def test_integral():
    bounds = [
        (-1, -0.9), (-0.65, -0.5), (-0.4, -0.32),
        (-0.31, -0.1), (0, 0.05), (0.2, np.inf)
    ]

    @np.vectorize
    def allowed_point(x):
        for l, u in bounds:
            if l < x and x < u:
                return 1
        return 0

    with Model() as model:
        mu = Parameter()
        sigma = Parameter(lower=0)
        X = Normal(mu, sigma, bounds=bounds)

    model.observed(X)
    model.initialize({mu: -0.4, sigma: 2})

    xs = np.linspace(-1, 1, 1001)

    # Calculate the integral using scipy, zeroing points that are out of bounds
    out1 = st.norm.pdf(xs, -0.4, 2) * allowed_point(xs)
    integral = sum(st.norm.cdf(u, -0.4, 2) - st.norm.cdf(l, -0.4, 2) for l, u in bounds)
    out1 /= integral

    out2 = model.pdf(xs)

    assert_array_almost_equal(out1, out2, 15)
def test_bounds_contain_none():
    FakeDistribution2D = get_fake_distribution(dimension=2)
    with Model():
        FakeDistribution2D(bounds=[
            [1.1, 2.2, 3.3, 4.4],
            [1.1, None, 3.3, 4.4],
            [1.1, 2.2, 3.3, 4.4]
        ])
def test_bounds_invalid_shape_2():
    FakeDistribution2D = get_fake_distribution(dimension=2)
    with Model():
        FakeDistribution2D(bounds=[
            [1.1, 2.2, 3.3, 4.4],
            [1.1, 2.2, 3.3, 4.4],
            [1.1, 2.2, 3.3, 4.4]
        ])
Beispiel #4
0
def test_mcmc():
    with Model() as model:
        x = Normal(0, 1)

    np.random.seed(0)
    model.observed()
    model.initialize({
        x: 0.0,
    })
    out = model.mcmc(samples=100)
def test_mix2_fit_with_mix2_input():
    with Model() as model:
        mu = Parameter()
        sigma = Parameter(lower=1, upper=4)
        a = Parameter(lower=0.06)
        b = Parameter(lower=0)
        f_1 = Parameter(lower=0, upper=1)
        f_2 = Parameter(lower=0, upper=1)

        X1 = Normal(mu, sigma, bounds=[(-np.inf, 21), (22, np.inf)])
        X2 = Exponential(a, bounds=[(-np.inf, 8), (10, 27), (31, np.inf)])
        X12 = Mix2(f_1, X1, X2, bounds=[(6, 17), (18, 36)])

        X3 = Exponential(b)
        X123 = Mix2(f_2, X12, X3, bounds=[(6, 17), (18, 36)])

    model.observed(X123)
    model.initialize({mu: 23, sigma: 1.2, a: 0.2, b: 0.04, f_1: 0.3, f_2: 0.4})

    # Generate some data to fit
    np.random.seed(42)

    exp_1_data = np.random.exponential(10, 200000)
    exp_1_data = exp_1_data[(6 < exp_1_data)
                            & ((exp_1_data < 8) | (10 < exp_1_data)) &
                            ((exp_1_data < 17) | (18 < exp_1_data)) &
                            ((exp_1_data < 27) |
                             (31 < exp_1_data)) & (exp_1_data < 36)]

    exp_2_data = np.random.exponential(20, 200000)
    exp_2_data = exp_2_data[(6 < exp_2_data)
                            & ((exp_2_data < 17) | (18 < exp_2_data)) &
                            (exp_2_data < 36)]

    # Include the data blinded by the Mix2 bounds as we use the len(norm_data)
    norm_data = np.random.normal(19, 2, 100000)
    norm_data = norm_data[((6 < norm_data) & (norm_data < 17)) |
                          ((18 < norm_data) & (norm_data < 21)) |
                          ((22 < norm_data) & (norm_data < 36))]

    data = np.concatenate([exp_1_data, exp_2_data, norm_data])
    data = data[((6 < data) & (data < 17)) | ((18 < data) & (data < 36))]

    result = model.fit(data)

    assert result.success
    assert abs(model.state[mu] - 19) < 3e-2
    assert abs(model.state[sigma] - 2) < 1e-3
    assert abs(model.state[a] - 0.1) < 1e-3
    assert abs(model.state[b] - 0.05) < 3e-4
    assert abs(model.state[f_1] - (len(norm_data) /
                                   (len(exp_1_data) + len(norm_data)))) < 5e-3
    assert abs(model.state[f_2] -
               ((len(exp_1_data) + len(norm_data)) / len(data))) < 5e-4
def test_bounds_1D():
    FakeDistribution = get_fake_distribution()
    with Model() as model:
        A = FakeDistribution()
        B = FakeDistribution(lower=1.1)
        C = FakeDistribution(upper=2.2)
        D = FakeDistribution(lower=3.3, upper=4.4)
        E = FakeDistribution(bounds=[(5.5, 6.6), (7.7, 8.8), (9.9, 11.11)])

    assert model._description[A].bounds == [Region(-np.inf, np.inf)]
    assert model._description[B].bounds == [Region(1.1, np.inf)]
    assert model._description[C].bounds == [Region(-np.inf, 2.2)]
    assert model._description[D].bounds == [Region(3.3, 4.4)]
    assert model._description[E].bounds == [Region(5.5, 6.6), Region(7.7, 8.8), Region(9.9, 11.11)]
Beispiel #7
0
def test_mix2_fit():
    with Model() as model:
        mu = Parameter()
        sigma = Parameter(lower=1)
        a = Parameter(lower=0)
        f = Parameter(lower=0, upper=1)

        X1 = Normal(mu, sigma, bounds=[(-np.inf, 21), (22, np.inf)])
        X2 = Exponential(a, bounds=[(-np.inf, 8), (10, np.inf)])
        X12 = Mix2(f, X1, X2, bounds=[(6, 17), (18, 36)])

    model.observed(X12)
    model.initialize({
        mu: 23,
        sigma: 1.2,
        a: 0.2,
        f: 0.3,
    })

    # Generate some data to fit
    np.random.seed(42)

    exp_data = np.random.exponential(10, 200000)
    exp_data = exp_data[(exp_data < 8) | (10 < exp_data)]

    # Include the data blinded by the Mix2 bounds as we use the len(norm_data)
    norm_data = np.random.normal(19, 2, 100000)
    norm_data = norm_data[
        ((6 < norm_data) & (norm_data < 17)) |
        ((18 < norm_data) & (norm_data < 21)) |
        ((22 < norm_data) & (norm_data < 36))
    ]

    data = np.concatenate([exp_data, norm_data])
    data = data[((6 < data) & (data < 17)) | ((18 < data) & (data < 36))]

    result = model.fit(data)

    # Check the fit was successful
    assert result.success
    assert abs(model.state[mu] - 19) < 5e-3
    assert abs(model.state[sigma] - 2) < 5e-3
    assert abs(model.state[a] - 0.1) < 5e-4
    assert abs(model.state[f] - (len(norm_data)/len(data))) < 5e-4
Beispiel #8
0
def test_fisher():
    with Model() as model:

        mu = Parameter()
        sigma = Parameter(lower=0)
        X = Normal(mu, sigma)

    model.observed(X)
    model.initialize({
        mu: 2,
        sigma: 2,
    })
    np.random.seed(0)
    xs = np.random.normal(0, 1, 200)
    model.fit(xs)
    cov = fisher(model)
    # TODO(ibab) Make this more robust and useful
    # This is the result I got when running this
    assert np.isclose(cov[mu][mu], 0.00521652579559)
Beispiel #9
0
def test_mix2():
    with Model() as model:
        mu1 = Uniform()
        mu2 = Uniform()
        sigma1 = Uniform(lower=0)
        sigma2 = Uniform(lower=0)
        f = Uniform(lower=0, upper=1)

        X = Mix2(
            f,
            Normal(mu1, sigma1),
            Normal(mu2, sigma2),
        )
    model.observed(X)
    model.initialize({
        f: 0.5,
        mu1: -1,
        mu2: 1,
        sigma1: 1,
        sigma2: 2,
    })
    model.fit([1, 2, 3])
def test_bounds_ND():
    FakeDistribution3D = get_fake_distribution(dimension=3)
    with Model() as model:
        A1, A2, A3 = FakeDistribution3D()
        B1, B2, B3 = FakeDistribution3D(lower=1.1)
        C1, C2, C3 = FakeDistribution3D(upper=2.2)
        D1, D2, D3 = FakeDistribution3D(lower=3.3, upper=4.4)
        E1, E2, E3 = FakeDistribution3D(bounds=[(5.5, 6.6), (7.7, 8.8), (9.9, 11.1)])
        F1, F2, F3 = FakeDistribution3D(bounds=[
            [(1.1, 2.1), (3.1, 4.1), (5.1, 6.1)],
            [(1.2, 2.2), (3.2, 4.2), (5.2, 6.2)],
            [(1.3, 2.3), (3.3, 4.3), (5.3, 6.3)],
        ])

    assert model._description[A1].bounds == [Region(-np.inf, np.inf)]
    assert model._description[A2].bounds == [Region(-np.inf, np.inf)]
    assert model._description[A3].bounds == [Region(-np.inf, np.inf)]

    assert model._description[B1].bounds == [Region(1.1, np.inf)]
    assert model._description[B2].bounds == [Region(1.1, np.inf)]
    assert model._description[B3].bounds == [Region(1.1, np.inf)]

    assert model._description[C1].bounds == [Region(-np.inf, 2.2)]
    assert model._description[C2].bounds == [Region(-np.inf, 2.2)]
    assert model._description[C3].bounds == [Region(-np.inf, 2.2)]

    assert model._description[D1].bounds == [Region(3.3, 4.4)]
    assert model._description[D2].bounds == [Region(3.3, 4.4)]
    assert model._description[D3].bounds == [Region(3.3, 4.4)]

    assert model._description[E1].bounds == [Region(5.5, 6.6), Region(7.7, 8.8), Region(9.9, 11.1)]
    assert model._description[E2].bounds == [Region(5.5, 6.6), Region(7.7, 8.8), Region(9.9, 11.1)]
    assert model._description[E3].bounds == [Region(5.5, 6.6), Region(7.7, 8.8), Region(9.9, 11.1)]

    assert model._description[F1].bounds == [Region(1.1, 2.1), Region(3.1, 4.1), Region(5.1, 6.1)]
    assert model._description[F2].bounds == [Region(1.2, 2.2), Region(3.2, 4.2), Region(5.2, 6.2)]
    assert model._description[F3].bounds == [Region(1.3, 2.3), Region(3.3, 4.3), Region(5.3, 6.3)]
def test_using_lower_and_bounds():
    FakeDistribution = get_fake_distribution()
    with Model():
        FakeDistribution(lower=5, bounds=[5, np.inf])
Beispiel #12
0
def test_mix2_fit_with_mix2_input():
    with Model() as model:
        mu = Parameter()
        sigma = Parameter(lower=1, upper=4)
        a = Parameter(lower=0.06)
        b = Parameter(lower=0)
        f_1 = Parameter(lower=0, upper=1)
        f_2 = Parameter(lower=0, upper=1)

        X1 = Normal(mu, sigma, bounds=[(-np.inf, 21), (22, np.inf)])
        X2 = Exponential(a, bounds=[(-np.inf, 8), (10, 27), (31, np.inf)])
        X12 = Mix2(f_1, X1, X2, bounds=[(6, 17), (18, 36)])

        X3 = Exponential(b)
        X123 = Mix2(f_2, X12, X3, bounds=[(6, 17), (18, 36)])

    model.observed(X123)
    model.initialize({
        mu: 23,
        sigma: 1.2,
        a: 0.2,
        b: 0.04,
        f_1: 0.3,
        f_2: 0.4
    })

    # Generate some data to fit
    np.random.seed(42)

    exp_1_data = np.random.exponential(10, 200000)
    exp_1_data = exp_1_data[
        (6 < exp_1_data) &
        ((exp_1_data < 8) | (10 < exp_1_data)) &
        ((exp_1_data < 17) | (18 < exp_1_data)) &
        ((exp_1_data < 27) | (31 < exp_1_data)) &
        (exp_1_data < 36)
    ]

    exp_2_data = np.random.exponential(20, 200000)
    exp_2_data = exp_2_data[
        (6 < exp_2_data) &
        ((exp_2_data < 17) | (18 < exp_2_data)) &
        (exp_2_data < 36)
    ]

    # Include the data blinded by the Mix2 bounds as we use the len(norm_data)
    norm_data = np.random.normal(19, 2, 100000)
    norm_data = norm_data[
        ((6 < norm_data) & (norm_data < 17)) |
        ((18 < norm_data) & (norm_data < 21)) |
        ((22 < norm_data) & (norm_data < 36))
    ]

    data = np.concatenate([exp_1_data, exp_2_data, norm_data])
    data = data[((6 < data) & (data < 17)) | ((18 < data) & (data < 36))]

    result = model.fit(data)

    # Check the fit was successful
    assert result.success
    assert abs(model.state[mu] - 19) < 3e-2
    assert abs(model.state[sigma] - 2) < 1e-3
    assert abs(model.state[a] - 0.1) < 1e-3
    assert abs(model.state[b] - 0.05) < 3e-4
    assert abs(model.state[f_1] - (len(norm_data)/(len(exp_1_data)+len(norm_data)))) < 5e-3
    assert abs(model.state[f_2] - ((len(exp_1_data)+len(norm_data))/len(data))) < 5e-4

    # Check if we can access the individual components
    xs = np.linspace(0, 41, 1001)

    def allowed_point(x, bounds):
        @np.vectorize
        def allowed_point(x):
            for l, u in bounds:
                if l < x and x < u:
                    return 1
            return 0
        return allowed_point(x)

    # Normal
    bounds = [(6, 17), (18, 21), (22, 36)]
    out1 = st.norm.pdf(xs, model.state[mu], model.state[sigma]) * allowed_point(xs, bounds)
    integral = sum(
        st.norm.cdf(u, model.state[mu], model.state[sigma]) -
        st.norm.cdf(l, model.state[mu], model.state[sigma])
        for l, u in bounds
    )
    out1 *= model.state[f_1] * model.state[f_2] / integral

    out2 = model[X1].pdf(xs)

    assert_array_almost_equal(out1, out2, 11)

    # Exponential 1
    bounds = [(6, 8), (10, 17), (18, 27), (31, 36)]
    out1 = st.expon.pdf(xs, 0, 1/model.state[a]) * allowed_point(xs, bounds)
    integral = sum(
        st.expon.cdf(u, 0, 1/model.state[a]) -
        st.expon.cdf(l, 0, 1/model.state[a])
        for l, u in bounds
    )
    out1 *= (1-model.state[f_1]) * model.state[f_2] / integral

    out2 = model[X2].pdf(xs)

    assert_array_almost_equal(out1, out2, 11)

    # Exponential 2
    bounds = [(6, 17), (18, 36)]
    out1 = st.expon.pdf(xs, 0, 1/model.state[b]) * allowed_point(xs, bounds)
    integral = sum(
        st.expon.cdf(u, 0, 1/model.state[b]) -
        st.expon.cdf(l, 0, 1/model.state[b])
        for l, u in bounds
    )
    out1 *= (1-model.state[f_2]) / integral

    out2 = model[X3].pdf(xs)

    assert_array_almost_equal(out1, out2, 11)
Beispiel #13
0
def test_mix2_extended():
    np.random.seed(0)
    exp_data = np.random.exponential(10, 20000)
    exp_data = exp_data[(6 < exp_data) & (exp_data < 36)]

    norm1_data = np.random.normal(19, 2, 10000)
    norm1_data = norm1_data[(6 < norm1_data) & (norm1_data < 36)]

    data = np.concatenate([exp_data, norm1_data])
    data = data[((6 < data) & (data < 36))]

    with Model() as model:
        mu = Parameter()
        sigma = Parameter(lower=1)
        a = Parameter(lower=0)

        N1 = Parameter(lower=0)
        N2 = Parameter(lower=0)
        N = Poisson(N1+N2)

        X1 = Normal(mu, sigma)
        X2 = Exponential(a)
        X12 = Mix2(N1/(N1+N2), X1, X2, bounds=[(6, 36)])

    model.observed(X12, N)
    model.initialize({
        mu: 23,
        sigma: 1.2,
        a: 0.2,
        N1: len(data)/5,
        N2: len(data)*4/5
    })
    result = model.fit(data, np.ones_like(data)*len(data), optimizer=MigradOptimizer())

    assert result.success
    assert abs(model.state[mu] - 19) < 3e-2
    assert abs(model.state[sigma] - 2) < 3e-2
    assert abs(model.state[a] - 0.1) < 1e-3
    assert abs(model.state[N1] - len(norm1_data)) < np.sqrt(len(norm1_data))
    assert abs(model.state[N2] - len(exp_data)) < np.sqrt(len(exp_data))

    # Check if the pdf is correct
    xs = np.linspace(0, 41, 101)

    def allowed_point(x, bounds):
        @np.vectorize
        def allowed_point(x):
            for l, u in bounds:
                if l < x and x < u:
                    return 1
            return 0
        return allowed_point(x)

    out1a = st.norm.pdf(xs, model.state[mu], model.state[sigma]) * allowed_point(xs, [(6, 36)])
    integral = st.norm.cdf(36, model.state[mu], model.state[sigma])
    integral -= st.norm.cdf(6, model.state[mu], model.state[sigma])
    out1a *= model.state[N1] / (model.state[N1]+model.state[N2]) / integral

    out1b = st.expon.pdf(xs, 0, 1/model.state[a]) * allowed_point(xs, [(6, 36)])
    integral = st.expon.cdf(36, 0, 1/model.state[a]) - st.expon.cdf(6, 0, 1/model.state[a])
    out1b *= model.state[N2] / (model.state[N1]+model.state[N2]) / integral

    out1 = out1a + out1b

    out2 = model.pdf(xs, None)

    assert_array_almost_equal(out1, out2, 16)
def test_bounds_invalid_shape_1():
    FakeDistribution = get_fake_distribution()
    with Model():
        FakeDistribution(bounds=[[1.1, 2.2, 3.3]])
def test_inside_another_graph():
    FakeDistribution = get_fake_distribution()
    other_sessions = tf.Session()
    with Model():
        with other_sessions.graph.as_default():
            FakeDistribution()
def test_bounds_invalid_odd():
    FakeDistribution = get_fake_distribution()
    with Model():
        FakeDistribution(bounds=[5.5, 6.6, 7.7, 8.8, 9.9])
def test_using_upper_and_bounds():
    FakeDistribution = get_fake_distribution()
    with Model():
        FakeDistribution(upper=101, bounds=[np.inf, 101])
Beispiel #18
0
from tensorprob import Model, Parameter, Normal

with Model() as model:
    a = Parameter()
    b = Parameter()
    sigma = Parameter(lower=0)
    X = Parameter()
    y = Normal(a * X + b, sigma)

model.observed(X, y)
model.assign({
    a: 2,
    b: 2,
    sigma: 10,
})

import numpy as np

xs = np.linspace(0, 1, 100)
ys = 1 * xs + 0 + np.random.normal(0, .1, len(xs))

print(model.fit(xs, ys))
import matplotlib.pyplot as plt

plt.plot(xs, ys, 'ro')
x_ = np.linspace(0, 1, 200)
plt.plot(x_, model.state[a] * x_ + model.state[b], 'b-')
plt.show()
def test_numeric_integral():
    FakeDistribution = get_fake_distribution(integral=None)
    with Model():
        FakeDistribution()
def test_requiring_logp():
    FakeDistribution = get_fake_distribution(logp=None)
    with Model():
        FakeDistribution()