def test_mixed_power( simulator, value1=(numpy.random.randint(0, 1000) / 1000.0 * (numpy.pi / 2.0)), value2=(numpy.random.randint(0, 1000) / 1000.0 * (numpy.pi / 2.0))): angle1 = Variable(name="angle1") angle2 = Variable(name="angle2") variables = {angle1: value1, angle2: value2} qubit = 0 control = 1 H1 = paulis.X(qubit=qubit) U1 = gates.X(target=control) + gates.Ry( target=qubit, control=control, angle=angle1) e1 = ExpectationValue(U=U1, H=H1) H2 = paulis.Y(qubit=qubit) U2 = gates.X(target=control) + gates.Rx( target=qubit, control=control, angle=angle2) e2 = ExpectationValue(U=U2, H=H2) added = e1**e2 val = simulate(added, variables=variables, backend=simulator) en1 = simulate(e1, variables=variables, backend=simulator) en2 = simulate(e2, variables=variables, backend=simulator) an1 = np.sin(angle1(variables=variables)) an2 = -np.sin(angle2(variables=variables)) assert np.isclose(val, en1**en2, atol=1.e-4) assert np.isclose(val, an1**an2, atol=1.e-4)
def test_akward_expression( simulator, value1=(numpy.random.randint(0, 1000) / 1000.0 * (numpy.pi / 2.0)), value2=(numpy.random.randint(0, 1000) / 1000.0 * (numpy.pi / 2.0))): angle1 = Variable(name="angle1") angle2 = Variable(name="angle2") variables = {angle1: value1, angle2: value2} prod = angle1 * angle2 qubit = 0 control = None H = paulis.Y(qubit=qubit) U = gates.Rx(target=qubit, control=control, angle=prod) Up = gates.Rx(target=qubit, control=control, angle=prod + np.pi / 2) Down = gates.Rx(target=qubit, control=control, angle=prod - np.pi / 2) e1 = ExpectationValue(U=U, H=H) en1 = simulate(e1, variables=variables, backend=simulator) uen = simulate(0.5 * ExpectationValue(Up, H), variables=variables, backend=simulator) den = simulate(-0.5 * ExpectationValue(Down, H), variables=variables, backend=simulator) an1 = -np.sin(prod(variables=variables)) anval = prod(variables=variables) an2 = angle2(variables=variables) added = angle1 * e1 dO = grad(added, 'angle1') dE = grad(e1, 'angle1') deval = simulate(dE, variables=variables, backend=simulator) doval = simulate(dO, variables=variables, backend=simulator) dtrue = angle1(variables=variables) * deval + en1 assert np.isclose(en1, an1) assert np.isclose(deval, an2 * (uen + den), atol=1.e-4) assert np.isclose(doval, dtrue, atol=1.e-4)
def test_total_type_jumble(simulator,value1=(numpy.random.randint(10, 1000) / 1000.0 * (numpy.pi / 2.0)), value2=(numpy.random.randint(10, 1000) / 1000.0 * (numpy.pi / 2.0))): a = Variable('a') b = Variable('b') values = {a: value1, b: value2} H1 = tq.paulis.X(0) H2 = tq.paulis.Y(0) U1= tq.gates.Ry(angle=a,target=0) U2= tq.gates.Rx(angle=b,target=0) e1=ExpectationValue(U1,H1) e2=ExpectationValue(U2,H2) stacked= tq.objective.vectorize([e1, e2]) stacked = stacked*a*e2 out=simulate(stacked,variables=values,backend=simulator) v1=out[0] v2=out[1] appendage = a(values) * -np.sin(b(values)) an1= np.sin(a(values)) * appendage an2= -np.sin(b(values)) * appendage assert np.isclose(v1+v2,an1+an2) # not gonna contract, lets make gradient do some real work ga=grad(stacked,a) gb=grad(stacked,b) la=[tq.simulate(x,variables=values) for x in ga] print(la) lb=[tq.simulate(x,variables=values) for x in gb] print(lb) tota=np.sum(np.array(la)) totb=np.sum(np.array(lb)) gan1= np.cos(a(values)) * appendage + (np.sin(a(values)) * -np.sin(b(values))) - (np.sin(b(values)) * -np.sin(b(values))) gan2= np.sin(a(values)) * a(values) * -np.cos(b(values)) + 2 * (-np.cos(b(values)) * appendage) assert np.isclose(tota+totb,gan1+gan2)
def test_really_awfull_thing(simulator, value1=(numpy.random.randint(10, 1000) / 1000.0 * (numpy.pi / 2.0)), value2=(numpy.random.randint(10, 1000) / 1000.0 * (numpy.pi / 2.0))): angle1 = Variable(name="angle1") angle2 = Variable(name="angle2") variables = {angle1: value1, angle2: value2} prod = angle1 * angle2 qubit = 0 control = None H = paulis.Y(qubit=qubit) U = gates.Rx(target=qubit, control=control, angle=prod) Up = gates.Rx(target=qubit, control=control, angle=prod + np.pi / 2) Down = gates.Rx(target=qubit, control=control, angle=prod - np.pi / 2) e1 = ExpectationValue(U=U, H=H) en1 = simulate(e1, variables=variables, backend=simulator) uen = simulate(0.5 * ExpectationValue(Up, H), variables=variables, backend=simulator) den = simulate(-0.5 * ExpectationValue(Down, H), variables=variables, backend=simulator) an1 = -np.sin(prod(variables=variables)) anval = prod(variables=variables) an2 = angle2(variables=variables) added = angle1 * e1 raised = added.wrap(np.sin) dO = grad(raised, 'angle1') dE = grad(e1, 'angle1') dA = grad(added, 'angle1') val = simulate(added, variables=variables, backend=simulator) dave = simulate(dA, variables=variables, backend=simulator) deval = simulate(dE, variables=variables, backend=simulator) doval = simulate(dO, variables=variables, backend=simulator) dtrue = np.cos(val) * dave assert np.isclose(en1, an1, atol=1.e-4) assert np.isclose(deval, an2 * (uen + den), atol=1.e-4) assert np.isclose(doval, dtrue, atol=1.e-4)
def test_l_addition(simulator, value=(numpy.random.randint(0, 1000) / 1000.0 * (numpy.pi / 2.0))): angle1 = Variable(name="angle1") variables = {angle1: value} qubit = 0 control = 1 H1 = paulis.X(qubit=qubit) U1 = gates.X(target=control) + gates.Ry(target=qubit, control=control, angle=angle1) e1 = ExpectationValue(U=U1, H=H1) added = e1 + 1 val = simulate(added, variables=variables, backend=simulator) en1 = simulate(e1, variables=variables, backend=simulator) + 1. an1 = np.sin(angle1(variables=variables)) + 1. assert np.isclose(val, en1, atol=1.e-4) assert np.isclose(val, an1, atol=1.e-4)
def test_r_power(simulator, value=numpy.random.uniform(0.1, 1.9*numpy.pi, 1)[0]): angle1 = Variable(name="angle1") variables = {angle1: value} qubit = 0 control = 1 H1 = paulis.X(qubit=qubit) U1 = gates.X(target=control) + gates.Ry(target=qubit, control=control, angle=angle1) e1 = ExpectationValue(U=U1, H=H1) added = 2 ** e1 val = simulate(added, variables=variables, backend=simulator) en1 = 2 ** simulate(e1, variables=variables, backend=simulator) an1 = 2. ** np.sin(angle1(variables=variables)) assert np.isclose(val, en1, atol=1.e-4) assert np.isclose(val, an1, atol=1.e-4)
def test_l_division(simulator, value=numpy.random.uniform(0.0, 2.0*numpy.pi, 1)[0]): angle1 = Variable(name="angle1") variables = {angle1: value} qubit = 0 control = 1 H1 = paulis.X(qubit=qubit) U1 = gates.X(target=control) + gates.Ry(target=qubit, control=control, angle=angle1) e1 = ExpectationValue(U=U1, H=H1) added = e1 / 2 val = simulate(added, variables=variables, backend=simulator) en1 = simulate(e1, variables=variables, backend=simulator) / 2 an1 = np.sin(value) / 2. assert np.isclose(val, en1, atol=1.e-4) assert np.isclose(val, an1, atol=1.e-4)
def test_heterogeneous_operations_r(simulator, op, value1=(numpy.random.randint(1, 999) / 1000.0 * (numpy.pi / 2.0)), value2=(numpy.random.randint(1, 999) / 1000.0 * (numpy.pi / 2.0))): angle1 = Variable(name="angle1") angle2 = Variable(name="angle2") variables = {angle1: value1, angle2: value2} qubit = 0 control = 1 H1 = paulis.Y(qubit=qubit) U1 = gates.X(target=control) + gates.Rx(target=qubit, control=control, angle=angle1) e1 = ExpectationValue(U=U1, H=H1) added = Objective(args=[e1.args[0], angle2], transformation=op) val = simulate(added, variables=variables, backend=simulator) en1 = simulate(e1, variables=variables, backend=simulator) an1 = -np.sin(angle1(variables=variables)) an2 = angle2(variables=variables) assert np.isclose(val, float(op(en1, an2)), atol=1.e-4) assert np.isclose(en1, an1, atol=1.e-4)
def test_heterogeneous_operations_l(simulator, op, value1=(numpy.random.randint(1, 1000) / 1000.0 * (numpy.pi / 2.0)), value2=(numpy.random.randint(1, 1000) / 1000.0 * (numpy.pi / 2.0))): angle1 = Variable(name="angle1") angle2 = Variable(name="angle2") variables = {angle1: value1, angle2: value2} qubit = 0 control = 1 H2 = paulis.X(qubit=qubit) U2 = gates.X(target=control) + gates.Ry(target=qubit, control=control, angle=angle2) e2 = ExpectationValue(U=U2, H=H2) added = Objective(args=[angle1, e2.args[0]], transformation=op) val = simulate(added, variables=variables, backend=simulator) en2 = simulate(e2, variables=variables, backend=simulator) an1 = angle1(variables=variables) an2 = np.sin(angle2(variables=variables)) assert np.isclose(val, float(op(an1, en2)), atol=1.e-4) assert np.isclose(en2, an2, atol=1.e-4)
def test_nesting(): a = Variable(name='a') variables = {a: 3.0} b = a + 2 - 2 c = (b * 5) / 5 d = -(-c) e = d**0.5 f = e**2 assert np.isclose(a(variables), f(variables))
def test_stacking(): a=Variable('a') b=Variable('b') def f(x): return np.cos(x)**2. + np.sin(x)**2. funcs=[f,f,f,f] vals = {Variable('a'):numpy.random.uniform(0,np.pi),Variable('b'):numpy.random.uniform(0,np.pi)} O = VectorObjective(argsets=[[a],[b],[a],[b]],transformations=funcs) O1 = O.apply_op_list(funcs) O2 = O1/4 output = simulate(O2,variables=vals) assert np.isclose(1.,np.sum(output))
def test_heterogeneous_gradient_r_div(simulator): ### the reason we don't test float power here is that it keeps coming up NAN, because the argument is too small angle1 = Variable(name="angle1") value = (numpy.random.randint(100, 1000) / 1000.0 * (numpy.pi / 2.0)) variables = {angle1: value} qubit = 0 control = 1 H1 = paulis.Y(qubit=qubit) U1 = gates.X(target=control) + gates.Rx(target=qubit, control=control, angle=angle1) e1 = ExpectationValue(U=U1, H=H1) added = Objective(args=[e1.args[0], angle1], transformation=np.true_divide) val = simulate(added, variables=variables, backend=simulator) en1 = simulate(e1, variables=variables, backend=simulator) an1 = -np.sin(angle1(variables=variables)) anval = angle1(variables=variables) dO = grad(added, 'angle1') dE = grad(e1, 'angle1') deval = simulate(dE, variables=variables, backend=simulator) doval = simulate(dO, variables=variables, backend=simulator) dtrue = deval / anval - en1 / (anval ** 2) assert np.isclose(float(val), float(np.true_divide(en1, anval))) assert np.isclose(en1, an1, atol=1.e-4) assert np.isclose(doval, dtrue, atol=1.e-4)
def test_qubit_maps(): qubit_map = {0:1, 1:2, 2:3} H1 = tq.paulis.X(0) + tq.paulis.Z(0)*tq.paulis.Z(1) + tq.paulis.Y(2) U1 = tq.gates.Ry(angle="a",target=0) + tq.gates.CNOT(0,1) + tq.gates.H(target=2) E1 = tq.ExpectationValue(H=H1, U=U1) H2 = tq.paulis.X(qubit_map[0]) + tq.paulis.Z(qubit_map[0]) * tq.paulis.Z(qubit_map[1]) + tq.paulis.Y(qubit_map[2]) U2 = tq.gates.Ry(angle="a", target=qubit_map[0]) + tq.gates.CNOT(qubit_map[0], qubit_map[1]) + tq.gates.H(target=qubit_map[2]) E2 = tq.ExpectationValue(H=H2, U=U2) E3 = E1.map_qubits(qubit_map=qubit_map) for angle in numpy.random.uniform(0.0, 10.0, 10): variables = {"a":angle} assert np.isclose(tq.simulate(E2, variables=variables), tq.simulate(E3, variables=variables))
def test_exotic_gradients(gradvar): # a and b will fail for autograd not with jax a = Variable('a') b = Variable('b') c = Variable('c') d = Variable('d') e = Variable('e') f = Variable('f') variables = {a: 2.0, b: 3.0, c: 4.0, d: 5.0, e: 6.0, f: 7.0} t = c * a**b + b / c - Objective( args=[c], transformation=np.cos) + f / (d * e) + a * Objective( args=[d], transformation=np.exp) / (f + b) + Objective( args=[e], transformation=np.tanh) + Objective( args=[f], transformation=np.sinc) g = grad(t, gradvar) if gradvar == 'a': assert np.isclose( g(variables), c(variables) * b(variables) * (a(variables)**(b(variables) - 1.)) + np.exp(d(variables)) / (f(variables) + b(variables))) if gradvar == 'b': assert np.isclose( g(variables), (c(variables) * a(variables)**b(variables)) * np.log(a(variables)) + 1. / c(variables) - a(variables) * np.exp(d(variables)) / (f(variables) + b(variables))**2.0) if gradvar == 'c': assert np.isclose( g(variables), a(variables)**b(variables) - b(variables) / c(variables)**2. + np.sin(c(variables))) if gradvar == 'd': assert np.isclose( g(variables), -f(variables) / (np.square(d(variables)) * e(variables)) + a(variables) * np.exp(d(variables)) / (f(variables) + b(variables))) if gradvar == 'e': assert np.isclose( g(variables), 2. / (1. + np.cosh(2 * e(variables))) - f(variables) / (d(variables) * e(variables)**2.)) if gradvar == 'f': assert np.isclose( g(variables), 1. / (d(variables) * e(variables)) - a(variables) * np.exp(d(variables)) / (f(variables) + b(variables))**2. + np.cos(np.pi * f(variables)) / f(variables) - np.sin(np.pi * f(variables)) / (np.pi * f(variables)**2.))
def test_transform_update(): a = Variable('a') b = Variable('a.') t = VectorObjective(transformations=[operator.add], argsets=[[a, b]]) variables = {a: 8, b: 1, a: 9, "c": 17} assert np.isclose(float(t(variables)), 10.0)