Beispiel #1
0
def eval(logdir1, logdir2):
    # Load graph
    model = Net2()

    # dataflow
    df = Net2DataFlow(hp.test2.data_path, hp.test2.batch_size)

    ckpt1 = tf.train.latest_checkpoint(logdir1)
    ckpt2 = tf.train.latest_checkpoint(logdir2)
    session_inits = []
    if ckpt2:
        session_inits.append(SaverRestore(ckpt2))
    if ckpt1:
        session_inits.append(SaverRestore(ckpt1, ignore=['global_step']))
    pred_conf = PredictConfig(model=model,
                              input_names=get_eval_input_names(),
                              output_names=get_eval_output_names(),
                              session_init=ChainInit(session_inits))
    predictor = OfflinePredictor(pred_conf)

    # x_mfccs, y_spec, _ = next(df().get_data())
    summ_loss, = predictor(next(df().get_data()))

    writer = tf.summary.FileWriter(logdir2)
    writer.add_summary(summ_loss)
    writer.close()
Beispiel #2
0
def do_convert(args, logdir1, logdir2):
    # Load graph
    model = Net2()

    df = Net2DataFlow(hp.convert.data_path, hp.convert.batch_size)

    ckpt1 = tf.train.latest_checkpoint(logdir1)
    ckpt2 = '{}/{}'.format(logdir2, args.ckpt) if args.ckpt else tf.train.latest_checkpoint(logdir2)
    session_inits = []
    if ckpt2:
        session_inits.append(SaverRestore(ckpt2))
    if ckpt1:
        session_inits.append(SaverRestore(ckpt1, ignore=['global_step']))
    pred_conf = PredictConfig(
        model=model,
        input_names=get_eval_input_names(),
        output_names=get_eval_output_names(),
        session_init=ChainInit(session_inits))
    predictor = OfflinePredictor(pred_conf)

    audio, y_audio, ppgs = convert(predictor, df)

    # Write the result
    tf.summary.audio('A', y_audio, hp.default.sr, max_outputs=hp.convert.batch_size)
    tf.summary.audio('B', audio, hp.default.sr, max_outputs=hp.convert.batch_size)

    # Visualize PPGs
    heatmap = np.expand_dims(ppgs, 3)  # channel=1
    tf.summary.image('PPG', heatmap, max_outputs=ppgs.shape[0])

    writer = tf.summary.FileWriter(logdir2)
    with tf.Session() as sess:
        summ = sess.run(tf.summary.merge_all())
    writer.add_summary(summ)
    writer.close()
Beispiel #3
0
def do_convert(args, logdir):
    # Load graph
    model = Net()

    df = NetDataFlow(hp.convert.data_path, hp.convert.batch_size)

    ckpt = '{}/{}'.format(logdir, args.ckpt) if args.ckpt else tf.train.latest_checkpoint(logdir)
    session_inits = []
    if ckpt:
        session_inits.append(SaverRestore(ckpt))
    pred_conf = PredictConfig(
        model=model,
        input_names=get_eval_input_names(),
        output_names=get_eval_output_names(),
        session_init=ChainInit(session_inits))
    predictor = OfflinePredictor(pred_conf)

    audio, y_audio = convert(predictor, df)

    soundfile.write("a.wav", y_audio[0], 16000, format="wav", subtype="PCM_16")
    soundfile.write("b.wav", audio[0], 16000, format="wav", subtype="PCM_16")

    # Write the result
    tf.summary.audio('A', y_audio, hp.default.sr, max_outputs=hp.convert.batch_size)
    tf.summary.audio('B', audio, hp.default.sr, max_outputs=hp.convert.batch_size)

    writer = tf.summary.FileWriter(logdir)
    with tf.Session() as sess:
        summ = sess.run(tf.summary.merge_all())
    writer.add_summary(summ)
    writer.close()
def set_enviroment(args, logdir1, logdir2):
    # Load graph
    set_env_s = datetime.datetime.now()

    ckpt1 = tf.train.latest_checkpoint(logdir1)
    ckpt2 = '{}/{}'.format(logdir2, args.ckpt) if args.ckpt else tf.train.latest_checkpoint(logdir2)
    model = Net2ForConvert()

    session_inits = []
    if ckpt2:
        session_inits.append(SaverRestore(ckpt2))
    if ckpt1:
        session_inits.append(SaverRestore(ckpt1, ignore=['global_step']))
    if args.gpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    else:
        os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

    print("PredictConfig")
    pred_conf = PredictConfig(
        model=model,
        input_names=get_eval_input_names(),
        output_names=get_eval_output_names(),
        session_init=ChainInit(session_inits)
    )

    print("OfflinePredictor")
    predictor = OfflinePredictor(pred_conf)

    set_env_e = datetime.datetime.now()
    set_env_t = set_env_e - set_env_s
    print("Setting Environment time:{}s".format(set_env_t.seconds))

    return predictor
Beispiel #5
0
def do_convert(logdir1, logdir2, input_path, output_path):
    # Load graph
    model = Net2()
    model.actual_duration = librosa.core.get_duration(filename=input_path,
                                                      sr=hp.default.sr)

    # TODO isolate out logdirs, uhh and how to pre-dl from s3?

    assert len(input_path) > 0, "must be non-empty input path"

    df = Net2DataFlow(data_path=input_path, batch_size=1)

    ckpt1 = tf.train.latest_checkpoint(logdir1)
    ckpt2 = tf.train.latest_checkpoint(logdir2)
    session_inits = []
    session_inits.append(SaverRestore(ckpt2))
    session_inits.append(SaverRestore(ckpt1, ignore=['global_step']))
    pred_conf = PredictConfig(model=model,
                              input_names=get_eval_input_names(),
                              output_names=get_eval_output_names(),
                              session_init=ChainInit(session_inits))
    predictor = OfflinePredictor(pred_conf)

    audio, y_audio, ppgs = convert(predictor, df)

    write_wav(audio[0], hp.default.sr, output_path)
def train(args, logdir1, logdir2):
    # model
    model = Net2()

    preprocessing(data_path, logdir2)

    # dataflow
    df = Net2DataFlow(data_path, hp.train2.batch_size)

    # set logger for event and model saver
    logger.set_logger_dir(logdir2)

    # session_conf = tf.ConfigProto(
    #     gpu_options=tf.GPUOptions(
    #         allow_growth=True,
    #         per_process_gpu_memory_fraction=0.6,
    #     ),
    # )

    dataset_size = len(glob.glob(data_path + '/wav/*.wav'))
    print("\t\data_path : ", data_path)
    print("\t\tDataset Size : ", dataset_size)
    print("\t\tBatch Size : ", hp.train2.batch_size)
    print("\t\tSteps per epoch : ", (dataset_size // hp.train2.batch_size))
    from time import sleep
    sleep(10)

    session_inits = []
    ckpt2 = '{}/{}'.format(
        logdir2,
        args.ckpt) if args.ckpt else tf.train.latest_checkpoint(logdir2)
    if ckpt2:
        session_inits.append(SaverRestore(ckpt2))
    ckpt1 = tf.train.latest_checkpoint(logdir1)
    if ckpt1:
        session_inits.append(SaverRestore(ckpt1, ignore=['global_step']))
    train_conf = AutoResumeTrainConfig(
        model=model,
        data=QueueInput(df(n_prefetch=1000, n_thread=8)),
        callbacks=[
            # TODO save on prefix net2
            ModelSaver(checkpoint_dir=logdir2),
            # ConvertCallback(logdir2, hp.train2.test_per_epoch),
        ],
        max_epoch=hp.train2.num_epochs,
        steps_per_epoch=dataset_size // hp.train2.batch_size,
        session_init=ChainInit(session_inits))
    if args.gpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
        train_conf.nr_tower = len(args.gpu.split(','))
        gpu_list = args.gpu.split(',')
        gpu_list = list(map(int, gpu_list))

    #trainer = SimpleTrainer()
    trainer = SyncMultiGPUTrainerReplicated(gpu_list)
    #trainer = AsyncMultiGPUTrainer(gpu_list, False)

    launch_train_with_config(train_conf, trainer=trainer)
Beispiel #7
0
def do_convert(args, logdir1, logdir2):
    # Load graph
    model = Net2()

    data = get_mfccs_and_spectrogram(args.file)

    ckpt1 = '{}/{}'.format(
        logdir1,
        args.net1) if args.net1 else tf.train.latest_checkpoint(logdir1)
    ckpt2 = '{}/{}'.format(
        logdir2,
        args.net2) if args.net2 else tf.train.latest_checkpoint(logdir2)
    session_inits = []
    if ckpt2:
        session_inits.append(SaverRestore(ckpt2))
    if ckpt1:
        session_inits.append(SaverRestore(ckpt1, ignore=['global_step']))
    pred_conf = PredictConfig(model=model,
                              input_names=get_eval_input_names(),
                              output_names=get_eval_output_names(),
                              session_init=ChainInit(session_inits))
    predictor = OfflinePredictor(pred_conf)

    audio, y_audio, ppgs = convert(predictor, data)

    target_file = args.file.split('/')[-1]
    portion = os.path.splitext(target_file)
    # converted_file = target_file.split('.')[0] + '_converted.wav'
    converted_file = portion[0] + '.wav'
    write_wav(audio[0], hp.Default.sr, args.savepath + converted_file)

    # Write the result
    tf.summary.audio('A',
                     y_audio,
                     hp.Default.sr,
                     max_outputs=hp.Convert.batch_size)
    tf.summary.audio('B',
                     audio,
                     hp.Default.sr,
                     max_outputs=hp.Convert.batch_size)

    # Visualize PPGs
    heatmap = np.expand_dims(ppgs, 3)  # channel=1
    tf.summary.image('PPG', heatmap, max_outputs=ppgs.shape[0])

    writer = tf.summary.FileWriter(args.savepath)
    with tf.Session() as sess:
        summ = sess.run(tf.summary.merge_all())
    writer.add_summary(summ)
    writer.close()
Beispiel #8
0
def train(args, logdir1, logdir2):
    # model
    model = Net2()

    # dataflow
    df = Net2DataFlow(hp.train2.data_path, hp.train2.batch_size)

    # set logger for event and model saver
    logger.set_logger_dir(logdir2)

    session_conf = tf.ConfigProto(
    #    log_device_placement=True,
        allow_soft_placement=True,
        gpu_options=tf.GPUOptions(
    #         allow_growth=True,
            per_process_gpu_memory_fraction=0.6,
        ),
    )

    session_inits = []
    ckpt2 = '{}/{}'.format(logdir2, args.ckpt) if args.ckpt else tf.train.latest_checkpoint(logdir2)
    if ckpt2:
        session_inits.append(SaverRestore(ckpt2))
    ckpt1 = tf.train.latest_checkpoint(logdir1)
    if ckpt1:
        session_inits.append(SaverRestore(ckpt1, ignore=['global_step']))
    train_conf = TrainConfig(
        model=model,
        data=QueueInput(df(n_prefetch=1000, n_thread=4)),
        callbacks=[
            # TODO save on prefix net2
            ModelSaver(checkpoint_dir=logdir2),
            # ConvertCallback(logdir2, hp.train2.test_per_epoch),
        ],
        max_epoch=hp.train2.num_epochs,
        steps_per_epoch=hp.train2.steps_per_epoch,
        session_init=ChainInit(session_inits),
        session_config=session_conf
    )
    if args.gpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
        train_conf.nr_tower = len(args.gpu.split(','))

    #trainer = SyncMultiGPUTrainerParameterServer(hp.train2.num_gpu)
    trainer = SimpleTrainer()
    launch_train_with_config(train_conf, trainer=trainer)
Beispiel #9
0
def init_predictor(ckpt_dir):
    """ Initializes an OfflinePredictor for the 'Net1' Phoneme classifier, given a directory of tf-checkpoints.

    :param ckpt_dir: Checkpoint directory.
    :return: OfflinePredictor
    """
    ckpt1 = tf.train.latest_checkpoint(ckpt_dir)
    assert ckpt1 is not None, "Failed to load checkpoint in '{}'".format(
        ckpt_dir)

    net1 = Net1()
    pred_conf = PredictConfig(
        model=net1,
        input_names=['x_mfccs'],
        output_names=['net1/ppgs'],
        session_init=ChainInit([SaverRestore(ckpt1, ignore=['global_step'])]))
    predictor = OfflinePredictor(pred_conf)
    return predictor
Beispiel #10
0
def do_convert(args, logdir1, logdir2, input_dir):
    # Load graph
    model = Net2()
    # input_dir = hp.convert.data_base_dir_original + hp.convert.data_path
    df = Net2DataFlow(input_dir, hp.convert.batch_size)

    ckpt1 = tf.train.latest_checkpoint(logdir1)
    ckpt2 = '{}/{}'.format(
        logdir2,
        args.ckpt) if args.ckpt else tf.train.latest_checkpoint(logdir2)
    session_inits = []
    if ckpt2:
        session_inits.append(SaverRestore(ckpt2))
    if ckpt1:
        session_inits.append(SaverRestore(ckpt1, ignore=['global_step']))
    pred_conf = PredictConfig(model=model,
                              input_names=get_eval_input_names(),
                              output_names=get_eval_output_names(),
                              session_init=ChainInit(session_inits))
    predictor = OfflinePredictor(pred_conf)

    # loop over all the audio files
    for wav_file in df.wav_files:
        # check if file is present audio
        out_path = wav_file.replace(hp.convert.data_base_dir_original,
                                    hp.convert.data_base_dir_convert)
        # change file extension from wv1/wv2 to wav
        out_path = out_path[:-2] + 'av'
        if os.path.isfile(out_path):
            # file is already present, move on to the next one.
            print("skipping " + wav_file)
            continue

        print("converting " + wav_file)
        # convert audio
        audio_len, feats = df.get_features(wav_file)
        audio_full = []
        for feat in feats:
            input_arr = ([feat[0]], [feat[1]], [feat[2]])
            audio, ppgs = convert(predictor, input_arr)
            audio_full.append(
                (audio[0] * hp.convert.amplitude_multiplier).astype(np.int16))
        scipy.io.wavfile.write(out_path, hp.default.sr,
                               np.concatenate(audio_full)[:audio_len])
def train(args, logdir2):
    # model
    model = Net2()

    # dataflow
    df = Net2DataFlow(hp.train2.mel_path, hp.train2.ppgs_path,
                      hp.train2.batch_size)
    session_inits = []
    ckpt2 = '{}/{}'.format(
        logdir2,
        args.ckpt) if args.ckpt else tf.train.latest_checkpoint(logdir2)
    if ckpt2:
        session_inits.append(SaverRestore(ckpt2))
    '''
    ckpt1 = tf.train.latest_checkpoint(logdir1)
    if ckpt1:
        session_inits.append(SaverRestore(ckpt1, ignore=['global_step']))
    '''
    train_conf = TrainConfig(
        model=model,
        data=QueueInput(df(n_prefetch=1000, n_thread=4)),
        callbacks=[
            # TODO save on prefix net2
            ModelSaver(checkpoint_dir=logdir2),
            # ConvertCallback(logdir2, hp.train2.test_per_epoch),
        ],
        max_epoch=hp.train2.num_epochs,
        steps_per_epoch=hp.train2.steps_per_epoch,
        session_init=ChainInit(session_inits))
    if args.gpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
        train_conf.nr_tower = len(args.gpu.split(','))

    trainer = SyncMultiGPUTrainerReplicated(hp.train2.num_gpu)
    print("strated trainer")
    launch_train_with_config(train_conf, trainer=trainer)
Beispiel #12
0
def eval(logdir):
    # Load graph
    model = Net()

    # dataflow
    df = NetDataFlow(hp.test.data_path, hp.test.batch_size)

    ckpt = tf.train.latest_checkpoint(logdir)
    session_inits = []
    if ckpt:
        session_inits.append(SaverRestore(ckpt))
    pred_conf = PredictConfig(
        model=model,
        input_names=get_eval_input_names(),
        output_names=get_eval_output_names(),
        session_init=ChainInit(session_inits))
    predictor = OfflinePredictor(pred_conf)

    r_mel, t_spec, _ = next(df().get_data())
    summ_loss, = predictor(r_mel, t_spec)

    writer = tf.summary.FileWriter(logdir)
    writer.add_summary(summ_loss)
    writer.close()
Beispiel #13
0
        data=QueueInput(ProjDataFlow(Ppy)),
        callbacks=[
            PeriodicTrigger(ModelSaver(), every_k_epochs=5),
            PeriodicTrigger(VolumeSaver(model), every_k_epochs=5),
            # prevent learning in the first epoch
            # MemInitHyperParamSetter('learning_rate_mask',(0,1)),
            # controls learning rate as a function of epoch
            HyperParamSetterWithFunc('learning_rate', learning_rate_fun),
            # GraphProfiler()
            # PeakMemoryTracker()
            # GPUUtilizationTracker(),
        ],
        steps_per_epoch=steps_per_epoch,
        max_epoch=200000,
        # first time load model from checkpoint and reset GRU state
        session_init=ChainInit([TryResumeTraining()]),  #,ResetInit(model)])
        # session_config=tf.ConfigProto(log_device_placement=True) #config_gpus(1)
    )

    trainer = SimpleTrainer()
    # with tf.contrib.tfprof.ProfileContext(logger.get_logger_dir()) as pctx:
    launch_train_with_config(traincfg, trainer)

################# JUNK ###############

# config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))
# workaround
# with tf.Session(config=config):
#     pass

# Pin = tf.placeholder(tf.float32, shape=P_py.shape)
def ckpt2mel(predictor, ppgs_dir, mel_dir, save_dir):
    print("get into ckpt")
    for fi in os.listdir(ppgs_dir):
        print("fi",fi)
        #ppgs_name = os.path.join(ppgs_dir, fi)

        mel, ppgs = queue_input(fi, ppgs_dir, mel_dir)
        pred_mel = predictor(mel, ppgs)
        #print("pred_mel",pred_mel.size())
        pred_mel = np.array(pred_mel)
        print("pred_mel",pred_mel.shape)
        length = pred_mel.shape[2]
        width =  pred_mel.shape[3]
        pred_mel = pred_mel.reshape((length, width))
        save_name = fi.split('.npy')[0]
        if hp.default.n_mels == 20:
            npy_dir = os.path.join(save_dir,'lpc20')
            if not os.path.exists(npy_dir):
                os.makedirs(npy_dir)
            npy_path = os.path.join(npy_dir, '%s_20.npy' %save_name)
            np.save(npy_path, pred_mel)
            print('saved',npy_dir)if hp.default.n_mels == 32:
            npy_dir = os.path.join(save_dir,'lpc32')
            if not os.path.exists(npy_dir):
                os.makedirs(npy_dir)
            npy_path = os.path.join(npy_dir, '%s_32.npy' %save_name)
            np.save(npy_path, pred_mel)
            print('saved',npy_dir)def do_convert(args, logdir2):
    # Load graph
    model = Net2()
    index = 0
    ppgs_dir = hp.convert.ppgs_path
    mel_dir = hp.convert.mel_path
    #for fi in os.listdir(ppgs_dir):
    #print("fi",fi)
    #ppgs_path = os.path.join(ppgs_dir, fi)
    #df = Net2DataFlow(hp.convert.mel_path, ppgs_path, hp.convert.batch_size)
    #print("finish df")
    ckpt2 = '{}/{}'.format(logdir2, args.ckpt) if args.ckpt else tf.train.latest_checkpoint(logdir2)
    print("ckpt2",ckpt2)
    session_inits = []
    if ckpt2:
        session_inits.append(SaverRestore(ckpt2))
    pred_conf = PredictConfig( model=model,
                     input_names=get_eval_input_names(),
                     output_names=get_eval_output_names(),
                     session_init=ChainInit(session_inits))
    predictor = OfflinePredictor(pred_conf)
    print("after predictor")
    #import pdb;pdb.set_trace()
    ckpt2mel(predictor, ppgs_dir, mel_dir, hp.convert.save_path)
    print("success")
    def get_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument('case2', type=str, help='experiment case name of train2')
    parser.add_argument('-ckpt', help='checkpoint to load model.')
    arguments = parser.parse_args()
    return arguments


if __name__ == '__main__':
    args = get_arguments()
    hp.set_hparam_yaml(args.case2)
    logdir_train2 = '{}/{}/train2'.format(hp.logdir_path, args.case2)

    print('case2: {},logdir2: {}'.format(args.case2, logdir_train2))

    s = datetime.datetime.now()

    do_convert(args, logdir2=logdir_train2)

    e = datetime.datetime.now()
    diff = e - s
    print("Done. elapsed time:{}s".format(diff.seconds))
Beispiel #15
0
def train_child(model_cls, args, log_dir, child_dir, prev_dir):
    """
    """
    if not os.path.exists(child_dir):
        os.mkdir(child_dir)

    if os.path.basename(child_dir) == "0" and args.use_init_model:
        init_model_dir = os.path.join(args.data_dir, 'init_model',
                                      args.ds_name)
        if os.path.exists(init_model_dir):
            # This implies that there exists init_model_dir, and we are in first model
            # so we do not need to train. Copy the model and mark finished
            logger.info("Skip first model as this model is fully trained.")
            cmd = "mkdir -p {cdir} ; cp {pdir}/* {cdir}/ ".format(\
                cdir=child_dir, pdir=args.init_model_dir)
            _ = subprocess.check_output(cmd, shell=True)
            return

    # get training params for train-config
    (model, args, starting_epoch, lr_schedule, ds_train, insrc_train,
     train_cbs) = get_training_params(model_cls, args)

    ## Model callbacks
    # loss weight update
    ls_cbs_func = getattr(model, 'compute_loss_select_callbacks', None)
    if callable(ls_cbs_func):
        train_cbs.extend(ls_cbs_func())
    # extra callback for general logging/ update.
    extra_callbacks = DEFAULT_CALLBACKS()
    if not args.do_remote_child_inf_runner:
        extra_callbacks = \
            [ecb for ecb in extra_callbacks if not isinstance(ecb, ProgressBar)]
    logger.info("Extra callbacks are {}".format(
        [ecb.__class__ for ecb in extra_callbacks]))

    # Logging for analysis
    model_str = model.net_info.to_str()
    logger.info('LayerInfoListString is :\n {}'.format(model_str))
    train_callbacks = [
        ModelSaver(checkpoint_dir=child_dir,
                   max_to_keep=1,
                   keep_checkpoint_every_n_hours=100),
    ] + train_cbs
    if lr_schedule:
        train_callbacks.append(
            ScheduledHyperParamSetter('learning_rate', lr_schedule))
    logger.info('The updated params for training is \n{}'.format(args))
    config = TrainConfig(
        data=insrc_train,
        dataflow=ds_train,
        callbacks=train_callbacks,
        extra_callbacks=extra_callbacks,
        model=model,
        monitors=[JSONWriter(), ScalarPrinter()],  #, TFEventWriter()],
        steps_per_epoch=args.steps_per_epoch,
        max_epoch=args.max_epoch,
        starting_epoch=starting_epoch)
    for dn in [child_dir, prev_dir]:
        if dn is None:
            continue
        ckpt = tf.train.latest_checkpoint(dn)
        if ckpt:
            if args.search_cat_based:
                restore_cls = SaverRestoreSizeRelaxed
            else:
                restore_cls = SaverRestore
            _ignore = [DYNAMIC_WEIGHTS_NAME]
            _sess_init_load = restore_cls(ckpt, ignore=_ignore)
            if dn == child_dir:
                # loading from self keep global step
                config.session_init = _sess_init_load
            else:
                # loading from others. Set global_step to 0
                config.session_init = ChainInit([
                    _sess_init_load,
                    AssignGlobalStep(0),
                ])
            break
    launch_train_with_config(config,
                             SyncMultiGPUTrainerParameterServer(args.nr_gpu))
    return model
def do_convert(args, logdir1, logdir2):
    print("do_convert")
    # Load graph

    ckpt1 = tf.train.latest_checkpoint(logdir1)
    ckpt2 = '{}/{}'.format(
        logdir2,
        args.ckpt) if args.ckpt else tf.train.latest_checkpoint(logdir2)
    model = Net2ForConvert()

    session_inits = []
    if ckpt2:
        session_inits.append(SaverRestore(ckpt2))
    if ckpt1:
        session_inits.append(SaverRestore(ckpt1, ignore=['global_step']))
    if args.gpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    else:
        os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

    print("PredictConfig")
    pred_conf = PredictConfig(model=model,
                              input_names=get_eval_input_names(),
                              output_names=get_eval_output_names(),
                              session_init=ChainInit(session_inits))

    print("OfflinePredictor")
    set_env_s = datetime.datetime.now()
    predictor = OfflinePredictor(pred_conf)
    set_env_e = datetime.datetime.now()
    set_env_t = set_env_e - set_env_s
    print("Setting Environment time:{}s".format(set_env_t.seconds))

    input_name = ''
    while True:
        input_name = input("Write your audio file\'s path for converting : ")
        if input_name == 'quit':
            break
        elif len(glob.glob(input_name)) == 0:
            print("That audio file doesn't exist! Try something else.")
            continue

        convert_s = datetime.datetime.now()
        mfcc, spec, mel_spec = get_mfccs_and_spectrogram(input_name,
                                                         trim=False,
                                                         isConverting=True)
        mfcc = np.expand_dims(mfcc, axis=0)
        spec = np.expand_dims(spec, axis=0)
        mel_spec = np.expand_dims(mel_spec, axis=0)
        output_audio, ppgs = convert(predictor, mfcc, spec, mel_spec)

        input_audio, samplerate = load(input_name,
                                       sr=hp.default.sr,
                                       dtype=np.float64)
        """
        # F0 adaptation with WORLD Vocoder
        f0_conv_s = datetime.datetime.now()
        output_audio = f0_adapt(input_audio, output_audio, logdir2, samplerate)
        f0_conv_e = datetime.datetime.now()
        f0_conv_time = f0_conv_e - f0_conv_s
        print("F0 Adapting Time:{}s".format(f0_conv_time.seconds))
        """

        # Saving voice-converted audio to 32-bit float wav file
        # print(audio.dtype)
        output_audio = output_audio.astype(np.float32)
        write_wav(path="./converted/" + input_name,
                  y=output_audio,
                  sr=hp.default.sr)

        # Saving PPGS data to Grayscale Image and raw binary file
        ppgs = np.squeeze(ppgs, axis=0)
        plt.imsave('./converted/debug/' + input_name + '.png',
                   ppgs,
                   cmap='binary')
        np.save('./converted/debug/' + input_name + '.npy', ppgs)

        convert_e = datetime.datetime.now()
        convert_time = convert_e - convert_s
        print("Total Converting Time:{}s".format(convert_time.seconds))