quantum numbers that appear in 
  `target_charges`. Equilvalent to using "combine_charges" followed 
  by "reduce", but is generally much more efficient.
  Args:
    charges: List of `BaseCharge`, one for each leg of a 
      tensor. 
    flows: A list of bool, one for each leg of a tensor.
      with values `False` or `True` denoting inflowing and 
      outflowing charge direction, respectively.
    target_charges: n-by-D array of charges which should be kept,
      with `n` the number of symmetries.
    return_locations: If `True` return the location of the kept
      values of the fused charges
    strides: Index strides with which to compute the
      retured locations of the kept elements. Defaults to trivial strides 
      (based on row major order).
  Returns:
    BaseCharge: the fused index after reduction.
    np.ndarray: Locations of the fused BaseCharge charges that were kept.
  """

  tensor_dims = [len(c) for c in charges]

  if len(charges) == 1:
    # reduce single index
    if strides is None:
      strides = np.array([1], dtype=SIZE_T)
    return charges[0].dual(flows[0]).reduce(
        target_charges, return_locations=return_locations, strides=strides[0])

  # find size-balanced partition of charges
  partition = _find_best_partition(tensor_dims)

  # compute quantum numbers for each partition
  left_ind = fuse_charges(charges[:partition], flows[:partition])
  right_ind = fuse_charges(charges[partition:], flows[partition:])

  # compute combined qnums
  comb_qnums = fuse_ndarray_charges(left_ind.unique_charges,
                                    right_ind.unique_charges,
                                    charges[0].charge_types)
  #special case of empty charges
  #pylint: disable=unsubscriptable-object
  if (comb_qnums.shape[0] == 0) or (len(left_ind.charge_labels) == 0) or (len(
      right_ind.charge_labels) == 0):
    obj = charges[0].__new__(type(charges[0]))
    obj.__init__(
        np.empty((0, charges[0].num_symmetries), dtype=charges[0].dtype),
        np.empty(0, dtype=charges[0].label_dtype), charges[0].charge_types)
    if return_locations:
      return obj, np.empty(0, dtype=SIZE_T)
    return obj

  unique_comb_qnums, comb_labels = np.unique(
      comb_qnums, return_inverse=True, axis=0)
  num_unique = unique_comb_qnums.shape[0]

  # intersect combined qnums and target_charges
  reduced_qnums, label_to_unique, _ = intersect(
      unique_comb_qnums, target_charges, axis=0, return_indices=True)
  map_to_kept = -np.ones(num_unique, dtype=charges[0].label_dtype)
  map_to_kept[label_to_unique] = np.arange(len(label_to_unique))
  # new_comb_labels is a matrix of shape
  # (left_ind.num_unique, right_ind.num_unique)
  # each row new_comb_labels[n,:] contains integers values.
  # Positions where values > 0
  # denote labels of right-charges that are kept.
  new_comb_labels = map_to_kept[comb_labels].reshape(
      [left_ind.num_unique, right_ind.num_unique])
  reduced_rows = [0] * left_ind.num_unique

  for n in range(left_ind.num_unique):
    temp_label = new_comb_labels[n, right_ind.charge_labels]
    reduced_rows[n] = temp_label[temp_label >= 0]

  reduced_labels = np.concatenate(
      [reduced_rows[n] for n in left_ind.charge_labels])
  obj = charges[0].__new__(type(charges[0]))
  obj.__init__(reduced_qnums, reduced_labels, charges[0].charge_types)

  if return_locations:
    row_locs = [0] * left_ind.num_unique
    if strides is not None:
      # computed locations based on non-trivial strides
      row_pos = fuse_stride_arrays(tensor_dims[:partition], strides[:partition])
      col_pos = fuse_stride_arrays(tensor_dims[partition:], strides[partition:])
    for n in range(left_ind.num_unique):
      temp_label = new_comb_labels[n, right_ind.charge_labels]
      temp_keep = temp_label >= 0
      if strides is not None:
        row_locs[n] = col_pos[temp_keep]
      else:
        row_locs[n] = np.where(temp_keep)[0]

    if strides is not None:
      reduced_locs = np.concatenate([
          row_pos[n] + row_locs[left_ind.charge_labels[n]]
          for n in range(left_ind.dim)
      ])
    else:
      reduced_locs = np.concatenate([
          n * right_ind.dim + row_locs[left_ind.charge_labels[n]]
          for n in range(left_ind.dim)
      ])
    return obj, reduced_locs

  return obj
Beispiel #14
0
 def charges(self):
     return fuse_charges(self.flat_charges, self.flat_flows)
Beispiel #15
0
 def charges(self) -> BaseCharge:
     """
 Return the fused charges of the index. Note that
 flows are merged into the charges.
 """
     return fuse_charges(self.flat_charges, self.flat_flows)